高等数学下知识点总结

高等数学下知识点总结
高等数学下知识点总结

高等数学(下)知识点

主要公式总结

第八章 空间解析几何与向量代数 1、

二次曲面

1)

椭圆锥面:2

2

222z b y a x =+ 2)

椭球面:122

222

2=++c

z b y a x 旋转椭球面:1222222=++c z a y a x 3)

单叶双曲面:122

222

2=-+c

z b y a x 双叶双曲面:1222222=--c z b y a x 4)

椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b

y a x =-22

22 5)

椭圆柱面:1222

2=+b y a x 双曲柱面:122

22=-b

y a x

6)

抛物柱面:

ay x =2 (二) 平面及其方程 1、

点法式方程:

0)()()(000=-+-+-z z C y y B x x A

法向量:),,(C B A n =ρ

,过点),,(000z y x

2、

一般式方程:

0=+++D Cz By Ax

截距式方程:

1=++c

z

b y a x 3、

两平面的夹角:),,(1111

C B A n =ρ

,),,(2222C B A n =ρ

?∏⊥∏21 0212121=++C C B B A A ;?∏∏21//

2

1

2121C C B B A A ==

4、

),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:

(三) 空间直线及其方程

1、

一般式方程:?????=+++=+++0

22221111D z C y B x A D z C y B x A

2、

对称式(点向式)方程:

p

z z n y y m x x 0

00-=-=-

方向向量:),,(p n m s =ρ

,过点),,(000z y x

3、

两直线的夹角:),,(1111

p n m s =ρ

,),,(2222p n m s =ρ

?⊥21L L 0212121=++p p n n m m ;?21//L L

2

1

2121p p n n m m ==

4、

直线与平面的夹角:直线与它在平面上的投影的夹角,

?∏//L 0=++Cp Bn Am ;?∏⊥L p

C n

B m

A ==

第九章 多元函数微分法及其应用 1、 连续:

),(),(lim

00)

,(),(00y x f y x f y x y x =→

2、

偏导数:

x

y x f y x x f y x f x x ?-?+=→?), (), (lim

),(00000

00 ;y y x f y y x f y x f y y ?-?+=→?)

,(),(lim ),(0000000

3、

方向导数:

βαcos cos y

f

x f l f ??+??=??其中

β

α,为

l

的方向角。

4、

梯度:),(y x f z =,则j y x f i y x f y x gradf y x ρ

ρ),(),(),(000000+=。

5、

全微分:设),(y x f z =,则d d d z z z x y x y

??=

+?? (一) 性质 1、

函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

2、 微分法

1) 复合函数求导:链式法则

(,),(,),(,)z f u v u u x y v v x y ===,则

z z u z v x u x v x ?????=?+??????,z z u z v y u y v y

?????=?+?????? (二) 应用

1)

求函数),(y x f z =的极值 解方程组 ?????==0

y x f f 求出所有驻点,对于每一个驻点),(00y x ,令

),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,

① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0

③ 若02=-B AC ,不定。

2、 几何应用

1)

曲线的切线与法平面

曲线????

???===Γ)

()()

(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的

切线方程为:

)

()()(00

0000t z z z t y y y t x x x '-='-='-

法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x

充分条件

曲面

0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:

法线方程为:

)

,,(),,(),,(0000

00000000z y x F z z z y x F y y z y x F x x z y x -=-=-

第十章 重积分

(一) 二重积分 :几何意义:曲顶柱体的体积

1、 定义:

∑??=→?=n

k k k k

D

f y x f 1

),(lim d ),(σηξσλ

2、 计算: 1)

直角坐标

?

??

???≤≤≤≤=b x a x y x y x D )()(),(21??,

21()

()

(,)d d d (,)d b

x a

x D

f x y x y x f x y y φφ=???

?

?

??

???≤≤≤≤=d y c y x y y x D )()(),(21φφ, 21()()(,)d d d (,)d d y c y D f x y x y y f x y x ??=????

2) 极坐标

?

??

???≤≤≤≤=βθαθρρθρθρ)()(),(21D ,

21()

(

)

(,)d d (cos ,sin )d D

f x y x y d f β

ρθαρθ

θρθρθρρ=????

(二) 三重积分

1、 定义: ∑???

=→Ω

?=n

k k

k k k

v f v z y x f 1

),,(lim

d ),,(ζηξ

λ

2、 计算:

1)

直角坐标

???

???

D

y x z y x z z z y x f y x v z y x f ),()

,(21d ),,(d d d ),,( -------------“先一后二”

??

????

Z

D b

a

y x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”

2)

柱面坐标

????

???===z

z y x θρθ

ρsin cos ,

(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩ

Ω

=???

???

