永磁同步电机学习笔记

永磁同步电机学习笔记
永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。

2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。

3.功率因数角:外施相电压与定子相电流的夹角。

4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。

5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线)

6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。

7.工作特性曲线:

知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。

8.铁心损耗:

电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。

9.计算极弧系数:

气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。

10.永磁电机气隙长度:

是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。

11.空载漏磁系数:

是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

和空载漏磁系数都不是常数。

一方面,空载漏磁系数大表明漏磁导大,磁钢利用率差。

另一方面,空载漏磁系数大表明电枢反映的分流作用大,电枢反应对磁钢的实际作用值就小,磁钢的抗去磁能力强。

它不仅标志着磁钢的利用程度,而且对磁钢材料的抗去磁能力和电动机性能有较大影响,还对弱磁扩速有影响。极弧系数越大,气隙长度越小,点击的极间漏磁系数越小。在正常设计范围内,磁钢磁化方向长度越大,电机的气隙长度却大,磁钢端部漏磁计算系数越大。

12.对调速永磁同步电动机来讲,磁钢去磁最严重的情况是运行中的电动机绕组突然短路。短路电流产生直轴电枢磁动势而对磁钢起去磁作用。

13.计算交直轴电抗时,可不考虑直轴电枢反映电抗的非线性,但是必须考虑交轴磁路的饱和对交轴电枢反映电抗的影响。

14.相对地,直轴电枢反映电抗对永磁机性能影响比交轴电枢反映更加敏感。增加磁钢磁化方向长度以减小直轴电枢反映电抗,可以明显提高电动机的过载能力。为得到较高的功率因数和空载反电势,可增加绕组匝数和铁心长度,但同时会导致直、交轴电枢反映电抗,使得电动机过载能力变小。

15.表面凸出式永磁电机性能类似于隐极,故而交直轴电枢反映磁密的波形系数等于1。

表面式转子磁路结构分为凸出式和插入式。由于永磁材料的相对回

复磁导率接近1,故表面凸出的电磁性能属于隐极转子结构。表面插入式的相邻两永磁磁极间有着磁导率很大的铁磁材料,故在电磁性能上属于凸极转子结构。

16.负载法既可以考虑磁路的饱和,又计及直、交轴磁场的相互影响(共磁路)。

17.磁钢尺寸设计不合理、漏磁系数过小、电枢反映过大、所选用磁钢的内禀矫顽力过低和电动机工作温度过高等因素都可以导致电动机中永磁体的失磁。因此要准确计算和合理设计磁钢的最大去磁工作点。

18.永磁同步机一般设计的即便在轻载运行时功率因数和效率也比较高,是一个非常可贵的优点。

19.设计中可通过增大绕组串联匝数和增加磁钢用量来提高空载反电势。前者只能在电动机起动转矩、最小转矩、失步转矩有裕度的前提下实现;后者要保证电机磁路不能过于饱和及制造成本的问题。

20.较高的空载反电势不仅可以提高稳态运行是功率因数,还可以使得运行于冲击负载下的永磁同步机具有较强的稳定性、高的平均功率因数和平均效率。较高功率因数还使得定子电流变小、铜耗下降、效率提高和温度下降。故而设计高功率因数的永磁机是提高电动机效率的一条重要途径。

21.永磁机杂散损耗比同规格感应机大。前者气隙磁场谐波含量比后者大。极弧系数(磁钢槽及隔磁措施有关)设计不合理,气隙磁场谐波尤其大。采用Y星形接法双层短距或正弦绕组,合理设计极

弧系数,减小槽开口宽或采用闭口槽、磁性槽楔(减小齿磁导谐波导致的杂耗,但漏磁系数和槽漏抗有所增大)。适当加大气隙长度。通常要大于0.01~0.02cm,容量越大大的越多。

22.变频器供电加上转子位置闭环控制系统构成自同步永磁机。反电势和供电波形都是矩形波的电动机叫无刷直流电动机,都是正弦波的叫正弦波永磁同步电动机。

23.矩形波永磁机中磁钢所跨极弧角小于180°时,随着极弧角的增大,电动机的平均转矩也单调增大。但是电动机的纹波转矩含量与极弧角的关系则较为复杂,设计是要同时考虑这两个因素。

24.只有当电流与反电势同向时电动机才能得到单位电流转矩的最大值。(定子磁动势空间矢量与永磁体磁场空间矢量正交)

