脂联素及其受体对脂代谢信号转导通路的调控机制

脂联素及其受体对脂代谢信号转导通路的调控机制
脂联素及其受体对脂代谢信号转导通路的调控机制

动物营养学报2016,28(10):3059-3063C hi ne s e J our nal of A ni m al N ut r i t i on

d o i :10.3969/j .i ssn .1006-267x.2016.10.006

脂联素及其受体对脂代谢信号转导通路的调控机制

孟 博 范芮铭 栾新红

*

沈阳农业大学畜牧兽医学院,沈阳110866)

摘 要:脂联素(A di

poQ )是一种由脂肪组织分泌的细胞因子,在调节畜禽的脂代谢等方面具有重要作用。A di

poQ 主要通过与脂联素受体1(A di poR 1)和脂联素受体2(A di poR 2)2种受体结合来调控腺苷酸活化蛋白激酶α(A MP K α

)、p38丝裂原激活蛋白激酶(p38MA R K )和过氧化物酶体增殖物激活受体α(P P A R α

)等信号转导通路,参与机体内的脂代谢途径。目前对A di poQ 介导的脂代谢信号转导通路的研究已有了一定进展。本文就A di

poQ 及其受体的结构,以及A di poQ 及其受体对脂代谢的调控机制进行了综述。关键词:脂联素;脂联素受体;脂代谢;信号转导通路

中图分类号:S

811.3 文献标识码:A 文章编号:1006-267X (2016)10-3059-05收稿日期:2016-05-12

基金项目:国家自然科学基金项目(31372395)

作者简介:孟 博(1992—),女,辽宁沈阳人,硕士研究生,从事动物生理学与生殖内分泌学研究。E -m a i l :569807254@qq.c om *通信作者:栾新红,教授,硕士生导师,E

-m a i l :xhl ua n@163.c om

脂肪组织是一种内分泌器官,在调节多种代

谢功能方面起着重要作用,脂联素(a

di pone c t i n ,A di poQ )就是由其所分泌的一种细胞因子。A di -poQ 以多种形式存在于血浆中,主要通过与脂联

素受体1(a di pone c t i n r e c e pt or 1,A di poR 1)和脂联素受体2(a

di pone c t i n r e c e pt or 2,A di poR 2)2种受体结合来发挥多种生物学作用,可以通过循环系统以及旁分泌和自分泌等多种渠道对机体肝脏、骨骼肌和脂肪组织等脂代谢靶组织产生作用,进而达到调控机体脂代谢与维持其平衡的目的。而A di poQ 对脂代谢的调控作用主要是通过促进脂肪酸氧化和抑制脂肪酸生成2个方面来实现的,目

前关于A di

poQ 促进脂肪酸氧化方面的报道很多,而关于A di

poQ 抑制脂肪酸生成方面的报道相对较少。作为一种在血浆中具有高浓度的脂肪细胞

因子,A di

poQ 及其受体对畜禽的脂代谢调控具有不可或缺的作用,因此,本文就A di

poQ 及其受体的结构,以及A di

poQ 及其受体对脂代谢的调控机制进行了综述。

1 A d i p oQ

及其受体概述

1.1 A d i p oQ

结构 A di poQ 也被称为G B P 28、A c r p30和a pM1,其

氨基酸数量随物种的不同而略有差异,猕猴A di -poQ 由243个氨基酸构成,人、大鼠、鸡和犬A di -poQ 由244个氨基酸构成,小鼠A di poQ 由247个

氨基酸构成[1]

。A di

poQ 由4个结构域组成,分别是N 端信号肽、N 端非螺旋功能区、胶原结构域和C 端球形结构域,经过翻译后,修饰成8种不同的

同源蛋白质。A di

poQ 属于胶原蛋白超家族,以低分子质量(L MW )三聚体、中分子质量(MMW )六聚体和高分子质量(H MW )多聚体3种形式存在

于血浆中,在循环中多数A di

poQ 都是主要以多聚体形式发挥着各种生理作用[2]

。R a

m a c ha ndr a n 等[3]

