运筹学线性规划的对偶问题

运筹学第四章多目标规划

习题四 4.1 分别用图解法和单纯形法求解下述目标规划问题 (1) min z =p 1(+1d ++2d )+p 2-3d st. -x 1+ x 2+ d -1- d + 1=1 -0.5x 1+ x 2+ d - 2-d + 2=2 3x 1+3x 2+ d -3- d +3=50 x 1,x 2≥0;d -i ,d +i ≥0(i =1,2,3) (2) min z =p 1(2+1d +3+2d )+p 2-3d +p 3+4d st. x 1+ x 2+d -1-d + 1 =10 x 1 +d -2-d +2 =4 5x 1+3x 2+d -3-d +3 =56 x 1+ x 2+d -4-d +4 =12 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) 4.2 考虑下述目标规划问题 min z =p 1(d +1+d +2)+2p 2d -4+p 2d -3+p 3d -1 st. x 1 +d -1-d +1=20 x 2+d -2-d +2=35 -5x 1+3x 2+d - 3-d + 3=220 x 1-x 2+d -4-d +4=60 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) (1)求满意解; (2)当第二个约束右端项由35改为75时,求解的变化; (3)若增加一个新的目标约束:-4x 1+x 2+d -5-d +5=8,该目标要求尽量达 到目标值,并列为第一优先级考虑,求解的变化; (4)若增加一个新的变量x 3,其系数列向量为(0,1,1,-1)T ,则满意解如何变化? 4.3 一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每小时可收入250美元,新闻节目每小时需支出40美元,音乐节目每播一小时费用为17.50美元。法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目。问每天的广播节目该如何安排?优先级如下: P 1:满足法律规定要求; P 2:每天的纯收入最大。 试建立该问题的目标规划模型。

运筹学第二章线性规划

第二章线性规划 教学目的和要求: 目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。 要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了 解图解法。 重点:线性规划标准型,解的概念,单纯形法,人工变量法。 难点:线性规划基本定理,单纯形法。 教学方法:讲授法,习题法。 学时分配:12学时 作业安排:见教材P 38. 线性规划是运筹学的一个重要分支。1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。此后,线性规划理论日趋成熟,应用也日益广泛和深入。 第一节线性规划问题 一、问题的提出 在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。 例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。 A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。问如何安排生产计划,才能使所获总利润最大? 解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3 的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800, X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3); 以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦650 4X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700 X j ≧0 (j=1,2,3) 例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。已知A i 到B j 的单位运价是C ij (i=1,2, …,m; j=1,2, …,n)。 设供销满足平衡条件,即 。 问怎样组织运输,才能满足要求,且使总运费最少? ---- 7 5 4.5 单位利润 700 2 4 2 丁 850 3 2 4 丙 650 3 2 1 乙 800 4 2 2 甲 设备可供工时(h) C B A 产品 设备 ∑=∑==n 1j j b m 1i i a

运筹学试卷及答案.doc

运 筹 学 考 卷 1 / 51 / 5

考试时间: 第十六周 题号一二三四五六七八九十总分 评卷得分 : 名 一、单项选择题。下列每题给出的四个答案中只有一个是正确的,将表示正确 姓 答案的字母写这答题纸上。(10 分, 每小题2 分) 1、使用人工变量法求解极大化线性规划问题时,当所有的检验数j 0 ,在 线 基变量中仍含有非零的人工变量,表明该线性规划问题() A. 有唯一的最优解; B. 有无穷多个最优解; C. 无可行解; D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中(): 号 A.b 列元素不小于零B.检验数都大于零 学 C.检验数都不小于零D.检验数都不大于零 3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非 零变量的个数() 订 A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。 4、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足() A. d 0 B. d 0 C. d 0 D. d 0,d 0 5、下列说法正确的为() : 业 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 专 B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解 装 C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原 问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数 D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 : 院