25.正弦波永磁同步机的控制运行是与系统中的逆变器密切相关的,其运行性能收逆变器制约。最明显的是电动机的相电压有效值的极限值和相电流的有效极限值要受到逆变器直流侧电压和逆变器的最大输出电流的限制。(当逆变器直流侧电压最大值为U时,Y接的电动机可达到的最大基波相电压有效值U1=U/根号6。在dq轴系统中的电压极限值为u=根号3*U)。

26.电压极限椭圆:

对某一给定转速,电动机稳态运行时候,定子电流矢量不能超过该转速下的椭圆轨迹最多落在椭圆上。随着转速的提高,电压极限椭圆的长轴与短轴与转速成反比相应缩小,形成了一簇椭圆曲线。

27.电流极限圆:定子电流空间矢量既不能超过电动机的电压极限椭

圆,也不能超过电流极限圆。

28.q轴代表永磁转矩,恒转矩曲线上各点是永磁转矩和磁阻转矩的合成。当转矩小时,最大转矩/电流轨迹靠近q轴,表明永磁转矩起主导作用;当转矩增大时,与电流平方成正比的磁阻转矩要比与电流呈线性关系的永磁转矩增加的更快,故会远离q轴。进一步,定子齿的局部饱和将导致定子电流增加时电动机最大转矩/电流轨迹想q轴靠近。

29.矢量控制方法:

1)直轴电流i=0控制。从端口看相当于一台他励直流电动机,定子电流中只有交轴分量,且定子磁动势空间矢量与磁钢磁场空间矢量正交。对表面凸出式转子磁路结构来说,此时单位定子电流获得最大转矩。此时,电动机的最高转速即取决于逆变器可提供的最高电压,也决定于电动机输出转矩。电动机可达到的最高电压越大,输出转矩越小,最高转速越高。

30.一般对于调速永磁机主要的要求是:调速范围宽、转矩和转速平稳、动态响应快速准确、单位电流转矩大。

31.调速永磁同步电动机是与相匹配的功率系统的有关性能密不可分。设计时根据传动系统的应用场合和有关技术经济要求,首先确定电动机的控制策略和逆变器的容量,然后根据电机设计有关知识来设计电动机。

32.PM传动系统的主要特征是它的调速范围和动态响应性能。调速范围分为恒转矩调速区和恒功率调速区。用工作周期来表示电动机的

运行过程。动态响应性能常常以静止加速到额定转速所需要的加速时间来表示(kW 级别的电动机一般仅几十ms )。最大转矩是额定转矩的3倍左右。

33.调速永磁同步电机的主要尺寸可以由所需的最大转矩和动态响应性能指标确定。当最大电磁转矩指标为max ()T N m ?,则有:

24max 11104

ef i T B L D A δ-=?-----------------------(1) 式中 1B δ ------气隙磁密基波幅值(T );

A ----- 定子电负荷有效值(A/cm ),

11dp

mNI K A p τ=-----------------------------------(2)

当选定电动机的电磁负荷后,电动机的主要尺寸

6

2max 11

410i ef T D L P τ?=--------------------------------(3) 动态响应性能指标的要求体现为在最大电磁转矩作用下,电动机在时间b t 内可线性地由静止加速到转折速度(此时的转折速度又称为基本转速)b ω,即 max b b

J J T p t pt ωω?==?--------------------------------(4) 式中 J-------电动机转子和负载的转动惯量(kg.m^2)。

电动机的最大电磁转矩与转动惯量之比

max b b

T J pt ω=------------------------------------(5) 而电动机的转子转动惯量可近似表示为

471()1022

i Fe ef D J L π

ρ-=?-------------------------(6) 将(1)和(6)代入(5)就可以得到定子外径

1i D =(7) 从而确定了定子内径和铁心长度这两个主要尺寸。

定子外径的确定在保证散热的前提下可以为提高电动机效率而增大外径和降低成本而减小外径。

34.永磁体设计

磁钢尺寸连同电动机转子磁路结构,便决定了电动机的磁负荷,而磁负荷则决定着电动机的功率密度和损耗。

表面转子磁路结构,磁钢尺寸近似地: {{2

1R M R M p h B B b δματ=-=-------------------------(8)

