卡尔曼滤波器的自适应算法

卡尔曼滤波器的自适应算法
卡尔曼滤波器的自适应算法

ardupilot(EKF)扩展卡尔曼滤波

ardupilot(EKF)扩展卡尔曼滤波 一、初识卡尔曼滤波器 为了描述方便我从网上找了一张卡尔曼滤波器的5大公式的图片。篇幅所限,下图所示的是多维卡尔曼滤波器(因为EKF2是多维扩展卡尔曼滤波器,所以我们从多维说起),为了跟好的理解卡尔曼滤波器可以百度一下,从一维开始。 这5个公式之外还有一个观测模型,根据你实际的观测量来确定,它的主 要作用是根据实际情况来求观测矩阵H。 因为卡尔曼滤波器是线性滤波器,状态转移矩阵A和观测矩阵H是确定的。在维基百科上状态转移矩阵用F表示。在ardupilot EKF2算法中,状态转移矩阵也是用F表示的。下面是维基百科给出的线性卡尔曼滤波器的相关公式。

上述更新(后验)估计协方差的公式对任何增益K k都有效,有时称为约瑟夫形式。为了获得最佳卡尔曼增益,该公式进一步简化为P k|k=(I-K k H k)P k|k-1,它在哪种形式下应用最广泛。但是,必须记住它仅对最小化残差误差的最佳增益有效。 为了使用卡尔曼滤波器来估计仅给出一系列噪声观测过程的内部状态,必须根据卡尔曼滤波器的框架对过程进行建模,这意味着指定一下矩阵:

只要记住一点就行了,卡尔曼滤波器的作用就是输入一些包含噪声的数据,得到一些比较接近真是情况的数据。比如无人机所使用的陀螺仪和加速度计的 读值,他们的读值都是包含噪声的,比如明明真实的角速度是俯仰2°/s,陀螺 仪的读值却是2.5°/s。通过扩展卡尔曼之后的角速度值会变得更加接近2o/s 的真实值,有可能是2.1o/s。 二、扩展卡尔曼滤波器 因为卡尔曼滤波器针对的是线性系统,状态转移模型(说的白话一点就是知道上一时刻被估计量的值,通过状态转移模型的公式可以推算出当前时刻被 估计量的值)和观测模型。注:有的资料显示状态模型中有,有的没有,目前 我也不清楚是为什么,有可能和被估计的对象有关。但看多了你就会发现不管 网上给的公式有怎样的不同,但总体的流程是一样的,都是这5大步骤。我个 人觉得维基百科给的公式较为标准。 因为扩展卡尔曼滤波器(EKF,Extended Kalman filter)的使用场景为非线性系统。所以上面两公式改写为下面所示的样子,我个人的理解是,因为是 非线性系统,所以没有固定的状态转移矩阵和观测矩阵。到这儿为止卡尔曼滤 波器到扩展卡尔曼滤波器的过度就完成了(多说一句,因为传感器的数据采样 是有时间间隔的,算法的运行也是有间隔的,所以本文提到的KF和EKF都是离散型的)。下面是扩展卡尔曼滤波器的相关公式。

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵或量测矩阵H也不能确切建立。如果所建立 的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。 输出相关法自适应滤波的基本途径就是根据量测数据估计出输出函数序列 {C k},再由{C讣推算出最佳增益矩阵K,使得增益矩阵K不断地与实际量测数据 {C k} 相适应。