研究发现,鸡A di

poQ 的聚合物存在形式与哺乳动物有所不同,其在血浆以及脂肪组织中主要是一种分子质量大于669ku 的聚合物,而哺乳动物A di

poQ 同时存在3种不同的聚合物。全长脂

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

Toll样受体信号通路的研究进展

Toll样受体信号通路的研究进展 摘要Toll样受体(Toll-like receptor,TLR)是近年来发现的一类模式识别受体,通过识别病原相关分子模式(pathogen-associated molecular pattern,PAMP)激活天然免疫。而髓样分化因子(myeloid differentiation factor 88,MyD88)是TLR信号通路中的一个关键接头分子,在传递上游信息和疾病发生发展中具有重要的作用。本文对Toll样受体、髓样分化因子88的分子结构和基本功能,及Toll样受体的信号传导通路进行了综述。 关键词Toll样受体;髓样分化因子88;信号通路;负调控机制 免疫系统识别“非我”和“自我”的过程是依赖于不同的受体来完成的,作为先天性免疫系统的重要组成部分及连接获得性免疫与先天性免疫的“桥梁”, TLRs 是生物的一种模式识别受体(pattern recognition receptor, PRR),它主要通过识别病原相关分子模式PAMPs来启动免疫反应。而MyD88是Toll受体信号通路中的一个关键接头分子,是第一个被鉴定的含TIR结构域的接头蛋白分子,在传递上游信息和疾病发生发展中具有重要的作用。 1TLR的结构与基本功能 Toll样受体一词来自对果蝇的研究,是决定果蝇背腹分化的基因所编码的一种跨膜受体蛋白,同时还参与果蝇的免疫反应,具有介导抗真菌感染信号转导的功能[1]。后来在哺乳动物也发现有与Toll受体同源的受体分子,统称为称为Toll 样受体TLRs。 TLRs是广泛分布在免疫细胞尤其非特异免疫细胞以及某些体细胞表面的一类模式识别受体,它们可以直接识别结合某些病原体或其产物所共有的高度保守的特定分子结构,即病原相关分子模式。迄今为止,已经发现哺乳动物至少有13种toll样受体,其中人的toll样受体鉴定出11种(TLR1-TLR11) [2]。TLRs识别的配基各不相同,其中TLR1-TLR5的结构已被确定,但只有TLR2与TLR4的功能被部分揭示。TLR4主要介导G-菌感染后LPS的信号转导,而TLR2主要介导G+感染后脂蛋白、脂多肽等的信号转导。它们都最终导致该转录因子的转位与相应免疫基因的活化而转录,释放前炎症因子及辅助刺激分子起到调节炎症反应的作用,从而提示TLRs可能在先天性免疫系统中起重要作用[3-4]。 TLRs家族成员具有相似的结构特征。它们均为Ⅰ型跨膜受体,由胞外区、跨膜区和胞内区3个功能区组成。胞外区序列差异大,是与配体结合的特异部位,主要包括十几至二十几个串联的富亮氨酸重复基序(leucine-rich repeats, LRRs),LRR

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

脂联素及其受体对脂代谢信号转导通路的调控机制

动物营养学报2016,28(10):3059-3063C hi ne s e J our nal of A ni m al N ut r i t i on d o i :10.3969/j .i ssn .1006-267x.2016.10.006 脂联素及其受体对脂代谢信号转导通路的调控机制 孟 博 范芮铭 栾新红 * ( 沈阳农业大学畜牧兽医学院,沈阳110866) 摘 要:脂联素(A di poQ )是一种由脂肪组织分泌的细胞因子,在调节畜禽的脂代谢等方面具有重要作用。A di poQ 主要通过与脂联素受体1(A di poR 1)和脂联素受体2(A di poR 2)2种受体结合来调控腺苷酸活化蛋白激酶α(A MP K α )、p38丝裂原激活蛋白激酶(p38MA R K )和过氧化物酶体增殖物激活受体α(P P A R α )等信号转导通路,参与机体内的脂代谢途径。目前对A di poQ 介导的脂代谢信号转导通路的研究已有了一定进展。本文就A di poQ 及其受体的结构,以及A di poQ 及其受体对脂代谢的调控机制进行了综述。关键词:脂联素;脂联素受体;脂代谢;信号转导通路 中图分类号:S 811.3 文献标识码:A 文章编号:1006-267X (2016)10-3059-05收稿日期:2016-05-12 基金项目:国家自然科学基金项目(31372395) 作者简介:孟 博(1992—),女,辽宁沈阳人,硕士研究生,从事动物生理学与生殖内分泌学研究。E -m a i l :569807254@qq.c om *通信作者:栾新红,教授,硕士生导师,E -m a i l :xhl ua n@163.c om 脂肪组织是一种内分泌器官,在调节多种代 谢功能方面起着重要作用,脂联素(a di pone c t i n ,A di poQ )就是由其所分泌的一种细胞因子。A di -poQ 以多种形式存在于血浆中,主要通过与脂联 素受体1(a di pone c t i n r e c e pt or 1,A di poR 1)和脂联素受体2(a di pone c t i n r e c e pt or 2,A di poR 2)2种受体结合来发挥多种生物学作用,可以通过循环系统以及旁分泌和自分泌等多种渠道对机体肝脏、骨骼肌和脂肪组织等脂代谢靶组织产生作用,进而达到调控机体脂代谢与维持其平衡的目的。而A di poQ 对脂代谢的调控作用主要是通过促进脂肪酸氧化和抑制脂肪酸生成2个方面来实现的,目 前关于A di poQ 促进脂肪酸氧化方面的报道很多,而关于A di poQ 抑制脂肪酸生成方面的报道相对较少。作为一种在血浆中具有高浓度的脂肪细胞 因子,A di poQ 及其受体对畜禽的脂代谢调控具有不可或缺的作用,因此,本文就A di poQ 及其受体的结构,以及A di poQ 及其受体对脂代谢的调控机制进行了综述。 1 A d i p oQ 及其受体概述 1.1 A d i p oQ 结构 A di poQ 也被称为G B P 28、A c r p30和a pM1,其 氨基酸数量随物种的不同而略有差异,猕猴A di -poQ 由243个氨基酸构成,人、大鼠、鸡和犬A di -poQ 由244个氨基酸构成,小鼠A di poQ 由247个 氨基酸构成[1] 。A di poQ 由4个结构域组成,分别是N 端信号肽、N 端非螺旋功能区、胶原结构域和C 端球形结构域,经过翻译后,修饰成8种不同的 同源蛋白质。A di poQ 属于胶原蛋白超家族,以低分子质量(L MW )三聚体、中分子质量(MMW )六聚体和高分子质量(H MW )多聚体3种形式存在 于血浆中,在循环中多数A di poQ 都是主要以多聚体形式发挥着各种生理作用[2] 。R a m a c ha ndr a n 等[3] 研究发现,鸡A di poQ 的聚合物存在形式与哺乳动物有所不同,其在血浆以及脂肪组织中主要是一种分子质量大于669ku 的聚合物,而哺乳动物A di poQ 同时存在3种不同的聚合物。全长脂