35.磁钢磁化方向长度直接决定了电动机直轴电感的大小和永磁磁链的大小。

36.磁钢的磁化方向长度与电动机气隙长度由很大关系,气隙越长,磁钢的磁化方向长度也越大。

37.正弦波永磁同步电动机中磁钢产生的气隙磁密并不呈正弦波分布,因而时必须合理设计电枢绕组以减少转矩纹波。

38.影响PM 停转时定位精度的主要原因是PM 的定位力矩——该力矩力图使电动机转子定位与某一位置。定位力矩主要由转子中的磁钢与定子开槽的相互影响而产生。当磁钢的磁极宽度为整数个定子齿距时,可使得齿磁导谐波引起的定位力矩得到有效的抑制。

39.直轴(d 轴):主磁极轴线(纵线);

交轴(q 轴):转子相临磁极轴线间的中心线为交轴(横轴)。

40.集中绕组的优点:绕组端接部分缩短,导线用量减少,绕组线圈电阻降低,铜耗减少,电机效率提高,成本降低,制造周期缩短。缺点:电机的绕组因数减小,定子磁动势中的谐波含量增加及定子齿槽效应对磁场分布的影响增大,使得

电机的脉动转矩增大。

41.分数槽集中绕组:这种绕组的特点是电机每对极内包含的槽数小于3,是一个分数Q/p小于3,故称为分数槽绕组,但是定子总槽数必须是3的倍数,即Q/3=整数,才能构成三项对称绕组。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹 本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教 其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了! 下面先给出电机结构示意图 电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。 运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数 定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计 以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题 就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

风力发电机文献综述

毕业设计文献综述 题目:立轴风力发电机 学生姓名:李春鹏学号:090501224 专业:机械设计制造及其自动化 指导教师:刘恩福 2013年2月27日

一、摘要 风能利用技术的快速发展已使风能成为目前最重要的一种可再生资源。现有的风能转化系统大部分将风能通过风力机装置转化为机械能,然后通过电机转化为电能,通常风力机按风轮旋转轴在空间的方向,分为水平轴风力机(HorizontalAxis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类,达里厄型(Darrieus)风力机为立轴风力机的典型机型。立轴风力机由于其结构和气动性能的独特优势,越来越被人们重视。变速风力机可以在很大的风速范围内工作,而且能最大限度的捕获风能,提高风力发电机的效率,而成为当前该领域的研究热点。本文以大型变速立轴风力机为研究对象,风力机为典型的达里厄型风力机,直接驱动永磁同步电机发电。通过建立风力机气动性能评估模型、传动系统模型、电机以及控制系统的模型,并在MATLAB/SIMULINK进行仿真模拟,得到风力机在各种工况下的运行情况,并实现了最大风能追踪的算法。 变速风力发电机提高了风能利用率,但增加了控制系统的难度,本文对最大风能追踪策略的理论进行分析研究。分析了达里厄型风力机的气动性能评估模型,该模型是基于叶素动量理论的双多流管模型,考虑了达里厄型风力机旋转时叶片对风轮下盘面流动干涉的特性,以及翼型动态失速、气动阻力的影响,对1MW达里厄型风力机进行计算分析,得到了该风力机的气动性能,如风力机在各风速下的气动转矩与转速的关系,以及在各风速下的气动功率与转速的关系,为仿真模拟提供基础。根据仿真的需要分别建立了风力机传动系统模型、永磁同步电机模型、最大功率跟踪算法等模型。永磁同步发电机在同步旋转轴下建立,并对同步电机的解耦控制做了分析,最大功率跟踪算法采用尖速比控制方法。最后在MATLAB/SIMULINK中且搭建了整个系统的仿真模型,对1MW 达里厄型风力机低风速气动、高风速刹车、额定风速下变风速运行等工况进行了仿真模拟。通过模拟得到风力机在各种工况下的运行情况,实现了最大风能追踪的算法,采用尖速比的控制方法追踪最大风能的效果显著,为进一步立轴风力发电机控制系统的设计提供依据。 ABSTRACT The rapid progress on wind energy conversion technology has made wind energy tobe one of the most important renewable and sustainable energy.Current wind energy conversion system translates the wind energy to mechanical energy by wind turbine,and then converts it to electricity by generator.According to the direction of the revolving shaft in space,wind turbine includes two types,one is horizontal axis wind turbine(HAWT for short),and the other is vertical axis wind turbine(VAWT for short),thevertical axis wind turbine is famous for Darrieus type.There has been growing attention to vertical axis wind turbine for its unique structural and aerodynamic advantages.As variable speed wind turbine works at larger ranger of wind speed,utilizes much more wind energy,Improve the efficiency of wind turbines.So it has become the hot topic in the field.This paper is basic on large variable speed vertical axis wind turbine.The wind turbine is Darrieus type,and it dives permanent magnet synchronous generator directly.Through establishment of aerodynamic performance evaluation model,dive-train model,generator and control system model,and simulating of the wind turbine system model in MATLAB/SIMULINK,we can obtain the performance of wind turbine in a variety of conditions,and achieve the algorithm of Maximum Power Point Tracking. Although variable speed wind turbine Improve the efficiency it Increase the difficulty of the control system.The Maximum Power Point Tracking control Strategy theory is analyzed in this paper.The aerodynamic performance evaluation model is established,it's the double-disk multiple stream-tube model in the framework of blade element momentum theory,the airfoil dynamic stall effect and aerodynamic losses were included.we obtained the aerodynamic performance by calculating for the1MW Darrieus vertical axis wind turbine,such as the relationship between aerodynamic torque and rotating speed at different wind speed,the relationship between aerodynamic power and rotating speed at different wind