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

扩展卡尔曼滤波(EKF)应用于GPS-INS组合导航

clear all; %% 惯性-GPS组合导航模型参数初始化 we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s psi = 10*pi/180; %psi角度/ 弧度 Tge = 0.12; Tgn = 0.10; Tgz = 0.10; %这三个参数的含义详见参考文献 sigma_ge=1; sigma_gn=1; sigma_gz=1; %% 连续空间系统状态方程 % X_dot(t) = A(t)*X(t) + B(t)*W(t) A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0; -we*sin(psi) 0 0 0 1 0 0 1 0; we*cos(psi) 0 0 0 0 1 0 0 1; 0 0 0 -1/Tge 0 0 0 0 0; 0 0 0 0 -1/Tgn 0 0 0 0; 0 0 0 0 0 -1/Tgz 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0;]; %状态转移矩阵 B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0; 0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0; 0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵%% 转化为离散时间系统状态方程 % X(k+1) = F*X(k) + G*W(k) T = 0.1; [F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0; 0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵 %% 卡尔曼滤波器参数初始化 t=0:T:50-T; length=size(t,2); y=zeros(2,length); Q=0.5^2*eye(3); %系统噪声协方差 R=0.25^2*eye(2); %测量噪声协方差 y(1,:)=2*sin(pi*t*0.5); y(2,:)=2*cos(pi*t*0.5); Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维X=zeros(9,length); %状态估计值,9维 X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定 P=eye(9); %状态估计协方差 %% 卡尔曼滤波算法迭代过程 for n=2:length X(:,n)=F*X(:,n-1); P=F*P*F'+ G*Q*G'; Kg=P*H'/(H*P*H'+R); X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n)); P=(eye(9,9)-Kg*H)*P; end %% 绘图代码 figure(1) plot(y(1,:)) hold on; plot(y(2,:)) hold off; title('理想的观测量'); figure(2)

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/0318630677.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

一种卡尔曼滤波自适应算法概要

- 23 - 一种卡尔曼滤波自适应算法 黄波郑新星刘凤伟 (中船重工750试验场,云南昆明 650051

【摘要】自适应滤波是指随着外部信号的变化,滤波器能够自我调节滤波参数,使得滤波器的某一性能指标达到最优。文章以卡尔曼滤波理论为基础,给出一种新的自适应卡尔曼滤波算法。 【关键词】数字信号处理;卡尔曼滤波器;MATLAB 【中图分类号】TP391【文献标识码】A【文章编号】1008-1151(201203-0023-02 An adaptive Algorithm on Kalman Filtering Abstruct:Adaptive-filtering means the filter could adjust filtration parameters by itself and make some performance index optimal when the external signals vary. This paper will give a new Kalman filter algorithm whose base is Kalman filter theory. Key word: Digital Signal Processing;Kalman Filter;MATLAB 1 引言 自适应滤波理论是20世纪60年代开始发展起来的。它 是现代信号处理技术的重要组成部分,对复杂信号的处理具 有独特的功能。自适应卡尔曼滤波算法在很多理论和工程实 践中都取得了广泛的应用[1][2][3]。卡尔曼滤波理论的建立的 标志是1960年卡尔曼发表的用递归的方法解决离散数据线 性滤波问题的论文。在那之后,得益于数字计算技术的进步, 卡尔曼滤波器就成为了推广研究和应用的主题,并且在自主 或协助导航领域取得了长足的发展[4][5]。常见的自适应滤波器

扩展卡尔曼滤波器(EKF):一个面向初学者的交互式教程-翻译

扩展卡尔曼滤波器教程 在使用OpenPilot和Pixhawk飞控时,经常遇到扩展卡尔曼滤波(EKF)。从不同的网页和参考论文中搜索这个词,其中大部分都太深奥了。所以我决定创建自己学习教程。本教程从一些简单的例子和标准(线性)卡尔曼滤波器,通过对实际例子来理解卡尔曼滤波器。 Part 1: 一个简单的例子 想象一个飞机准备降落时,尽管我们可能会担心许多事情,像空速、燃料、等等,当然最明显是关注飞机的高度(海拔高度)。通过简单的近似,我们可以认为当前高度是之前的高度失去了一小部分。例如,当每次我们观察飞行高度时,认为飞机失去了2%的高度,那么它的当前高度是上一时刻高度的98%: altitude current_time=0.98*altitude previous_time 工程上对上面的公式,使用“递归”这个术语进行描述。通过递归前一时刻的值,不断计算当前值。最终我们递归到初始的“基本情况”,比如一个已知的高度。 试着移动上面的滑块,看看飞机针对不同百分比的高度变化。 Part 2:处理噪声 当然, 实际从传感器比如GPS或气压计获得测量高度时,传感器的数据或多或少有所偏差。如果传感器的偏移量为常数,我们可以简单地添加或减去这偏移量来确定我们的高度。不过通常情况下,传感器的偏移量是一个时变量,使得我们所观测到的传感器数据相当于实际高度加上噪声: observed_altitude current_time=altitude current_time+noise current_time 试着移动上面的滑块看到噪声对观察到的高度的影响。噪音被表示为可观测的海拔范围的百分比。

