绕组温度及计算

绕组温度及计算
绕组温度及计算

(完整版)气温的分布规律

气温的分布规律 下图为某山地气象站一年中每天的日出、日落时间及逐时气温(℃) 变化图。读图,回答1—2题 1. 气温日较差大的月份是 A. 1月 B. 4月 C. 7月 D. 10月 2.该山地 A.冬季受副热带高压带控制 B.因台风暴雨引发的滑坡多 C.基带的景观为热带雨林 D.山顶海拔低于1000米 气温的日变化一般表现为最高值出现在14时左右,最低值出现在日出 前后。右图示意某区域某日某时刻的等温线分布,该日丙地的正午太 阳高度达到一年中最大值。读图回答第3题 3.下列时刻中,最有可能出现该等温线分布状况的是 A.6时 B 9时 C 12时 D. 14时 4.右下图为北京、南京、哈尔滨和海口四城市气温年变化曲线图。根据图中信息判断,北京、南京、哈尔滨和海口四城市对应的气温年变化曲线分别是 A.甲、丁、丙、乙 B.甲、乙、丙、丁 C.丙、乙、丁、甲 D.丙、丁、甲、乙 下图为“大陆和海洋气温年较差、日较差的纬度分布图”。读图回答5—6题。 5.图中反映大陆气温年较差和海洋气温日较差的曲线分别是 A.甲和乙 B.乙和丙 C.丙和丁 D.甲和丁 6.曲线丙在南、北纬30°附近达最大值的原因是 A.纬度低,太阳辐射量大 B.地势高,空气稀薄 C.多为副热带高气压控制,天气晴朗 D.距海洋远,大陆性强,昼夜温差大

气温垂直递减率是指空气温度在垂直方向上随高度升高而降低的数值,读某地春季某日气温垂直递减率(℃/100米)时空变化图,回答7—9题 7.当天该地几乎没有对流运动发生的时段是 A.9~1 7时B.18~次日7时 C.17~次日9时D.19~次日6时 8.发生大气逆温现象的最大高度约为 A.100米B.200米C.400米D.500米 9.如果该地位于华北地区,这天 A.大气环境质量好B.不容易有沙尘暴形成 C.较有可能阴雨天气D.能见度高,行车方便 右图是“某地某日垂直温度变化(℃/100米)时空分布图”。读图,完成10—12题。 10.该日此地发生大气逆温现象的时段是 A.8∶00~16∶30 B.17∶00~23∶00 C.16∶30~7∶00 D.23∶00~5∶00 11.发生大气逆温现象的最大高度约为 A.500米B.100米C.350米D.150米 12.当某地大气发生逆温现象时 A.空气对流更加显著B.抑制污染物向上扩散 C.有利于成云致雨D.减少大气中臭氧的含量 焚风效应是由山地引发的一种局地范围内的空气运动形式。一般发生在背风坡地区,使气温比迎风坡异常变高。其成因是湿绝热垂直递减率和干绝热垂直递减率的不同。(湿绝热垂直递减率是有水汽凝结时的空气垂直递减率;干绝热垂直递减率是无水汽凝结时的空气垂直递减率)读下图回答14—15题

地理教案:气温和气温的分布

教案目标 1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。 2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。 3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 4、初步学会阅读世界年平均气温分布图,说出世界气温的分布规律。 5、培养学生利用地图思考问题的意识和习惯,加强与他人合作、共同研究问题的意识。 教案建议 关于“”的总体教材分析气温是天气和气候的主要组成要素,涉及面广、理论性强,所以应采用理论联系生活实际和学生的亲身体验的方法,利用对比法、多媒体手段进行学习。气温的测定,主要讲解气温的表示符号及读法,气温的观测和计算方法气温的变化,教材从三个方面阐述:气温的日变化;气温的年变化,主要从两个侧面说明,一是南北半球一年中气温最高值与最低值的时间,而是热、温、寒三带四季气温变化的特征不同;气温的年际变化。气温的世界分布,首先讲解了等温线知识,它是阅读世界年平均气温图的关键。本部分即重“地”又重“理”,将世界气温水平分布的规律与影响气温分布的主要因素---纬度、海陆、地势、洋流等结合,使感性知识与理性知识结合。又为后面分析气候的影响因素和气候特征打下基础。 关于“世界气温的分布”的教法建议对于气温的“空间变化(即世界的分布)”,教师应该引导学生认真观察地图,学会从“整体到局部” 逐步分析的方法。注重从图上直接得出结论,将分布规律与影响因素联系起来分析。 1、全球年平均气温曲线变化规律---纬度位置(太阳) 2、南北半球的不同---海陆影响 3、陆地上的不同---地形地势影响 4、海洋上的不同---洋流影响 5、极值---局部最冷最热的地方 6、人类对气温的影响,可以简单的讲解。