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

永磁同步电机伺服驱动系统概述

文献综述 ——永磁同步电机伺服驱动系统 一.前言 自上世纪八十年代以来,随着微电子技术、电力电子技术、传感器技术、电机制造技术以及先进的控制理论等支撑技术的飞速发展,以交流伺服电动机为控制对象的交流伺服系统逐步取代直流伺服系统,在机电一体化、工业自动化、数控机床、大规模集成电路制造、航空航天、雷达和各种军用武器随动系统等方面得到广泛应用。以永磁同步电机作为执行电机的数字交流伺服系统在高精度运动控制和驱动领域得到了越来越广泛的应用。 永磁材料的选择对电机的结构和性能影响很大。目前广泛应用于永磁体主要有铁氧体、稀土钴以及钕铁硼三类永磁材料。其中钕铁硼是近年来出现的一种新型永磁材料,其矫顽力和剩磁密度都高于其他两类永磁材料,且成本比稀土钴低得多,是目前应用最为广泛的永磁材料。永磁材料的发展也对永磁同步电机的应用起着至关重要的作用。 二.正文 1. 交流伺服系统的概念及分类 1.1 概念 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。 在交流伺服系统中,电动机的类型有永磁同步交流伺服电机(PMSM)和感应异步交流伺服电机(IM),其中,永磁同步电机具备十分优良的低速性能、可以实现弱磁高速控制,调速围宽广、动态特性和效率都很高,已经成为伺服系统的主流之选。普遍应用的永磁伺服电机有两大类:一类称为无刷直流电机(BLDC),另一类称为三相永磁同步电机(PMSM)。永磁同步电机的特点是用永磁体取代绕线式同步电机转子中的励磁绕组,从而省去了励磁线圈、滑环和电刷,因此具有转子转动惯量小、响应速度快、效率高、功率密度高等优点,在要求高性能的伺服领域得到了广泛的应用。永磁同步电机的定子与绕线式同步电机基本相同,要求输入定子的电流仍然是三相正弦的,所以称为三相永磁同步电机。而异步伺服电机虽然结构坚固、制造简单、价格低廉,但是在特性上和效率上存在差距,只在大功率场合得到重视。 1.2 分类 交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和 全数字式伺服。如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步 伺服电动机构成的伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。二者的不同之处

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

高效自启动永磁同步电动机核心技术研究

高效自启动永磁同步电动机核心技 术研究 1、永磁同步电动机关键制造工艺的研究 永磁同步电动机关键工艺的研究主要包括永磁体装配以及永磁电机总装配工艺的研究。 1)永磁体装配工艺的研究 由于高性能钕铁硼稀土材料的应用,永磁电机的转子加工精度要求较高,永磁电机转子上的永磁体槽与永磁体之间留有的间隙较小,一般在0.2~0.4mm范围,而目前永磁电机铁心叠压工艺大多采用铁心冲片的轴孔键槽定位方式已不能满足加工要求。