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

卡尔曼滤波器综述

卡尔曼滤波器综述 瞿伟军 G10074 1、卡尔曼滤波的起源 1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。 2、卡尔曼滤波的发展 卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。 不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没

拓展卡尔曼滤波

南京航空航天大学 随机信号小论文题目扩展卡尔曼滤波 学生姓名梅晟 学号SX1504059 学院电子信息工程学院 专业通信与信息系统

扩展卡尔曼滤波 一、引言 20世纪60年代,在航空航天工程突飞猛进而电子计算机又方兴未艾之时,卡尔曼发表了论文《A New Approach to Linear Filtering and Prediction Problems》(一种关于线性滤波与预测问题的新方法),这让卡尔曼滤波成为了时域内有效的滤波方法,从此各种基于卡尔曼滤波的方法横空出世,在目标跟踪、故障诊断、计量经济学、惯导系统等方面得到了长足的发展。 二、卡尔曼滤波器 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。 卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。目前,卡尔曼滤波已经有很多不同的实现。卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。 三、扩展卡尔曼滤波器 3.1 被估计的过程信号 卡尔曼最初提出的滤波理论只适用于线性系统,Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(Extended Kalman Filter,简称EKF),将卡尔曼滤波理论进一步应用到非线性领域。EKF的基本思想是将非线性系统线性化,然后进行卡尔曼滤波,因此EKF是一种次优滤波。 同泰勒级数类似,面对非线性关系时,我们可以通过求过程和量测方程的偏导来线性化并计算当前估计。假设过程具有状态向量x∈?n,其状态方程为非线性随机差分方程的形式。 x k=f x k?1,u k?1,w k?1(1.1) 观测变量z∈?m为: z k=?(x k,v k)(1.2) 随机变量w k和v k代表过程激励噪声和观测噪声。它们为相互独立,服从正态分布的白色噪声:

卡尔曼滤波器介绍

卡尔曼滤波器介绍 Greg Welch1and Gary Bishop2 TR95-041 Department of Computer Science University of North Carolina at Chapel Hill3 Chapel Hill,NC27599-3175 翻译:姚旭晨 更新日期:2006年7月24日,星期一 中文版更新日期:2007年1月8日,星期一 摘要 1960年,卡尔曼发表了他著名的用递归方法解决离散数据线性滤波问题的论文。从那以后,得益于数字计算技术的进步,卡尔曼滤波器已成为推广研究和应用的主题,尤其是在自主或协助导航领域。 卡尔曼滤波器由一系列递归数学公式描述。它们提供了一种高效可计算的方法来估计过程的状态,并使估计均方误差最小。卡尔曼滤波器应用广泛且功能强大:它可以估计信号的过去和当前状态,甚至能估计将来的状态,即使并不知道模型的确切性质。 这篇文章介绍了离散卡尔曼理论和实用方法,包括卡尔曼滤波器及其衍生:扩展卡尔曼滤波器的描述和讨论,并给出了一个相对简单的带图实例。 1welch@https://www.360docs.net/doc/0318630677.html,,https://www.360docs.net/doc/0318630677.html,/?welch 2gb@https://www.360docs.net/doc/0318630677.html,,https://www.360docs.net/doc/0318630677.html,/?gb 3北卡罗来纳大学教堂山分校,译者注。 1