气温和气温的分布教案

气温和气温的分布 教学目标 1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。 2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。 3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 4、初步学会阅读世界年平均气温分布图,说出世界气温的分布规律。 5、培养学生利用地图思考问题的意识和习惯,加强与他人合作、共同研究问题的意识。 教学建议 关于“气温和气温的分布”的总体教材分析 气温是天气和气候的主要组成要素,涉及面广、理论性强,所以应采用理论联系生活实际和学生的亲身体验的方法,利用对比法、多媒体手段进行学习。

气温的测定,主要讲解气温的表示符号及读法,气温的观测和计算方法 气温的变化,教材从三个方面阐述:气温的日变化;气温的年变化,主要从两个侧面说明,一是南北半球一年中气温最高值与最低值的时间,而是热、温、寒三带四季气温变化的特征不同;气温的年际变化。 气温的世界分布,首先讲解了等温线知识,它是阅读世界年平均气温图的关键。本部分即重“地”又重“理”,将世界气温水平分布的规律与影响气温分布的主要因素---纬度、海陆、地势、洋流等结合,使感性知识与理性知识结合。又为后面分析气候的影响因素和气候特征打下基础。 关于“世界气温的分布”的教法建议 对于气温的“空间变化(即世界的分布)”,教师应该引导学生认真观察地图,学会从“整体到局部”逐步分析的方法。注重从图上直接得出结论,将分布规律与影响因素联系起来分析。 1、全球年平均气温曲线变化规律---纬度位置(太阳) 2、南北半球的不同---海陆影响 3、陆地上的不同---地形地势影响 4、海洋上的不同---洋流影响

管式炉的辐射热传计算的温度分布计算(1)

管式炉的辐射热传计算·温度分布计算(1) 1)能量平衡方程的建立 计算辐射传热是计算温度分布所必需的,但要准确计算温度场还必须已知燃料燃烧模型、烟气流动模型、管内过程模型。一般说,这些都是当今的研究课题,还有待人们去认识和开发,在资料不足时可作出假定。 Roesler提出的燃烧模型,常为人们采用。 流场是难点,冷模、示踪都可作为了解烟气流动的手段,但在文献中常见将其作为活塞流处理,或凭经验加以校正。 管内过程视系统而定,如果是单纯加热则比较简单,如果管内进行化学反应过程,还应当有可靠的反应动力学模型。 在上述模型都已知的条件下,可建立计算温度分布的能量平衡方程组。 对并联管束,例如烃类水蒸气转化制氢炉,管表面区的能量平衡式为: 系统中表面区的数目与所能建立的能量平衡方程数目相同。烟气区的能量平衡式为:

同样,方程式的数目与系统中烟气区的数目相同,联立解所有方程式,就可求出温度分布。 上述两式中,Q n 表示烟气区g i 或与表面区S i 毗连的烟气区以对流方式传 到表面区的热量,kJ/h;Q n 表示传至管表面区的热量。或者表示通过耐火墙 传至环境的热损失,kJ/h;Q f 表示在该烟气区中燃料燃烧放出的热量,kJ/h; △Hg i 气表示烟气进出g i 区的焓差,kJ/h。 对于并联U形致壁管加热炉,其能量平衡方程式与并联管有所区别。如图4-35所示,四路U形徽壁管并联,每路11根,上进下出。鉴于并联管路有对称性,取其中一路作为计算对象即可,兼顾计算精度与机器内存,将敷壁管柱面分为四区,11根炉管分成44段。倘取每段中点温度为该段的代表温度,有44个温度待求,见图4-36。将烟气分为8区,其中4区为圆柱体,4区为环柱体。炉顶、炉底被分为4区,见图4-37。总共16区,56个温度待求。 敷壁管表面S i 管段区的能量平衡式:

温度场计算说明书

温度场计算说明书 1.建立有限元模型 熟悉有限单元法基本原理 建立由点线面构成的实体模型,然后在实体模型基础上进行网格划分 有限单元法基本原理与ansys基本操作见附件1.0《有限元分析基础教程》 以22#坝段为例,划分后的单元如图1所示 图1 22#坝段网格示意图 2单元的转换与材料分区 将划分好的8节点结构solid45单元转化为热学计算的solid70单元(如图2)

图2 单元的转换 压缩和合并单元节点号(图3所示) 图3 压缩合并单元节点号根据混凝土材料性质划分不同材料(如图4)