3)

球面坐标

(三) 应用 曲面

D y x y x f z S ∈=),(,),(:的面积:

第十一章 曲线积分与曲面积分

1、 定义:0

1

(,)d lim (,)n

i i i L

i f x y s f s λξη→==??∑?

2、

计算:

),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),

(),

(βαψ?≤≤?????==t t y t x ,其中)(),(t t ψ?在

],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψ?,则

(二) 对坐标的曲线积分 1、

定义:设 L 为

xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义

∑?

=→?=n

k k

k k L

x P x y x P 1

),(lim d ),(ηξλ,

∑?=→?=n

k k

k k

L

y Q y y x Q 1

),(lim d ),(ηξλ

.

向量形式:??

+=?L

L

y y x Q x y x P F d ),(d ),(d ρ

2、

计算:

设),(,),

(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为

):(),

(),(βαψ?→????

?==t t y t x ,其中)(),(t t ψ?在],[βα上具有一阶连续导数,且0)()(2

2≠'+'t t ψ?,则 3、

两类曲线积分之间的关系:

设平面有向曲线弧为

?????==)

()

( t y t x L ψ?:,L 上点),(y x 处的切向量的方向角为:βα,,

)

()()

(cos 22t t t ψ??α'+''=

,)

()()

(cos 22t t t ψ?ψβ

'+''=

d d (cos cos )d L

L

P x Q y P Q s αβ+=+?

?.

(三) 格林公式 1、

格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数,

则有???+=???? ????-??L

D y Q x P y x y P x Q d d d d

2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,

y P

x Q ??=?? ?曲线积分 d d L

P x Q y +?

在G 内与路径无关

1、 定义:

∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,

定义 i i i i n

i S f S z y x f ?=∑??

=→∑

),,(lim d ),,(1

ζηξλ

2、

计算:———“一单二投三代入”

),(:y x z z =∑,xy D y x ∈),(,则

(五) 对坐标的曲面积分 1、 定义:

为有向光滑曲面,函数

)

,,(),,,(),,,(z y x R z y x Q z y x P 是定义在

上的有界函数,定义

1

(,,)d d lim (,,)()n

i i i i xy i R x y z x y R S λξηζ∑

→==?∑??

同理,

1

(,,)d d lim (,,)()n

i i i i yz i P x y z y z P S λξηζ∑

→==?∑??

;0

1

(,,)d d lim (,,)()n

i i i i zx i Q x y z z x R S λξηζ∑

→==?∑??

2、 性质:

1)21∑+∑=∑,则

计算:——“一投二代三定号”

),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则

(,,)d d [,,(,)]d d x y

D R x y z x y R x y z x y x y ∑

=±??

??

,∑为上侧取“ + ”

, ∑为下侧取“ - ”. 3、 两类曲面积分之间的关系:

其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。

(六) 高斯公式 1、

高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,

P Q R 在Ω上有连续的一

阶偏导数, 则有 或

()?????∑

Ω++=????

????+??+??S R Q P z y x z R y Q x P d cos cos cos d d d γβα

2、

通量与散度

通量:向量场),,(R Q P A =ρ

通过曲面∑指定侧的通量为:??

++=

Φy x R x z Q z y P d d d d d d

散度:z

R

y Q x P A div ??+

??+??=

ρ (七) 斯托克斯公式 1、

斯托克斯公式:设光滑曲面 ? 的边界 ?是分段光滑曲线, ? 的侧与 ? 的正向符合右手法则,

),,(),,,(),,,(z y x R z y x Q z y x P 在包含? 在内的一个空间域内具有连续一阶偏导数, 则有

为便于记忆, 斯托克斯公式还可写作: 2、

环流量与旋度

环流量:向量场),,(R Q P A =ρ

沿着有向闭曲线?的环流量为?Γ

++z R y Q x P d d d

旋度:???

?

????-????-????-??=y P x Q x R z P z Q y R A rot , , ρ

第十二章 无穷级数 (一) 常数项级数 1、

定义:

1)无穷级数:

Λ

Λ+++++=∑∞

=n n n

u u u u u

3211

部分和:n n

k k n

u u u u u S ++++==∑=Λ3211

正项级数:

∑∞

=1

n n

u

,0≥n

u

交错级数:

∑∞

=-1

)

1(n n n

u ,0≥n u

2)级数收敛:若S

S n

n =∞

→lim 存在,则称级数

∑∞

=1

n n

u

收敛,否则称级数

∑∞

=1

n n

u

发散

3)条件收敛:

∑∞

=1n n

u

收敛,而

∑∞

=1

n n

u

发散;

绝对收敛:

∑∞

=1

n n

u

收敛。

2、 性质:

1)

改变有限项不影响级数的收敛性;

2) 级数

∑∞=1

n n a ,∑∞

=1

n n

b

收敛,则

∑∞

=±1

)(n n n

b a

收敛;

3) 级数

∑∞

=1

n n

a

收敛,则任意加括号后仍然收敛;

4) 必要条件:级数∑∞

=1

n n

u

收敛

?0lim =∞

→n n u .(注意:不是充分条件!)