Welch&Bishop,卡尔曼滤波器介绍2 1离散卡尔曼滤波器 1960年,卡尔曼发表了他著名的用递归方法解决离散数据线性滤波问题的论文[Kalman60]。从那以后,得益于数字计算技术的进步,卡尔曼滤波器已成为推广研究和应用的主题,尤其是在自主或协助导航领域。[Maybeck79]的第一章给出了一个非常“友好”的介绍,更全面的讨论可以参考[Sorenson70],后者还包含了一些非常有趣的历史故事。更广泛的参考包括[Gelb74,Grewal93,Maybeck79,Lewis86,Brown92,Jacobs93]。 被估计的过程信号 卡尔曼滤波器用于估计离散时间过程的状态变量x∈ n。这个离散时间过程由以下离散随机差分方程描述: x k=Ax k?1+Bu k?1+w k?1,(1.1)定义观测变量z∈ m,得到量测方程: z k=Hx k+v k.(1.2)随机信号w k和v k分别表示过程激励噪声1和观测噪声。假设它们为相互独立,正态分布的白色噪声: p(w)~N(0,Q),(1.3) p(v)~N(0,R).(1.4)实际系统中,过程激励噪声协方差矩阵Q和观测噪声协方差矩阵R可能会随每次迭代计算而变化。但在这儿我们假设它们是常数。 当控制函数u k?1或过程激励噪声w k?1为零时,差分方程1.1中的n×n 阶增益矩阵A将上一时刻k?1的状态线性映射到当前时刻k的状态。实际中A可能随时间变化,但在这儿假设为常数。n×l阶矩阵B代表可选的控制输入u∈ l的增益。量测方程1.2中的m×n阶矩阵H表示状态变量x k 对测量变量z k的增益。实际中H可能随时间变化,但在这儿假设为常数。滤波器的计算原型 定义?x?k∈ n(?代表先验,?代表估计)为在已知第k步以前状态情况下第k步的先验状态估计。定义?x k∈ n为已知测量变量z k时第k步的后验状态估计。由此定义先验估计误差和后验估计误差: ≡x k??x?k, e? k e k≡x k??x k 1原文为process noise,本该翻译作过程噪声,由时间序列信号模型的观点,平稳随机序列可以看成是由典型噪声源激励线性系统产生,故译作过程激励噪声。 UNC-Chapel Hill,TR95-041,July24,2006

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

卡尔曼滤波器简介

3 卡尔曼滤波器的简介 3.1 卡尔曼滤波器的概述 卡尔曼滤波器[4] 由一系列递归数学公式描述,它们提供了一种高效可计算的方法来估计过程的状态,并使估计均方误差最小。卡尔曼滤波器应用广泛且功能强大,它可以估计信号的过去和当前状态,甚至能估计将来的状态,即使并不知道模型的确切性质。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise ),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution )。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k 时刻的是实际温度值。首先你要根据1k -时刻的温度值,来预测k 时刻的温度。因为你相信温度是恒定的,所以你会得到k 时刻的温度预测值是跟1k -时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果1k -时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k 时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k 时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差来判断。因为 252(52 42)Kg ∧∧∧∧ =+,所以0.78 Kg =,我们可以估算出k 时刻的实际温度值是:230.78(2523)24.56+*-=度。可以看出,因为温度计的协方差比较小(比较相信温度计),所以估算 出的最优温度值偏向温度计的值。 现在我们已经得到k 时刻的最优温度值了,下一步就是要进入1k -时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入1k -时刻之前,我们还要算出k 时刻那个最优值(24.56度)的偏差。算法如下:((1)5 2)0.5 2.35Kg ∧ ∧-*=。这里的5就是上面的k 时刻你预测的 那个23度温度值的偏差,得出的2.35就是进入1k +时刻以后k 时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把协方差递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的协方差。上面的Kg ,就是卡尔曼增益(Kalman Gain )。他可以随不同的时刻而改变他自己的值! 3.2 卡尔曼滤波器的算法