图4 改变材料的单元号改变之后的材料之后模型如图5所示

根据不同的材料赋予不同的材料热学参数,密度,比热容和热传导系数(如图6)

图6 输入材料参数 3组元的挑选和命名 组元是一组元素的集合,单元集合以e开头,节点集合以n开头 将坝体和基岩单元集合命名为不同的组元edam和ebase 下图为命名组元的对话框(图7所示) 图7 创建组元 根据不同的浇注块,挑选不同的组元,比如d22e4表示第22坝段第4层浇注块挑选方法:1,准备文件如附件-1.1文件里所示 2,将不同坝段的单元和节点用ewrite和nwrite命令写出来(图8) 3,运行程序,将生成的FNAME1.DAT文件读进ansys(图9) 图8 将单元信息写到文件中

图9 read input from 读取命令流 按照附件-1.2文件夹中文件格式所示, 根据各个浇注块的出生时间,温度,水管信息等等 准备DATA.xls文件,并建立组元名2 图10 data.xls文件 按照附件-1.3文件中程序提示的所示, 生成命令流文件,读入后形成na和nd的组元,具体内容如图11所示它们分别代表各个浇筑过程中增加的对流边界和删除的对流边界 图11 na组元名文件

井筒流体温度分布计算方法

井筒流体温度分布计算方法 在多相管流压力计算中,需要油藏流体的高压物性数据,而流体的高压物性对压力和温度非常敏感,因而准确预测多相流体的温度是压力梯度计算的基础。另外,油藏流体沿井筒向地面流动过程中,随着不断散热,其温度将不断降低,油温过低可能导致原油结蜡,因而多相流体温度的准确预测对怎样采取防蜡措施、是否增加井口加热设备等也是很重要的。 国内外对井筒流体温度分布进行了大量的工作。早在1937年,Schlumberger 等人就提出了考虑井筒温度分布的意义。五十年代初期,Nowak 和Bird 通过井筒温度分布曲线解释注水和注汽剖面。Lasem 等人于1957年首先提出了计算井筒温度分布的方法。Ramey.H.J 于1962年首先用理论模型描述了井筒中流体温度分布于井深和生产时间的关系。 Ramey.H.J 从能量守恒的观点出发,建立了计算井筒温度分布的能量守恒方程 J dW dQ J g udu J g gdZ dH l c c - =++ (2-8) Ramey.H.J 利用该模型推导了向井中注入液体和气体时的温度分布公式。 当注入液体时: A z l e b aA t T b aA aZ t Z T --+++-=])([),(0 (2-9) 当注入气体时: A z l e c a A b t T c a A b aZ t Z T -????????? ?? ±+-++??? ??±-+=7781)(7781),(0 (2-10) 式中: []Uk r t Uf r k W A c 112)(π+= Eickmeier 等人于1970年在Ramey.H.J 研究的基础上建立了一套关于注液和产液期间液体和井筒周围地层间热交换的有限差分模型。计算过程中,将油管、套管、水泥环及地层的传热全都考虑在内。但作者仍然只是研究单相流体的温度分布,传热计算中把流体的物性等都看作是常数。后来,Satter 对注蒸汽是相态的变化对温度分布的影响进行了研究。Beggs 和Shiu 对Ramey.H.J 方程中的A 提出了估算方法。 在有关井筒流体和地层温度分布的计算中,许多文章中都采用了Ramey.H.J 的计算方法,但由于Ramey.H.J 的方法是建立在井筒流体与地层温度差不变的基

Ansys计算温度场操作流程

Instruction of Ansys temperature field calculation Question 1: Consider an infinite (in one direction) plate with initial temperature T0. One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s. 问题1:考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。 Basic parameters基本物性参数 Geometry几何:a=1 m, b=0.1 m Material材料:λ=54 W/m·o C, ρ=7800 kg/m3, c p=465 J/kg·o C Loads载荷:T0=0 o C, T e=1000 o C, h=50 W/m2·o C Jobname and directory settings设置文件名、存储路径 Menu | File | Change Jobname Menu | File | Change Directory Preprocessing前处理 (1) Define Element Type定义单元类型 Preprocessor | Element Type | Add/Edit/Delete Add: Thermal Mass | Solid | Quad 4node 55 (2) Set Material Properties设置材料属性 Preprocessor | Material Props | Material Models Thermal: Conductivity: Isotropic KXX=54 Thermal: Density=7800 Thermal: Specific Heat=465 Modeling建模 (1) Create Node 1建立节点1