代谢组研究利器之脂质组-定量脂质组

一、研究热点--脂质组 近年来,脂质组学研究非常热门,经常出现在CNS期刊上。 脂质是重要的生物大分子物质之一,在生物体的生命活动中起着重要作用。2003年韩贤林教授等首次提出脂质组学的概念,对生物体系脂质进行全面系统的研究分析。它主要研究生物体系(生物体、组织、细胞甚至亚细胞)受刺激或扰动后,脂质种类、亚种类或单个脂质分子的变化。通过系统的研究机体内脂类物质代谢的变化,从而揭示与其他分子间相互作用的机理。 脂质组学是代谢组学的一个分支。脂类代谢(如血浆中约70%的代谢物是脂类)是动植物的代谢中第一大类物质,是动植物代谢研究中最为关注的热点,参与能量运输、细胞间的信息通讯与网络调控等生长发育过程。 脂类作为脂质组学研究的内容,依据“脂质代谢途径研究计划”(LIPIDMAPS)可分为8个大的类别:1.脂肪酰,2.甘油脂,3.甘油磷脂,4.鞘脂,5.甾醇酯,6.丙烯醇脂,7.糖脂,8.聚酮。脂类物质不仅是我们人体的重要组成成分,而且不少疾病也与脂类异常代谢有关,如阿兹海默症、糖尿病、肥胖以及肿瘤发生发展等。 我们都知道细胞膜的主要成分是磷脂双分子层,大多数脂类参与构建了细胞膜和亚细胞膜。脂类既是结构分子,也是信号分子。一个典型的例子是磷脂酰肌醇-4,5-二磷酸转化成二酰基甘油和三磷酸肌醇,后者作为第二信使,激活下游的激酶并诱导细胞内钙离子的释放。 脂质组学领域中最核心的研究手段是电喷雾电离-质谱技术,能对各种脂质尤其是磷脂进行高分辨率、高灵敏度、高通量的分析。 二、定量脂质组 脂类具有数目众多、结构多样的特点,这就给定量脂质组分析带来了一定的难度。定量脂质组学是通过一种或多种稳定同位素标记内标对脂质进行大规模绝对定量的一种方法。因此定量脂质组分析具有以下要点: 1.LC-MS/MS仪器进行脂质定量,最优的检测模式是SRM/MRM; 2.不同类别的脂质在仪器中响应强度不一样,变化趋势不一样,因此内标