利用轴孔键槽定位,其定位方式精度低,转子铁心永磁体槽的整齐度得不到保证,叠压质量不能满足精度要求。通常的解决措施是,利用人工对永磁体槽进行磨挫,增加永磁体槽的周边气隙,使永磁体能够顺利装入永磁电机转子内,这种工艺浪费了大量的时间和人力,延长了电机的生产周期和增加了电机的加工成本,而且容易造成由于电机永磁体槽在磁化方向气隙的增大而引起永磁电机运行性能恶化的结果。 1 假轴2大头螺母3转子挡板4转子铁心5双头螺栓6螺母7转子槽8永磁体槽 图27.转子铁心叠压示意图 而采用假永磁体定位的叠压工艺,在转子铁心完成铸铝后拆卸假永磁体的时机不易掌握,铸铝转子的一次合格率较低,加工效率低下。 新的加工工艺是综合了两种加工工艺的优点而形成的、创新的叠压工艺(如图27),采用冲片键槽及固定转子端板的双头螺栓进行定位,有效地解决了转子铁心叠压不齐的问题,而且在永磁体装配前,增加了清槽工艺过程,使转子上的永磁体槽的尺寸公差完全能能够满

足永磁体装配的要求。 2)永磁电机总装配工艺的研究 由于装入磁性较强的钕铁硼永磁材料,给永磁电机的装配工艺带来了很大的困难。在转子刚接近定子时,由于永磁体的磁(极)性作用,定、转子就会紧紧地吸在一起,造成转子不能顺利装入定子,电机的功率越大,两者作用力就越大。在无专用设备的过程中,如果装配时处理不当,不但两者会被强烈地吸引在一起而无法分开,影响了装配工作;甚至在强行分开的过程中损坏定、转子,更有甚者在实际装配过程中出现碰伤手指而致残的人身伤亡事故。因此,研究永磁电机装配专用装备是十分必要的。 对于小功率的永磁电机,可不借助于专用装备,将永磁转子装入定子中,但对于较大功率的永磁电机,则必须借助于专用装备将转子推入到定子,以完成永磁电机的装配过程。 永磁电机总装配工艺的研究则是发明了一种永磁电机装配专用装备(如图28),此装备应用后能够克服操作困难,人体易受伤害等问题,工艺装备代替人工装配永磁电机,实现了机械化,效率高、安全可靠,为永磁电机制造开辟了一条高效装配之路,具有一定的经济效益。

微机电系统文献综述

基于Galerkin法分析微梁的动态响应 一、课题研究背景 1.MEMS的概念 MEMS是微机电系统(Micro-Electro-Mechanical System)的英文缩写,是指将微结构的传感技术、致动技术和微电子控制技术集成于一体,形成同时具有“传感-计算(控制)-执行”功能的智能微型装置或微型系统[1]。 随着技术的兴起和发展,MEMS已成为继微电子技术之后在微尺度研究领域中的又一次革命。MEMS通过力、电、磁等能量的转换来实现自身的特有功能,涉及多种物理场的互相耦合,因此它是一个多能量域耦合作用的极其复杂的系统。 2.MEMS的特点 一般地说MEMS具有以下几个非约束性的特征: (1)MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。尺寸在毫米到微米范围之内,区别于一般宏(Macro),即传统的、大于1cm 尺度的“机械”,并非进入物理上的微观层次。(2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似于铝,热传导率接近钼和钨。基于(但不限于)硅微加工技术制造。 (3)批量生产大大降低了MEMS 产品成本。用硅微加工工艺在一片硅片上同时可制造出成百上千个微型机电装置或完整的MEMS,批

量生产使性能价格比比之传统“机械”制造技术大幅度地提高。(4)集成化。可以把不同功能、不同敏感方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件集成在一起可制造成可靠性、稳定性很高的MEMS。 3.MEMS的研究领域 作为一门交叉学科,MEMS的研究和开发更是为了在微观领域探索新原理、开发新功能、制造新器件。由于MEMS具有体系小、重量轻、能耗低、集成度高和智能化程度高等一系列优点,MEMS的研究领域不仅与微电子学密切相关,而且还广泛涉及到机械、材料、光学、流体、化学、热学、声学、磁学、自动控制、仿真学等学科,技术影响遍及包括各种传感器件、医疗、生物芯片、通信、机器人、能源、武器、航空航天等领域[2-5],所以MEMS技术是一门多学科的综合技术。 MEMS的研究包括理论基础、技术基础和应用与开发研究。MEMS 理论基础研究主要包括由于尺寸的微小型化、结构材料以及加工方法的不同带来的一些新的理论问题。结构尺寸效应和微小型化理论,如:力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等等。尺寸减小到一定程度,有些宏观物理量甚至要重新定义,随着尺寸减小,需要进一步研究微结构力学、微动力学、微液体力学、微磨擦学、微电子学、微光学和微生物学等。 4.MEMS的应用