学 2 / 52 / 5

二、判断下列说法是否正确。正确的在括号内打“√”,错误的打“×”。(18 分,每 小题2 分) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。() 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一 个基变量的值为负。() 3、任何线性规划问题存在并具有惟一的对偶问题。() 4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。 ()5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之 一:有惟一最优解,有无穷多最优解,无界解,无可行解。() 6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数k , 最有调运方案将不会发生变化。() 7、目标规划模型中,应同时包含绝对约束与目标约束。() 8、线性规划问题是目标规划问题的一种特殊形式。() 9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。() 三、解答题。(72 分) max z 3x 3x 1 2 1、(20分)用单纯形法求解 x x 1 2 x x 1 2 4 2 ;并对以下情况作灵敏度分析:(1)求 6x 2 x 18 1 2 x 0, x 0 1 2 5 c 的变化范围;(2)若右边常数向量变为2 b ,分析最优解的变化。 2 20 2、(15 分)已知线性规划问题: max z x 2x 3x 4x 1 2 3 4 s. t. x 2x 2x 3x 20 1 2 3 4 2x x 3x 2x 20 1 2 3 4 x x x x , , , 0 1 2 3 4 其对偶问题最优解为y1 1.2, y2 0.2 ,试根据对偶理论来求出原问题的最优解。

运筹学第四章

运筹学第四章习题答案 4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {- d -+d } (2)max {-d ++ d } (3)min {-d ++d } (4)min {-d -+ d } (1)合理,令f (x )+- d -+ d =b,当f (x )取最小值时,- d -+ d 取最大值合理。 (2)不合理,+ d 取最大值时,f (x )取最大值,- d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,- d 和+ d 都要尽可能的小。 (4)合理,令f (x )+- d -+ d =b,当f (x )取最大值时,- d -+ d 取最小值合理。 4.2用图解法和单纯形法解下列目标规划问题 (1)min {P 13 +d ,P 2- 2d ,P 3(- 1d ++ 1d )} 24261121=-+++- d d x x 52221=-+++- d d x x 155331=-++-d d x 3,2,1,0,,,21=≥+-i d d x x i i (2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+4 35.1d d )} 401121=-+++-d d x x 1002221=-++--d d x x 30331=-++-d d x 15442=-++-d d x 4,3,2,1,0,,,21=≥+-i d d x x i i (1)图解法

0 A B C X 1 由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a (2)图解法 2 1 由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可 表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a

运筹学课件第四章目标规划

第四章目标规划 一、学习目的与要求 1、掌握目标规划的图解法模型; 2、掌握目标规划的单纯形的求解模型; 3、掌握目标规划的灵敏度分析。 二、课时6学时 第一节目标规划问题及其数学模型 一、问题的提出 应用线性规划可以处理许多线性系统的最优化问题,但线性规划,整数规划和非线性规划都只有一个目标函数,而在实际问题中,常常需要考虑多个目标:如设计一个新产品的工艺过程,不仅希望获利大,而且希望产量高,消耗低,质量好,投入少等。而这些目标之间通常是矛盾的。所以这类问题多目标问题比单目标问题要复杂得多,我们把这一类问题称为目标规划问题。 目标规划与线性规划相比,有以下优点: 1.线性规则只讨论一个线性目标函数在一组线性约束条件下的极值问题。 实际问题中,往往要考虑多个目标的决策问题,这些目标可能互相矛盾,也可能没有统一的度量单位,很难比较。目标规划就能够兼顾地处理多种目标的关系,求得更切合实际的解。 2.线性规划是在满足所有约束条件的可行解中求得最优解。而在实际问题 中往往存在一些相互矛盾的约束条件,如何在这些相互矛盾的约束条件下,找到一个满意解就是目标规划所要讨论的问题。 3.线性规划问题中的约束条件是不分主次、同等对待的,是一律要满足的“硬约束”。而在实际问题中,多个目标和多个约束条件不一定是同等重要的,而是有轻重缓急和主次之分的,如何根据实际情况确定模型和求解,使其更合实际是目标规划的任务。 4.线性规划的最优解可以说是绝对意义下的最优,为求得这个最优解,往往要花去大量的人力、物力和才力。而在实际问题中,却并不一定需要去找这种最优解。目标规划所求的满意解是指尽可能地达到或接近一个或几个已给定的指标值,这种满意解更能够满足实际的需要。 因此可以认为,目标规划更能够确切描述和解决经济管理中的许多实际问题。目前目标规划的理论和方法已经在经济计划、生产管理、经营管理、市场分析、财务管理等方面得到广泛的应用。 二、目标规划的数学模型 例1 某工厂生产两种产品,受到原材料和设备工时的限制。在单件利润等有关数据已知的条件下,要求制定一个获利最大的生产计划,具体数据见表:

线性规划的对偶原理

线性规划的对偶原理 3.1 线性规划的对偶问题 一、 对偶问题的提出 换位思考 家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大 213050max x x z += ?? ? ??≥≤+≤+0 ,50212034212121x x x x x x 某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。他 需要与家具厂谈判付给该厂每个工时的价格。如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少。 目标:租金最少;1y -付给木工工时的租金;2y -付给油漆工工时的租金 2150120min y y w += 所付租金应不低于家具厂利用这些资源所能得到的利益 1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收 入 502421≥+y y 2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收 入 30321≥+y y 3)付给每种工时的租金应不小于零 0,021≥≥y y 二、 原问题与对偶问题的数学模型 1. 对称形式的对偶

原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。 原问题: ?? ? ??≥≥=0min X b AX CX z 对偶问题: ?? ? ??≥≤=0max Y C YA Yb w 2. 非对称形式的对偶 若原问题的约束条件全部是等式约束(即线性规划的标准型),即 ?? ? ??≥==0min X b AX CX z 则其对偶问题的数学模型为 ?? ? ??≤=是自由变量Y C YA Yb w max 可把原问题写成其等价的对称形式: min z =CX AX ≥b AX ≤b X ≥0 即 min z =CX ? ? ????-A A X ≥??????-b b X ≥0 设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。根据对称形式的对偶模型,写出上述问题的对偶问题:

线性规划的对偶问题

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5 4x1+x2+x3≤20 2x1-x2+3x3=-4 x j≥0 (j=1,2,3)x1-x3+x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上; (3)目标函数改变为max z=λCX(λ≠0); 'x代换。 (4)模型中全部x1用3 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+x4≥3 3x1+x2+x3+x4≥6 x3 +x4=2 x1 +x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;

线性规划的对偶问题

第二章 线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 ⑴ max z = 10x i + X 2 + 2x 3 st. x i + X 2 + 2 X 3W 10 4x i + X 2 + X 3 W 20 X > 0 (j = 1,2,3) (3) min z = 3x i + 2 X 2 — 3x 3 + 4x 4 st. x i -2x 2+ 3x 3+ 4x 4W 3 X 2 + 3X 3 + 4X 4》一5 2x i — 3x 2 — 7x 3 — 4x 4= 2 = x i >0, X 4W 0, X 2,, X 3 无约束 (2) max z = 2x i + x 2+ 3x 3+ x 4 st. x i + x 2+ x 3 + x 4 W 5 2x i - x 2+ 3x 3 =- 4 X i — X 3 + X 4> i X i , X 3 > 0, X 2, X 4 无约束 (4) min z =— 5 x i — 6x 2— 7x 3 st. — X i + 5X 2— 3X 3 > i5 — 5X i — 6X 2+ i0X 3 W 20 X i — X 2 — X 3=— 5 X i W 0, X 2>0 , X 3 无约束 2.2已知线性规划问题 max z = CX , AX=b , X >0。分别说明发生下列情况时,其对偶问题的解的 变化: (1 )问题的第k 个约束条件乘上常数 入(炉0); (2) 将第k 个约束条件乘上常数 入(苗0)后加到第r 个约束条件上; (3) 目标函数改变为 max z = 2CX (入工0); 4)模型中全部 X i 用 3 X'i 代换。 2.3 已知线性规划问题 min z = 8X i + 6X 2+ 3X 3+ 6X 4 st. x i + 2X 2 + X 4》3 3x i + X 2 + X 3+ X 4 A 6 X 3 + X 4= 2 X i + X 3 A 2 X j A 0(j =i,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为 X*=(i ,i ,2,0) ,试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题 min z = 2X i + X 2+ 5X 3+ 6X 4 对偶变量 st. 2X i + X 3+ X 4W 8 y i 2X i + 2X 2+ X 3+ 2X 4W i2 y 2 X j A 0(j =i,2,3,4) 其对偶问题的最优解 y i *=4; y 2*=i ,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题 maX z = 2X i + 4X 2+ 3X 3 st. 3X i +4 X 2+ 2X 3W 60 2X i + X 2+ 2X 3W 40 X i + 3X 2+ 2X 3W 80 X j A 0 (j = i,2,3) ( i )写出其对偶问题 ( 2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; ( 3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶 问题的解; ( 4)比较( 2)和( 3)计算结果。 2.6已知线性规划问题 max z = 10x i + 5x 2

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性 规划问题 The final edition was revised on December 14th, 2020.