cAMP信号通路

cAMP信号通路 信号分子:1.激素 2.局部介质3.神经递质 受体:G蛋白偶联受体 胞内应答过程:激素→G蛋白耦联受体→G蛋白→腺苷酸环化酶→cAMP→依赖cAMP的蛋白激酶A→基因调控蛋白→基因转录 举例:1.多发性骨髓瘤:通过调变细胞内环腺苷酸浓度可以诱导多种肿瘤细胞增殖阻滞和凋亡,成为肿瘤治疗新途径。 2.肝损伤:对乙酰氨基酚致药物性肝脏损伤可能与cAMP-PKA 信号通路有关。 3.研究人员已经确定了这其中的机制,现在,一种能抑制Epac的新的候选药物——称为ESI Epac特异性抑制剂,也已经被证明能够保护正常小鼠免受致命性立克次氏体感染。目前,研究人员正在设计第二代ESI——更有效,即使在最高剂量也无毒。也有来自预备试验的迹象表明,ESI能够保护动物抗击一些致命的病毒感染。 磷脂酰肌醇信号通路 信号分子:1.激素 2.局部介质3.神经递质 受体:酶耦联型受体 胞内应答过程:Ca2+活化各种Ca2+结合蛋白引起细胞反应,钙调素(calmodulin,CaM)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。细胞对Ca2+的反应取决于细胞内钙结合蛋白和钙调素依赖性激酶的种类。 IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。Ca2+由质膜上的Ca2+泵和Na+-Ca2+交换器将抽出细胞,或由内质网膜上的钙泵抽进内质网 DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,用来维持PKC的长期效应。 举例:1.肿瘤治疗:该通路调节肿瘤细胞的增殖和存活,其活性异常不仅能导致细胞恶性转化,而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关。 2.肝癌:PIK3R1在肝癌组织中表达上调,PIK3R1可能通过激活PI3K/AKT信号通路促进HepG2细胞的增殖. 生物技术15-1 曹文祥

integrin review 整合素受体信号通路综述

Rheumatol Int DOI 10.1007/s00296-014-3137-5 Role of integrins and their ligands in osteoarthritic cartilage Jian Tian · Fang?Jie Zhang · Guang?Hua Lei Received: 25 May 2014 / Accepted: 17 September 2014 ? Springer-Verlag Berlin Heidelberg 2014 [1]. Radiographic evidence of OA occurs in the majority of people by 65 years of age, and among them about 80 % in people who aged over 75 years [2]. However, the pathogen-esis of this disease is not fully elucidated. Cartilage damage is one of the major pathological changes in OA. Articular cartilage is an avascular, a neu-ral, alymphatic, and viscoelastic connective tissue that functions autonomously to bear loads and provide almost friction-free movement of diarthrodial joints [3]. Chondro-cytes, the only cell population of adult articular cartilage, are strongly involved in maintaining the dynamic equi-librium between synthesis and degradation of the extra-cellular matrix (ECM) [4]. Collagens represent the major structural components of the articular cartilage. Cartilage is made up of two main ECM macromolecules: type II collagen and aggrecan, a large aggregating proteoglycan [5, 6]. Cartilage destruction is thought to be mediated by two main enzyme families: the matrix metalloproteinases (MMPs) are responsible for the cartilage collagen break-down, whereas enzymes from disintegrin and metallopro-teinase domain with thrombospondin motifs (ADAMTS) family mediate cartilage aggrecan loss [7]. Activation of biochemical pathways involves the production of proin-flammatory cytokines, inflammation, degradation of the ECM by MMPs and ADAMTS, and cessation of ECM syn-thesis via dedifferentiation and apoptosis of chondrocytes [8, 9]. Therefore, the ECM is a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, which include cell growth, differentiation, and survival [10, 11]. Cell–matrix interactions control cell function and behav-ior by signal transduction through a variety of cell sur-face receptors. The integrins are the major family of ECM receptors, which can transmit information from the matrix to the cell. Integrin binding of ECM ligands results in the Abstract Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in reg-ulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondro-cytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αV β3, αV β5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA car-tilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future develop-ment of successful therapeutic approaches to OA.Keywords Chondrocyte · Integrin · Fibronectin · Tenascin C · Osteopontin · Osteoarthritis · Cartilage Introduction Osteoarthritis (OA) is a degenerative disease and is char-acterized by articular cartilage destruction along with changes occurring in other joint components including bone, menisci, synovium, ligaments, capsule, and muscles Rheumatology INTERNATIONAL J. Tian · F.-J. Zhang · G.-H. Lei (*) Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, China e-mail: gh.lei9640@https://www.360docs.net/doc/0314773031.html,; lgh9640@https://www.360docs.net/doc/0314773031.html,