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

自启动永磁同步电机与开关磁阻电机对比word版本

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始

终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。 3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。

maxwell软件- 自起动永磁同步电动机

11 自起动永磁同步电动机 本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。有关RMxprt 基本操作的详细介绍请参考第一部分的章节。 11.1基本理论 同步电机定子绕组上输入三相正弦电压,在气隙中产生旋转磁场。转子上的永久磁极力图与定子旋转磁场对齐,因而在转子上产生同步转矩。起动时,转子上的阻尼绕组产生异步起动转矩,使其具有自起动能力。 自起动永磁同步电机的频域相量图如图11.1所示。 图 11.1 矢量图 图11.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。 aq 1q ad 1d X X X X X X +=+= (11.1) 上式中,X 1为电枢绕组漏电抗,X ad 和X ad 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。 设力矩角为θ(相量E 0与相量U 的夹角),可导出 ??????-=????????????-θθsin cos U E U I I X R R X 0q d q 11d (11.2) 解得: ??????+---+=??????θθθθsin )cos (sin )cos (U X E U R U R E U X X X R 1I I d 0110q q d 21q d (11.3) 设相量I 与相量E 0的夹角为ψ: q d 1I I -=tan ψ (11.4)

功率因数角φ(相量I 与相量U 的夹角)为: ψθ?+= (11.5) 输入电功率为: ?cos UI 3P 1= (11.6) 输出机械功率为: )(Fe Cu fw 12P P P P P ++-= (11.7) 式中P fw , P Cu , 和P Fe 分别为风摩损耗、电枢铜损和铁心损耗 输出机械转矩为: ω2 2P T = (11.8) 式中ω为同步角速度rad/s ). 电机效率为: %100P P 12?=η (11.9) 电机的起动方式与感应电机相同,即借助于转子上的鼠笼绕组(在此称为阻尼绕组)产生起动力矩。 11.2 主要特点 11.2.1适用于8种转子结构 转子结构中由于永久磁钢的布置方式不同,转子的磁路结构差别很大。RMxprt 可对不同的转子结构进行分析和设计。 11.2.2线圈和绕组的排列优化设计 几乎所有常用的三相和单相,单层和双层,整数槽和分数槽交流绕组都能自动设计。用户不需要一个接一个的自己定义线圈。 当设计者采用全极式单层绕组时,RMxprt 将自动对绕组进行排列,以减少绕组端部长度。当使用不对称三相绕组时,绕组排列按照最少负序和零序进行优化。 11.2.3 绕组编辑器支持任何单、双层绕组的设计 除了利用RMxprt 中的绕组自动排列功能,用户也能通过Winding Editor 来指定特殊形式的绕组排列。 在Winding Editor (绕组编辑器)中,通过改变每个线圈的相属Phase 、 匝数Turns 、 入槽号In Slot 和出槽号Out Slot ,可排列出任意所需的单、双层绕组分布形式。 11.2.4 阻尼绕组的动态参数分析 第3 ~ 7种转子的阻尼绕组结构与感应电机的鼠笼绕组相同。第8种转子结构与凸极同步电机相同,这种结构中阻尼绕组处于d-轴和q-轴差别很大的非均匀磁场中,而阻尼条的连接又有每极连接(极间不连接)、全部连接和端板式连接。所有这些复杂情况RMxprt 都能进行分析处理,给出阻尼绕组的动态参数。