基于ANSYS的温度场计算

基于ANSYS的温度场计算 ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS 开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD 工具之一。 应用ansys分析软件对一个具体的对象进行分析和计算时,完整的ansys 分析过程可分成三个阶段:即前处(Preprocessing),前处理是建立有限元模型,完成单元网格剖分:求解(Solution)和后处理(Postprocessing),后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。下面分别进行说明。 Ansys的前处理 Ansys的前处理技术一般由两部分组成:一、对求解场域进行离散,生成有限元网格;二、区域物理参数的处理。网格剖分主要是实现对求解场域单元的自动剖分,自动把各个单元和节点进行编号,确定各节点的坐标、边界节点的编号等数据,形成一个数据文件,作为有限元程序的输入数据。为了方便查看各单元剖分情况,判断合理性,还要绘制网格剖分图。自适应网格剖分(Adaptive Mesh Generation)及其加密技术是近年来ansys温度场计算中发展比较快和比较完整的内容,它也属于ansys的前处理范畴。 前处理程序是定义问题的程序,它安排所有必须进行汇编的实体数据。它由可分开的两部分组成。第一部分是几何图形和拓扑结构的描述,即该实体有一定几何形状和材料性质,这是对原型样机的结构仿真,我们通过第一部分的工作建立有限元分析实体模型。第二部分可以认为是对原型样机进行仿真的实验描述,包括边界条件、激励和时间变化情况的处理。 一个恰当的、剖分质量好的有限元网格,对计算的作用是致关重要的。网格单元的数量、形状与密度分布,将会对计算结果的精确度、计算效率和计算资源的利用产生直接的影响。而对于复杂的几何体,网格的划分相当费时且容易出错。现在,为了适应分析对象的大型化、高精度的计算结果要求和运行处理自动化的需要,必须实现有限元网格的自动生成,来解决手工操作时存在的工作量大、处理过程繁琐和出错率高等问题。随着有限元数值计算技术的日益成熟,网格生成

温度分布的曲线拟合

温度分布的曲线拟合 学号:XX 姓名:XXX 1. 实验描述 美国洛杉矶郊区11月8日的温度(华氏温度)如表1所示。采用24小时制。 要求:1.线性的最小二乘拟合 2.曲线的最小二乘抛物线拟合; 3.三次样条插值拟合 4.T7的三角多项式拟合 5.有4个控制点的贝塞尔曲线拟合 2. 实验内容 一、线性最小二乘拟合 定理5.1(最小二乘拟合曲线)设1{(,)}N k k k x y =有N 个点,其中横坐标1{}N k k x =是确定的。

最小二乘拟合曲线 y Ax B =+ (1) 的系数是下列线性方程组的解,这些方程称为正规方程: 211111 N N N k k k k k k k N N k k k k x A x B x y x A N B y =====???? += ? ????? ?? += ??? ∑∑∑∑∑ (2) 核心代码为: %求方程组am=b 的根 m=a\b; x1=1:0.1:24; y1=m(1)*x1+m(2); %绘图,其中(x,y)为已知点,用红色的星号表示,y1为拟合曲线 plot(x,y,'*r',x1,y1) grid on legend('已知点','最小二乘拟合') 主要算法为: (1).输入x,y ; (2).求正规方程的系数21 N k k x =∑,1 N k k x =∑,1 N k k y =∑,1 N k k k x y =∑ (3).解正规方程组am=b (4).绘制拟合曲线

二、曲线的最小二乘抛物线拟合 定理5.3(最小二乘抛物线拟合)设1{(,)}=N k k k x y 有N 个点,横坐标是确定的。最小二乘抛物线的系数表示为 2 ()==++y f x Ax Bx C (3) 求解,A B 和C 的线性方程组为 4322 11113211112111 ===========??????++= ? ? ??????? ??????++= ? ? ??????? ???? ++= ? ????? ∑∑∑∑ ∑∑∑∑ ∑∑∑ N N N N k k k k k k k k k N N N N k k k k k k k k k N N N k k k k k k x A x B x C y x x A x B x C y x x A x B N C y (4) 根据式(4),核心代码为: a(1,1)=sum(x.^4); a(2,3)=sum(x); b(1)=(x.^2)*y'; 图1 线性的最小二乘拟合流程图