Toll样受体信号通路图

Toll样受体信号通路图 TLR家族成员(TLR3除外)诱导的炎症反应都经过一条经典的信号通路(图1),该通路起始于TLRs的一段胞内保守序列—Toll/IL-1受体同源区(Toll/IL-1receptorhomologousregion,TIR).TIR可激活胞内的信号介质—白介素1受体相关蛋白激酶(IL-1Rassociatedkinase,IRAK)IRAK-1和IRAK-4、肿瘤坏死因子受体相关因子6(TNFR-associatedfactor6,TRAF-6)、促分裂原活化蛋白激酶(mitogenactivatedproteinkinase,MAPK)和IκB激酶(IκBkinase,IκK),进而激活核因子κB(nuclearfactorκB,NF-κB),诱导炎症因子的表达。 Toll-liker Receptor Signaling 本信号转导涉及的信号分子主要包括: CD14,MD-2,TRAM,TRIF,TIRAP,MyD88,TLR1,TLR2,TLR3,TLR4,TLR5,TLR6,TLR7,TLR8,TLR9,IRAK-1,IRAK-2,IRAK-4,IRAK-M,TRAF6,TRIAD3A,ST2L,SOCS1,RIG-I,FADD,TOLLIP,RIP1,A20,UEV1A,Ubc13,ECSIT,MEKK-1,TAK1,

TBK1,MKK3/6,p38,TAB1/2,MKK4/7,JNK,IKKα,IKKβ,IKKγ,IKKε,NEMO,IκBα,NF-κB,p65/RelA,Casp-8,IRF-3,IRF-7,MA VS等

TOLL样受体7(TLR7)增殖分化信号通路论文

TOLL样受体7(TLR7)增殖分化信号通路论文 【提示】本文仅提供摘要、关键词、篇名、目录等题录内容。为中国学术资源库知识代理,不涉版权。作者如有疑义,请联系版权单位或学校。 【摘要】目的探讨TLR7的激活对HaCaT细胞增殖与分化的影响及其可能的机制。方法培养HaCaT细胞,以不同剂量的TLR7配体Gardiquimod经不同的时间体外刺激HaCaT细胞,MTT及流式细胞术分析TLR7的激活对HaCaT细胞增殖的影响。以不同剂量的TLR7配体Gardiquimod经不同的时间体外刺激HaCaT细胞,加入氯化钙诱导HaCaT细胞分化,Western-Blot分析HaCaT细胞的分化Markers(颗粒层:Keratin1,基底层:Keratin5和棘层:Involucrin)并以此分析TLR7的激活对氯化钙诱导HaCaT细胞分化的影响。 Western-blotting分析TLR7在HaCaT细胞中激活的信号通路 PI3K-AKT和RAS-MAPK等。在TLR7配体Gardiquimod处理HaCaT细胞前1h,分别加入特异性阻断剂(PD98059及LY2940002)阻断TLR7配体Gardiquimod激活的相关信号通路,然后分析阻断剂对TLR7配体Gardiquimod调控HaCaT细胞增殖及分化影响,从而探讨PI3K-AKT 和RAS-MAPK信号通路在TLR7配体Gardiquimod对HaCaT细胞增殖及分化调控中的作用。结果MTT及流式细胞分析结果显示:TLR7配体Gardiquimod促进HaCaT细胞增殖,且具有时间及剂量依赖性;TLR7配体Gardiquimod能够抑制氯化钙诱导的HaCaT细胞分化markers (Keratin1及Involucrin)的表达,存在时间效应及剂量效应;信号通路分析揭示TLR7配体Gardiquimod能够增加ERK1/2和MAPK的水平;阻断剂的研究发现TLR7配体Gardiquimod部分依赖PI3K-AKT

脂联素的生理功能研究进展

脂联素的生理功能研究进展 黄烈福2010225026 摘要:脂联素是一种由脂肪组织分泌的特异性蛋白质,可通过与靶细胞膜上的脂联素受体结合而产生多种生理功效。它能促进脂肪酸氧化和葡萄糖摄取,参与葡萄糖、脂肪代谢的调节,调控生物体的能量稳态,从而发挥其抗炎,抗糖尿病,抗动脉粥样硬化及增敏胰岛素等作用。现就近年来对脂联素在这些方面取得的研究进展做一综述。 关键词:脂联素;脂联素受体;抗糖尿病;抗动脉粥样硬化 引言 越来越多的研究表明,脂肪组织的功能绝不仅仅是储存能量,同时它也是非常活跃的内分泌器官。脂肪细胞可分泌瘦素(1eptin)、肿瘤坏死因子(TNF-a)、白细胞介素-6(IL-6)、抵抗素(resistin)和脂联素(adiponectin)等物质。其中,脂联素在调节内皮功能、免疫功能、糖脂代谢,抗胰岛素抵抗及动脉粥样硬化等过程中发挥着极其重要的作用[1]。现仅就目前有关脂联素的研究进展综述如下。 1脂联素的结构及受体 1.1脂联素 脂联素也被称为apM1(脂肪组织最丰富的基因转录产物)、Acrp30(30KDa 脂肪补体相关蛋白)、GBP28(28KDa明胶结合蛋白)或AdipoQ,人类脂联素基因是单拷贝基因,由apM1mRNA编码,位于染色体3q27上,由3个外显子和2个内含子组成[2]。其在外周脂肪组织的表达要多于在内脏脂肪组织的表达。人的脂联素含有244个氨基酸(鼠的脂联素含247个氨基酸),包括N-端信号肽(约18个氨基酸,无跨膜疏水区)、C端一串芳香族氨基酸球状序列(约137个氨基酸)、N端一段特异的非胶原序列(约23个氨基酸)、其后紧接着一段类似胶原的G-X-Y3氨基酸重复序列(约66个氨基酸)。翻译后修饰为8种不同的同源蛋白[1]。胰蛋白酶裂解后得到C端球形结构域,是脂联素蛋白活性的关键部位,而且与胶原Ⅷ、Ⅹ、补体c1q和TNF-α家族具有结构同源性。该蛋白胶原化区域4个赖氨酸(Lys68,71,80,104)的羟基化和糖基化与脂联素的胰岛素增敏作用