基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器.kdh

第27卷第36期中国电机工程学报V ol.27 No.36 Dec. 2007 2007年12月Proceedings of the CSEE ?2007 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2007) 36-0036-05 中图分类号:TM 351 文献标识码:A 学科分类号:470?40 基于扩展卡尔曼滤波器的永磁同步电机 转速和磁链观测器 张 猛,肖 曦,李永东 (电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系),北京市海淀区 100084) Speed and Flux Linkage Observer for Permanent Magnet Synchronous Motor Based on EKF ZHANG Meng, XIAO Xi , LI Yong-dong (State Key Lab of Control and Simulation of Power Systems and Generation Equipments (Dept. of Electrical Engineering, Tsinghua University), Haidian District, Beijing 100084, China) ABSTRACT: To eliminate the mechanical sensors of permanent magnet synchronous motor (PMSM) drive and get the stator flux linkage used in direct torque control (DTC), an extended Kalman filter (EKF) is established. The stator flux linkage on the fixed α-β coordinate, rotor speed and position are chosen as state variables. The input and output of the EKF are stator voltages and currents. The stator flux linkage and rotor speed are observed by EKF. DTC using space vector modulation (SVM) is applied to the system in order to reduce the torque ripples and keep constant switching frequency. The experimental test is carried out to verify the efficiency and robustness of the proposed sensor-less DTC system with speed and flux linkage observer. KEY WORDS: permanent magnet synchronous motor; extended Kalman filter; direct torque control; sensor-less; space vector modulation 摘要:为了取消永磁同步电机控制中的机械传感器,获得直接转矩控制中需要的电机磁链信息,设计了一种基于扩展卡尔曼滤波器的永磁同步电机转速和磁链估算方法。选取定子固定坐标系下定子磁链、电机转速和转子位置为状态变量,电压和电流作为输入、输出量,建立估算定子磁链、电机转速和转子位置的EKF滤波器系统。采用空间矢量调制的直接转矩控制策略,有效减小了直接转矩控制方法的转矩脉动,并保持了功率器件恒定的开关频率。实验结果表明EKF 准确地观测了电机转速和磁链,所构建的无速度传感器DTC 控制系统具有良好的转速和转矩控制性能。 基金项目:国家自然科学基金项目(50607010)。 Project Supported by National Natural Science Foundation of China (50607010).关键词:永磁同步电机;扩展卡尔曼滤波器;直接转矩控制;无速度传感器;空间矢量调制 0 引言 永磁同步电机直接转矩控制具有快速的转矩响应和良好的动态性能,吸引了很多学者进行相关研究,并取得了一定的研究成果[1-5]。在直接转矩控制当中,需要机械传感器提供电机的转速信息,机械传感器使系统复杂性增加,鲁棒性降低。磁链观测的准确性直接影响到转矩的控制性能。在无机械传感器的情况下,如何获得准确的速度和磁链信息是永磁同步电机直接转矩控制研究方面的热点问题。 传统的永磁同步电机直接转矩控制中磁链观测大多采用纯积分方法。初值的敏感性和直流漂移是纯积分方法的主要缺点。三种改进型积分器已经应用到异步电机磁链估算中[6],其中的第二种方法被用于永磁同步电机磁链的估算[7],但是在全速范围内只能够获得准确的相位信息。全阶观测器[8]和非线性反馈正交磁链补偿观测器[9]也被应用到永磁同步电机磁链观测中,但是此两种方法需要利用传感器或其他算法获得电机转速。 电机的转速可以通过对定子磁链位置变化或通过采用定子磁链和转矩角获得转子位置变化计算得到[10-11],但是需要在输出加一个低通滤波器以获得平滑的估算速度,滤波器的延时容易造成系统的不稳定。 基于扩展卡尔曼滤波器对非线性系统优异的状态估算能力,本文提出一种能同时观测速度和磁链的方法,实现了永磁同步电机的无速度传感器直接

相关文档
最新文档