热传导计算

第二节 热传导 本节主要讨论以下三个问题: 1 热传导热流产生的原因及热流的方向; 2 热传导热流的大小; 3 平壁及圆筒壁稳定热传导的计算。 4- 4 傅立叶定律 一、温度场和等温面 温度场 某一时刻物体内各点温度分布的总和。 物体的温度分布是空间和时间的函数,即t =f (x 、y 、z 、θ) t —温度; x 、y 、z —空间坐标; θ—时间。 对于一维场的温度分布表达式为:t =f (x 、θ) 稳定温度场 : 温度场中各点温度不随时间而改变,称该温度场为稳定温度场。 不稳定温度场: 温度场内各点温度随时间而改变,称该温度场为不稳定温度场。 等温面 : 温度场中,同一时刻相同温度的各点组成的面称为等温面。不同等温面彼此不能相交。 二、温度梯度 相邻两等温面的温度差Δt 与两面间的法向距离Δx 之比的极限称为温度梯度,即 温度梯度是向量,规定其以温度增加的方向为正。与热量传递方向相反。 对稳定的一维温度场,温度梯度可表示为d t /d x 。 三、傅立叶定律 单位时间内传导的热量与温度梯度及垂直于热流方向的截面积成正比,即 x t dA dQ ??-=λ Q —单位时间传导的热量,简称传热速率,W ; A —导热面积,即垂直于热流方向的表面积,m 2; λ—比例系数,称为物质的导热系数,W/(m 2 ·K)(或W/(m 2 ·℃)。式中的负号是指热流方向和温度梯度方向相反,即热量从高温向低温传递。 傅立叶定律是热传导的基本定律。

4-5 导热系数 导热系数在数值上等于单位导热面积、单位温度梯度、在单位时间内传导的热量,故导热系数是表征物质导热能力的一个参数,为物质的物理性质之一。 物质的导热系数是一物性参数,其值依物质的组成、结构、密度、温度和压力等不同而异。导热系数值由实验测定。当物质一定时,通常不考虑压力对其影响而考虑温度因素。工程计算时,遇到温度变化的情况,可取平均温度下的导热系数值进行计算。 一般来说,固体的导热系数大于液体的导热系数,而气体的导热系数最小。导热系数大的材料可用于制造换热设备,如金属;导热系数小的材料可用于保温或隔热设备,如石棉。玻璃棉等。非金属建筑材料和绝热材料的导热系数与温度、组成及结构的紧密程度有关。 表4-1常用固体材料的导热系数 固体温度, ℃导热系数W/(m2·℃) 铝300 230 镉18 94 铜100 377 熟铁18 61 铸铁53 48 铅100 33 镍100 57 银100 412 钢(1%) 18 45 船舶用金属30 113 青铜189 不锈钢20 16 石墨0 151 石棉板50 0.17

温度分布验证的8个步骤

温度分布验证的8个步骤 定期对环境试验箱内的条件进行分布试验,如对温度和湿度等进行验证是必须的,这对于符合FDA(美国食品药品监督管理局)的监管要求非常关键[1~5]。本应用指南提供了一些方法,有助于验证项目符合《现行药品生产质量管理规范》(cGMP)的要求,本应用指南中所说的探头、传感器、数据记录仪是可互换的,大多数建议的基础是使用数据记录仪作为传感设备。 第1步——编写验证计划 首先,书面定义验证目标,创建一个所用方法的概要,并列出任何预计的障碍。在大多数情况下,这3项构成了验证方案的主要内容,下面几个注意点最好以书面形式编入验证计划。 必须符合的法规与要求 首先审核设施质量指南中所列内容(如:CFR 210、211等),并查找最近的修改或更新。尽管许多监管机构要求提供受控空间的温度分布试验结果,但并没有规定任何具体方法,因此需要我们编制文件以说明合理的分布试验流程。 要求监测的数据点 数据点的数量受多种因素影响而不同,这些因素包括环境、温度/相对湿度范围 和具体应用。小型试验箱的分布试验所需的典型数量包括: 九(9):在大多数情况下,这是试验箱内采样点数量的最低限度(除了非常小的试验台应用)。具体包括两层,每层4台记录仪放置于每个角,中央1台。 或者,十五(15):三层,4台记录仪放置于每个角,三层中央各1台。 或者,每层搁板上4台或5台记录仪。 每台数据记录仪摆放的位置 建议放置记录仪时以网格状均匀分布,同时监测试验箱内因热损耗和/或空气流 动而导致的最差位置也是很重要的。监测试验箱各个角落和任何开口/通道附近 将覆盖大部分的最差位置,但是,在试验箱内架设搁板可能要求确认额外的最差位置。将传感器放置在温控装置的控制传感器,或试验箱内任何报警传感器的位置或附近。 试验箱负荷 分布试验是在空箱时进行(为了运行确认-OQ),还是在试验箱装满产品时进行(为了性能确认- PQ)?对于大多数制药或生物技术应用来讲,两项测试都很重要。要考虑到运行确认和性能确认对过程的影响。并且,有些监管机构[2] 要

相关主题
相关文档
最新文档