生物化学代谢复习之糖代谢、脂质代谢

一、糖代谢 (一)糖的无氧氧化 1.基本概念糖酵解:一分子葡萄糖在胞质中可裂解生成两分子丙酮酸的过程称之为糖酵解,是葡萄糖无氧氧化和有氧氧化的共同起始途径。 糖的无氧氧化:在不能利用氧或氧供应不足时,机体分解葡萄糖生成乳酸的过程称为糖的无氧氧化,也称为乳酸发酵。 2.糖酵解的基本过程①葡萄糖在己糖激酶的催化下消耗1分子ATP生成葡糖-6-磷酸。②葡糖-6-磷酸异构为果糖-6-磷酸。 ③果糖-6-磷酸在磷酸果糖激酶-1的催化下消耗1分子的ATP生成果糖-1,6-二磷酸。 ④果糖-1,6-二磷酸在醛缩酶的催化下裂解为1分子磷酸二羟丙酮和1分子3-磷酸甘油醛。⑤磷酸二羟丙酮异构为3-磷酸甘油醛。(前面的步骤相当于1分子葡萄糖裂解产生了2分子3-磷酸甘油醛) ⑥3-磷酸甘油醛在3-磷酸甘油醛脱氢酶的催化下与1分子无机磷酸结合,脱下的氢由NAD+携带,生成1,3-二磷酸甘油酸(高能化合物)。⑦1,3-二磷酸甘油酸在磷酸甘油酸激酶的催化下水解高能磷酸键(底物水平磷酸化),产生ATP,生成3-磷酸甘油酸。⑧3-磷酸甘油酸变位为2-磷酸甘油酸。⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(高能化合物) 。⑩磷酸烯醇式丙酮酸在丙酮酸激酶的催化下生成丙酮酸,产生1分子A TP(底物水平磷酸化)。 该过程需要关注的几点:(1)三个限速反应:①③⑩,同时催化这三个反应的酶为关键酶(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶) (2)该过程有两次底物水平磷酸化,包含了两个高能化合物(3)调节糖酵解流量最关键的酶是磷酸果糖激酶-1 (4)能量的产生与消耗 思考:1.1分子葡萄糖完全分解产生2分子丙酮酸可以产生多少个ATP? 2.糖原分子中葡萄糖酵解时可以净产生多少个ATP? 3.丙酮酸在在乳酸脱氢酶的作用下,由NADH+H+提供氢,使丙酮酸还原为乳酸 4.糖的无氧氧化的生理意义:①迅速提供能量,这对肌肉收缩很重要②成熟红细胞没有线粒体,只能依赖无氧氧化③神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖的无氧氧化提供部分能量 (二)糖的有氧氧化 1.基本概念糖的有氧氧化是指机体利用氧将葡萄糖彻底氧化为CO2和H2O的反应过程。这个过程是体内糖分解供能的主要方式。 2.糖的有氧氧化的三个阶段 (1)同糖酵解(2)丙酮酸进入线粒体,丙酮酸在丙酮酸脱氢酶复合体(由转乙酰酶、二氢硫辛酸胺脱氢酶、丙酮酸脱氢酶组成)的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,生成乙酰CoA和CO2。(参与的辅酶有TPP、硫辛酸、FAD、NAD+、CoA) (3)三羧酸循环(柠檬酸循环) ①乙酰CoA与草酰乙酸在柠檬酸合酶的催化下生成柠檬酸,反应所需的能量来自乙酰CoA。 ②柠檬酸经酶-顺乌头酸复合体异构为异柠檬酸。③异柠檬酸在异柠檬酸脱氢酶的催化下氧化脱羧,脱下的氢由NAD+携带,反应生成α-酮戊二酸及CO2。 ④α-酮戊二酸在α-酮戊二酸脱氢酶复合体的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,反应生成琥珀酰CoA及CO2。 ⑤琥珀酰CoA在琥珀酰CoA合成酶的催化下水解掉高能硫酯键,与GDP磷酸化偶联,生成琥珀酸、GTP及CoA。 ⑥琥珀酸在琥珀酸脱氢酶的催化下生成延胡索酸,脱下的氢由FAD携带。 ⑦延胡索酸加水生成苹果酸。 ⑧苹果酸在苹果酸脱氢酶的催化下生成草酰乙酸,脱下的氢由NAD+携带。 该过程需要关注的几点:(1)三个限速反应:①③④,同时催化这三个反应的酶为关键酶(柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体)丙酮酸脱氢酶复合体也是关键酶(2)该过程只有一步水平磷酸化,只有一个高能化合物(当然乙酰CoA也是高能化合物) (3)生成三个NADH+H+和一个FADH2 (4)两次氧化脱羧(5)能量的产生与消耗 思考:1分子葡萄糖完全分解生成CO2和H2O可以产生多少ATP?(两种情况均思考)