电机文献综述

电机文献综述 (08级) 学生姓名金其超 学号 08132209 院系工学院机电系 专业自动化 082 填写日期2010-09-27

电机行业综述 前言 电机行业是一个传统的行业。经过200多年的发展,它已经成为现代生产、生活中不可或缺的核心、基础,是国民经济中重要的一环。作为劳动密集型产业,我国发展电机制造业有着得天独厚的优势。到目前为止,我国的电机制造业已经具有一定规模。据全国电工行业统计,2006年全国交流电机产量达到15000万kw,同比增16%;汽轮发电机9583万kw,同比增长21.64%,水轮发电机组1922万kw,同比增长49.57%。在经过了2006年下半年的低速发展之后,2007年到现在,我国电机制造行业保持高速发展态势。电机出口市场的需求还将在相当一个时期趋于稳定,交流电动机的国际市场需求也十分可观,并将持续处于高速增长阶段。随着电机产品国外市场的进一步拓宽,中小型电机在出口数量、品种、产品档次、创汇额上将会有重大突破。未来出口电机产量增长主要外部原因在于世界经济稳定增长,促进了行业贸易产量的增长。内因是国内出口退税率改革导致企业加快出口步伐,及国内外资企业规模的不断扩大和数量的快速增加,产品竞争提高,在国内形成巨大的效益,也刺激了出口上升。随着生产现代化程度的不断提高和人们对家用电器、汽车等消费的不断增加,市场对电机的需求也将越来越大。预计到2010年,全国发电装机容量将达到6.6亿千瓦左右,平均每年将投产发电装机容量3700万千瓦以上,年均增长7.8%左右。而电动机的需求与发电设备的需求呈1∶3.51的正比关系,据此分析,大型、中小型交流电动机产品在国内市场的有效需求会保持稳定增长。 正文 电机的起源和发展 电机工作基本原理是利用带电导体和磁场间的相互作用而把电能变为机械能。电动机结构主要包括两部分:转子和定子。转子为电动机的旋转部分,由转轴座组成,导体绕组的排列方式决定电动机的类型及其特性。 1821年英国科学家法拉第首先证明可以把电力转变为旋转运动。最先制成电动机的人,据说是德国的雅可比。他于1834年前后成了一种简单的装置:在两个u型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。通电后,棒型磁铁与u型磁铁之间产生相互吸引和排斥作用,带动轮轴转动。后来,雅可比做了一具大型的装置。安在小艇上,用320个丹尼尔电池供电,1838年小艇在易北河上首次航行,时速只有2.2公里,与此同时,美国的达文波特也成功地制出了驱动印刷机的电动机,印刷过美国电学期刑《电磁和机械情报》。但这两种电动机都没有多大商业价值,用电池作电源,成本太大、不实用。 直到第一台实用直流发动机问世,电动机才广泛应用。1870年比利时工程师格拉姆发

参考文献

参考文献 [1]唐任远现代永磁电机理论与设计[M]北京:机械工业出版社, 1997; [2] 陈世坤电机设计.第二版[M] 北京:机械工业出版社,2004; [3] 徐广人高效高起动转矩永磁同步电机设计中的关键技术问题研究[A]沈阳:沈阳工业大学 ,1999; [4] 陶果,邱阿瑞,柴健云永磁同步伺服电动机的磁场分析与参数计算[N]北京:清华大学学报 ,2004,44(10):1317—1320; [5]吴芳,黄声华,万山明永磁同步电机位置传感器控制技术发展与研究[A] 武汉:中华科技大学,电气与电子工程学院 2008,07; [6]孙亦诠永磁同步电机的发展前景[J]电工电能新技术,1987(3):9-15; [7]李钟明,刘卫国,刘景林等,稀土永磁电机[A],北京:国防工业出版社,1999; [8]张东,新型双定子永磁电机的设计与研究[D],博士学位论文:上海大学,2008. [9]黄明星.新型永磁电机的设计、分析与应用研究[D].博士学位论文:浙江大学,2008. [10]施进浩.新型横向磁场永磁电机设计与研究[D].博士学位论文:上海大学,2006. [11]杨勇.汽车用稀土永磁发电机与PWM稳压控制技术的研究[D].硕士学位论文: 山东理工大学,2008. [12]辜承林,陈乔夫,熊永前.电机学(第二版)[M].武汉:华中科技大学出版社. [13]王鑫,李伟力,程树康.永磁同步电动机发展展望[A].哈尔滨:哈尔滨工业大学,(2007)05-0069-04. [14]温嘉斌,李华,郑福龙.永磁同步电动机电磁转矩的计算[A]. 哈尔滨:哈尔滨理工大学电气与电子工程学院,黑龙江哈尔滨.(2010)01-0001-03. [15]唐任远,顾国彪,秦和等. 中国电气工程大典.北京:中国电力出版社,2008. [16]唐任远. 现代永磁同步电动机理论与设计.北京:机械工业出版社,1997. [17]于慎波.永磁同步电动机振动与噪声特性研究:(博士学位论文).沈阳:沈阳工业大学,2005. [18] 程福秀,林金铭. 现代电机设计. 机械工业出版社,北京,1993. [19]成本权,黄守道,高剑,刘娇.永磁同步电动机电磁参数的有限元分析[A].湖南:湖南大学 (2009)06 -0006 -03. [20] 李俊卿,叶东.永磁同步电动机的基本分析方法.电机技术,1999,1(l). [21]Richter E, Neumann T. Line start permanent magnet motors with different materials[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1762-1764. [22] Manabu Kosaka,Hiroshi Uda..Paramers Identification for Interior Permanent Magnet Synchronous Motor Driven by Sensor Control[J] Low Frequency Noise, Vibration and Active Control, 2010, Vol.28 (4) [23] Dong Joon Sim, Hyun Kyo Jung, Song-Yop Hahn, et al. Application of vector optimization employing modified genetic algorithm to permanent magnet motor design. IEEE Trans on Magnetics,1997,33(2):1880-1891.