3、

审敛法

正项级数:∑∞

=1

n n

u

,0≥n

u

1)

定义:S

S n

n =∞

→lim 存在;

2)

∑∞

=1

n n

u

收敛

?{}n

S 有界;

3) 比较审敛法:

∑∞

=1

n n

u

∑∞

=1

n n

v

为正项级数,且),3,2,1( Λ=≤n v u n n

∑∞

=1n n

v

收敛,则

∑∞

=1

n n

u

收敛;若

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

发散.

4) 比较法的推论:

∑∞

=1

n n u ,∑∞

=1

n n

v

为正项级数,若存在正整数

m ,当m n >时,n n kv u ≤,而∑∞=1

n n

v

收敛,

∑∞

=1

n n

u

收敛;若存在正整数

m ,当m n >时,n n kv u ≥,而∑∞=1

n n v 发散,则∑∞

=1

n n u 发散.

5)

比较法的极限形式:∑∞

=1n n u ,∑∞

=1n n v 为正项级数,若)0( lim +∞<≤=∞→l l v u n

n

n ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→n

n

n v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则

∑∞

=1

n n

u

发散.

6)

比值法:∑∞

=1n n u 为正项级数,设l u u n

n n =+∞→1

lim ,则当1l 时,级数∑∞

=1

n n

u 发散;当

1=l 时,级数∑∞

=1

n n u 可能收敛也可能发散.

7)

根值法:∑∞=1

n n u 为正项级数,设l u n

n n =∞

→lim ,则当1

=1n n u 收敛;则当1>l 时,级数∑∞

=1

n n u 发

散;当1=l 时,级数∑∞

=1

n n u 可能收敛也可能发散.

8)

极限审敛法:∑∞=1

n n u 为正项级数,

若0lim >?∞→n n u n 或+∞=?∞

→n n u n lim ,则级数∑∞

=1

n n u 发散;若存在1>p ,使得)0( lim +∞<≤=?∞

→l l u n

n p

n ,则级数∑∞

=1

n n u 收敛.

交错级数:

莱布尼茨审敛法:交错级数:∑∞

=-1

)1(n n n u ,0≥n

u 满足:),3,2,1( 1Λ=≤+n u u n n ,且0lim =∞

→n n u ,则级数∑∞

=-1

)1(n n

n u

收敛。

=1

n n u 绝对收敛,则

∑∞

=1

n n

u

收敛。

常见典型级数:几何级数:

?????≥<∑∞

=1 1 0q q aq n n

发散,

收敛, ; p -级数:?????≤>∑

∞=1p 1 11发散,收敛,p n n p (二) 函数项级数 1、

定义:函数项级数

∑∞

=1

)(n n

x u

,收敛域,收敛半径,和函数;

2、 幂级数:

∑∞

=0

n n

n x

a

3、

收敛半径的求法:ρ=+∞→n

n n a a 1

lim

,则收敛半径 ???

?

?????=∞++∞=+∞<<=0 , ,00 ,1

ρρρρR 4、 泰勒级数

展开步骤:(直接展开法) 1) 求出Λ

,3,2,1 ),()(=n x f n ; 2)

求出

Λ

,2,1,0 ),(0)(=n x f n ;

3) 写出

n n n x x n x f )(!

)

(00

0)(-∑

=; 4)

验证0)(!

)1()(lim )(lim 10)1(=-+=++∞→∞→n n n n n x x n f x R ξ是否成立。

间接展开法:(利用已知函数的展开式) 1)),( ,!1

+∞-∞∈=

∑∞

=x x

n e n n

x ;

2)),( ,!

)12(1

)1(sin 0

121

+∞-∞∈+-=∑∞

=++x x n x

n n n ;

3)),( ,)!

2(1)1(cos 0

21

+∞-∞∈-=∑∞

=+x x n x

n n

n ; 4))1 ,1( ,110

-∈=-∑∞

=x x x n n ;

5)

)1 ,1( ,)1(11

-∈-=+∑∞

=x x x n n n 6)]1 ,1( ,)1()1ln(1

-∈-=+∑∞

+x x x n n

7)

)1 ,1( ,)1(11

22

-∈-=+∑∞

=x x x n n n 8))1 ,1( ,!)1()1(1)1(1

-∈+--+=+∑

=x x n n m m m x n n

m

Λ

5、 傅里叶级数 1)

定义:

正交系:Λ

Λnx nx x x x x cos ,sin ,,2cos ,2sin ,cos ,sin ,1函数系中任何不同的两个函数的乘积在区间

] ,[ππ-上积分为零。

傅里叶级数:

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=

系数:???