toll样受体信号通路

Toll 样受体(TLRs)是一个模式识别受体家族,它们在进化上高度保守,从线虫到哺乳 动物都存在TLRs,目前在哺乳动物中已发现 12 个成员[1].TLRs 主要表达于抗原递 呈细胞及一些上皮细胞,为玉型跨膜蛋白,胞外区具有富含亮氨酸的重复序列,能够 特异识别病原微生物进化中保守的抗原分子———病原相关分子模式 (pathogen-associatedmolecular patterns, PAMPs)[2].为了有效地抵抗入侵的病原体,机体需要对多种 PAMPs 产生适当的免疫应答,TLRs 可以通过识别 PAMPs 诱发抵抗病原体的免疫反应.而且 TLRs 也参与识别有害的内源性物质.TLRs 的激活可诱导很强的免疫反应,有利于机体抵抗病原体感染或组织损伤,但是过度的免疫反应也会带来不利影响,如产生内毒素休克、自身免疫性疾病等.为了保证 TLRs 介导正确的免疫应答,机体 存在精密的负调控机制,及时抑制 TLRs 信号,维持机体的免疫平衡[3]TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号通路(图 1),该通路起始于TLRs 的一段胞内保守序列———Toll/IL-1 受体同源区(Toll/IL-1 receptor homologous region,TIR).TIR可激活胞内的信号介质———白介素 1 受体相关蛋白激酶 (IL-1R associated kinase, IRAK) IRAK-1 和IRAK-4、肿瘤坏死因子受体相关因子 6(TNFR-associated factor 6, TRAF-6)、促分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)和 I资B激酶 (I资B kinase, I资K ),进而激活核因子资 B(nuclear factor 资B,NF-资B),诱导炎症因子的表达.TLRs 信号通路上的许多接头蛋白都具有 TIR结构域:髓系分化因子 88(myeloid differentiationfactor 88, MyD88)、MyD88- 接头蛋白相似物(MyD88-adaptor like,Mal)、含有 TIR 结构能诱导干扰 素茁的接头分子 (TIR domain-containingadaptor inducing interferon 茁,TRIF)、TRIF 相关接头分子(TRIF-related adaptor molecule,TRAM)和SARM (sterile 琢 and armadillo motif-containingprotein)[4].它们参与 TLRs 所介导的信号转导,其中 MyD88 最重要,参与了除 TLR3 外所有 TLRs介导的信号转导.MyD88 首先通过 TIR 与 TLRs 相结合,接着募集下游信号分子 IRAK-4,IRAK-4 磷酸化激活IRAK-1,随后 活化 TRAF6.活化的 TRAF6 具有泛素连接酶(E3)的活性,能够结合泛素结合酶(E2),进而泛素化降解 IKK-酌.这种泛素化降解可以活化TGF-茁激酶(TGF-茁 activated kinase 1, TAK1) 和TAK1 结合蛋白 (TAK1 binding protein, TAB1、TAB2、 TAB3).活化的 TAK1 会催化 IKK-茁磷酸化,最终激活 NF-资B,促使炎症因子的表达.除了共同的 NF-资B 激活通路,不同的 TLRs 还存在着其特有的信号通路,一些TLRs 具有募集 Mal、TRAM 和 TRIF 的作用.不同的接头分子在信号传导中发挥的作 用不同[5],TRIF 在脂多糖(LPS)激活的 TLR4 途径和 Poly(I∶C)激活的 TLR3 途径中都起到了重要的作用,而 TRAM 仅在 TLR4 的途径中发挥作用.TLRs 的激活是一把双刃剑,它可以通过刺激先天性免疫应答和提高获得性免疫反应来保护机体,但是它所引 起的持续性炎症反应也会对机体产生损伤,自身免疫、慢性炎症和感染性疾病都与它 有一定关系.例如LPS 持续刺激TLR4 就可以引起严重的败血病和感染性休克,此外,类风湿性关节炎、慢性阻塞性肺心病、结肠炎、哮喘、心肌病、狼疮和动脉粥样硬化