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。

3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。 综上:与开关磁阻电机相比,永磁同步电机的优势更明显,特别是在负载不高的工况下,节能效果比较突出。

关于发电机的参考文献

永磁同步电动机振动分析及转子设计 Vibration analysis and rotor design of large line start permanent magnet synchronous motor <<沈阳工业大学学报>>2004年第26卷第02期 作者: 安忠良, 赵清, 于慎强, 韩永强, 唐任远, 期刊-核心期刊 ISSN : 1000-1646(2004)02-0157-03 永磁同步电动机转子内开有大量用于安装永磁体的磁槽和用于装配起动笼条的转子槽,而使转子结构趋于复杂.冲片强度受到了严重削弱,转子刚度也有所减小.另外,大功率稀土永磁同步电动机在起动和运行过程中,由于机械和电磁等原因而产生的振动非常严重.为此,对大功率异步起动稀土永磁同步电动机的振动和转子的结构强度进行了分析,并设计出了合理的转子结构 某微型燃机电机转子强度及配合设计 <<第十三届发动机结构强度振动学术会暨中国一航材料院50周年院庆系列学术会议>>2006年作者: 于丽君, 会议会议记录ID : 6261562 采用ANSYS软件对某微型燃机电机转子一转子护套与永磁体转子之间在各状态下包容关系、配合紧度等有关参数进行了计算.通过对内压及结构尺寸的调整和对数十种方案进行优化,最终确定了电机转子一转子护套及永磁体转子的总体尺寸和结构形式,按照本工作所设计的转子已通过工作转速的实验,表明了所提出的参数符合转子的设计要求. 关键词: 微型燃机, 电机转子, 永磁体转子, 包容关系, 强度设计, 有限元, 应力分析, | 全部关键词 一种与微型燃机集成的高速永磁发电机 <<中华人民共和国国家知识产权局>>2003年 发明人: 庞为, 肖印波, 王凤翔, 董正刚, , 宗鸣, 王正木, 郑文鹏, 李英, , 王正, 侯英奎, 郭大力, 申请人: 沈阳黎明航空发动机(集团)有限责任公司, 实用新型申请号 : CN03213176.3 一种与微型燃机集成的高速永磁发电机,在微型燃机主机壳体上设有周向均布风道的永磁发电机壳体,其前部内设有电机转子轴承座,中部内设有与壳体风道对应风道,内具定子绕组的永磁性发电机定子,微型燃机轴上设有转子磁钢,并穿过永磁发电机定子与电机转子轴承座组为动连接,电机转子轴承座顶部设有机组进气整流罩,侧部设有气孔,各风道间隔内设有空心整流支板,转子磁钢为一整体结构,径向充磁,其外周设有护套。微型燃机与发电机共壳共轴,结构紧凑,综合热效率高,体积功率密度大,运转平稳,体积小,造价低。 永磁电机转子强度接触有限元分析 Contact FEM Analysis of Permanent Magnet Motor Rotor's Intensity <<微电机>>2008年第41卷第01期 作者: 邵广军, 赵清, 安忠良,

相关文档
最新文档