???

?====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ

2)

收敛定理:(展开定理)

设 f (x ) 是周期为2?的周期函数,并满足狄利克雷( Dirichlet )条件: 1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x ) 的傅里叶级数收敛 , 且有 3)

傅里叶展开:

①求出系数:???

???

?

====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ;

②写出傅里叶级数

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=;

③根据收敛定理判定收敛性。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

人教版数学必修二知识点总结

第一章立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱:定义:两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' 'E D C B A ABCDE-或用对角线的端点字母,如五棱柱' AD。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥:定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥' ' ' ' 'E D C B A P- 几何特征:侧面、对角面是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' 'E D C B A P- 几何特征:①上下底面是相似平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。 (4)圆柱:定义:以矩形一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥顶点;③侧面展开图是一弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段与'x轴平行且长度不变; ②原来与y轴平行的线段与'y轴平行,长度减为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高,'h为斜高,l为母线) ch S= 直棱柱侧面积 rh Sπ 2 = 圆柱侧 ' 2 1 ch S= 正棱锥侧面积 rl Sπ = 圆锥侧面积 ') ( 2 1 2 1 h c c S+ = 正棱台侧面积 l R r Sπ) (+ = 圆台侧面积 ()l r r S+ =π2 圆柱表 ()l r r S+ =π 圆锥表 ()2 2R Rl rl r S+ + + =π 圆台表 (3)柱体、锥体、台体的体积公式

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

成考高数二知识点总结

成考高数二知识点总结 成考高数二知识点总结 成考高数二知识点总结 1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。 2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。 3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。 4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。 6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线

性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法 由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。最后凯程考研名师预祝大家都能取得好成绩。 凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。 1.制定详细周密的学习计划。 这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。努力做到这一点是十分困难的,但却是非常必要的。我们要把学习计划精确到每一天,这样才能利用好每一天的时间。当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。 方法一:规划进度。分别制定总计划、月计划、周计划、日计划学习时间表,并把它们 贴在最显眼的地方,时刻提醒自己按计划进行。 方法二:互相监督。和身边的同学一起安排计划复习,互相监督,共

新人教版高中数学必修2知识点总结

高中数学必修2知识点总结 第一章 空间几何体 1.1柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' ' E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'' ' ' ' E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' ' E D C B A P - 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 (1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 (2)画三视图的原则: 长对齐、高对齐、宽相等

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a-b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

高中数学必修2知识点总结(史上最全)

高二数学必修 2 知识点总结 第 1 章空间几何体 一、空间几何体的结构 1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多 面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。 2.旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。这条定直线叫做旋转体的轴。 3、柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 ABCDE A' B ' C ' D ' E '或用对角线的端点字母,如五棱柱 AD '几何特 征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的 截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 P A' B ' C ' D ' E ' 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台P A'B'C'D'E' 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成的曲面所围成的几何体几何 特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 ( 5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 二、空间几何体的三视图和直观图 1.投影:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。其中我 们把光线叫做投影线,把留下物体影子的屏幕叫做投影面。 2.中心投影:我们把光由一点向外散射形成的投影,叫做中心投影。 3.平行投影:我们把在一束平行光线照射下形成的投影,叫做平行投影。(又分为正投影和斜投影) 4 空间几何体的三视图

高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 30 2),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y m t x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??= ==??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结 第一章、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,平均变化率 可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y = 在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000, 则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 |' x x y =,即)(0' x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数 函数 导函数 (1)y c = 'y =0 (2)n y x =()*n N ∈ 1'n y nx -= (3)x y a =()0,1a a >≠ 'ln x y a a = (4)x y e = 'x y e = (5)log a y x =()0,1,0a a x >≠> 1 'ln y x a = (6)ln y x = 1'y x = (7)sin y x = 'cos y x = (8)cos y x = 'sin y x =-

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 和差的导数运算 [] ' ''()()()()f x g x f x g x ±=± 积的导数运算 [] ' ''()()()()()()f x g x f x g x f x g x ?=± 特别地:()()''Cf x Cf x =???? 商的导数运算 []' ''2 ()()()()() (()0)()()f x f x g x f x g x g x g x g x ??-=≠???? 特别地:()()2 1'()'g x g x g x ??-=???? 复合函数的导数 x u x y y u '''=? 微积分基本定理 ()b a f x dx =?F(a)--F(b) (其中()()'F x f x =) 和差的积分运算 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ?? 特别地: ()()() b b a a kf x dx k f x dx k =? ?为常数 积分的区间可加性 ()()()() b c b a a c f x dx f x dx f x dx a c b =+<0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f (x )的极值的步骤: (1)确定函数的定义域。 (2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如

相关文档
最新文档