雌激素通过瘦素信号通路途径调节脂肪细胞代谢生成

雌激素通过瘦素信号通路途径调节脂肪细胞代谢生成

雌激素通过瘦素信号通路途径调节脂肪细 胞代谢生成# 李文娟,许良智,陈焱,牟丽,许文明,程萌,庄静,李婷婷,詹晶**

10 15 20 25 30 35 40

(四川大学华西第二医院,成都 610041) 摘要:目的:探讨雌激素是否是通过瘦素相关信号通路对女性形体改变产生影响。方法:二 月龄雌性 SD 大鼠随机为去势组及假手术组,术后 14 周收集生殖器周围脂肪、内脏脂肪和 皮下脂肪,并分别检测瘦素受体表达,同时通过 17-β雌二醇及瘦素对脂肪细胞前体细胞 MSCs 进行干预,检验瘦素受体亚型、瘦素表达及成脂分化的指标 PPARγ的变化。结果: 通过对造模期间大鼠体重的每周监测,发现去势组体重增长及术后 14 周Lee’s 指数均明显 高于假手术组 P 0.001 。瘦素受体在去势组的脂肪组织中表达显著增加,内脏脂肪中尤为明 显。体外实验显示,随着瘦素和雌激素浓度的增加,MSCs 上瘦素长形受体和短受体的表达 均随之下降;随雌激素浓度的增加,MSCs 中瘦素表达呈下降趋势,同时,MSCs 中 PPAR γ表达也受到抑制。结论:在低雌激素的影响下,去势后大鼠发生类似绝经后女性样的形体 改变,高浓度雌激素可抑制大鼠间充质干细胞向脂肪细胞分化,雌激素对瘦素及瘦素受体的 影响可能是绝经后女性体型变化发生变化的原因。

关键词:妇产科学;雌激素;瘦素;瘦素受;脂肪;间充质干细胞 中图分类号:R339.6 Estrogen regulate adipocyte metabolism through leptin signaling pathway LI Wenjuan, XU Liangzhi, CHEN Yan, MU Li, XU Wenming, CHENG Meng, ZHUANG Jing, LI Tingting, ZHAN Jing West China Second University Hospital, Sichuan University, Chengdu 610041 Abstract: Postmenopausal women often present obvious body composition changes under the absence of estrogen, including overweight, obesity and android-like body fat distribution, therefore poses serious threaten for women’s health. Although the intimate relationship between estrogen and body appearance have been noticed, mechanism remains unclear. We assumed that estrogen may regulate fat distribution through affecting leptin signal pathway, which has been shown playing major role in energy homeostasis. To test this hypothesis, we randomized female SD rat into ovariectomy OVX and sham group, and then collected adipose tissue around genital,

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波 学号:2015050509

目录 1、细胞受体类型及特点 (3) 1.1离子通道型受体 (3) 1.2 G蛋白耦联型受体 (3) 1.3 酶耦联型受体 (3) 2、重要的细胞信号转导途径 (4) 2.1细胞内受体介导的信号传递 (4) 2.2 G蛋白偶联受体介导的信号转导 (5) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (5) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (5) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通路 (6) 2.2 酶联受体介导的信号转导 (7) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (7) 2.2.2 P13K-PKB(Akt)信号通路 (8) 2.2.3 TGF-p—Smad信号通 (8) 2.2.4 JAK—STAT信号通路 (9)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为 糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配 体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体 问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细 胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内 的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋 细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋 白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过 与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱 受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于 通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与 之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子 通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白, 位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭 状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并 与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内产 生第二信使,从而将胞外信号跨膜传递到胞内。G蛋白耦联型受体包括多种神经递质、肽 类激素和趋化因子的受体,在味觉、视觉和嗅觉中接受外源理化因素的受体亦属G蛋白耦 联型受体。 1.3 酶耦联型受体 酶耦联型受体(enzyme linked receptor)分为两类,其一是本身具有激酶活性,如肽类 生长因-子(EGF,PDGF,CSF等)受体;其二是本身没有酶活性,但可以连接非受体酪氨酸 激酶,如细胞因子受体超家族。这类受体的共同点是:①通常为单次跨膜蛋白;②接受配 体后发生二聚化而激活,起动其下游信号转导。

相关文档
最新文档