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 .-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 . 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX . ???≥=0X b AX 则标准型(LP)为 Max z=CX . ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y . ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶问题的转化及其应用 摘要 线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解. 关键词:线性规划;原问题;对偶问题;转化

Linear Programming is the Original Problem and the Transformation of the Dual Problem and Applications Abstract: Linear programming in operational research is research earlier, rapid development and wide application, the method is an important branch of mature, it is one of the scientific management of auxiliary people mathematical method. Can from different angles to linear programming dual problem for policy makers to provide more scientific theory basis. This article mainly probes into the linear programming problem and the relationship between the dual problem, linear programming problem and the transformation of the dual problem, the application of linear programming dual problem. This article is the complex of the original problem into its dual problem to be solved, simplifies the linear programming problem, enables us to rapidly find the optimal solution of linear programming problem. Keywords: linear programming; the original problem; the dual problem; conversion

运筹学作业2(清华版第二章部分习题)答案

运筹学作业2(第二章部分习题)答案 2.1 题 (P . 77) 写出下列线性规划问题的对偶问题: (1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++? ? ++≥??++≤? ? ++≤? ≥≥??无约束,; 解:根据原—对偶关系表,可得原问题的对偶规划问题为: 123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++??++≤??++≤? ?++=? ≥≤≤?? (2)111 1 m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j n ij ij j j ij z c x c x a i m c x b j n x i m j n ====?=? ? ? ==????==??≥==??∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为: 11m ax 1,,;1,,m n i i j j i j i j ij i w a u b v u v c i m j n u ==? =+???+≤? ?==? ??∑∑ j 无约束,v 无约束 2.2判断下列说法是否正确,为什么? (1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。 因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。但,现实中肯定有一些问题是无最优解的,故本题说法不对。

例如原问题 12 12212m ax 31..30,0z x x x x s t x x x =++≥??≤? ?≥≥?有可行解,但其对偶问题 12 11212m in 33..10,0w y y y s t y y y y =+≥??+ ≥??≤≥?无可行解。 (2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解; 答:错,如(1)中的例子。 (3) 在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或求极小,原问题可 行解的目标函数值一定不超过其对偶问题可行解的目标函数值。 答:错。正确说法是:在互为对偶的一对原问题与对偶问题中,求极大的问题可行解的目标函数值一定不超过求极小的问题可行解的目标函数值。 (4) 任何线性规划问题具有唯一的对偶问题。 答:正确。 2.5给出线性规划问题 123 123123123123m ax 221.. 22 0,0,0z x x x x x x x x x s t x x x x x x =+++-≤? ?-+=?? ++≥??≥≥≥? 写出其对偶问题;(2)利用对偶问题性质证明原问题目标函数值1z ≤ 解:(1)原问题的对偶问题为: 123 123123123123m in 22212.. 10,,0w y y y y y y y y y s t y y y y y y =++++≥? ?-+≤?? -++=? ?≥≤?无约束 (2)取()011T y =,既1230,1,0y y y ===,经验证,()011T y =是对偶问题的一个可行解,并且1w =。由对偶问题的性质可得1z w ≤= 2.9 用对偶单纯形法求解下列线性规划问题: (2)123 123123 123m in 524324..63510,,0z x x x x x x s t x x x x x x =++++≥??++≥??≥? ,

运筹学_第1章_线性规划习题

第一章线性规划 习题1.1(生产计划问题)某企业利用A、B、C三种资源,在计划期内生产甲、乙两种产品,已知生产单位产品资源的消耗、单位产品利润等数据如下表,问如何安排生产计划使企业利润最大? 解:设x1、x2分别代表甲、乙两种产品的生产数量(件),z表示公司总利润。依题意,问题可转换成求变量x1、x2的值,使总利润最大,即 ma x z=50x1+100x2 且称z=50x1+100x2为目标函数。 同时满足甲、乙两种产品所消耗的A、B、C三种资源的数量不能超过它们的限量,即可分别表示为 x1 + x2≤300 2x1 + x2≤400 x2≤250 且称上述三式为约束条件。此外,一般实际问题都要满足非负条件,即x1≥0、x2≥0。 这样有 ma x z=50x1+100x2 x1 + x2≤300 2x1 + x2≤400 x2≤250 x1、x2≥0

习题1.2 靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。环保要求河流中工业污水含量不能大于0.2%。两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。 解:设x 1、x 2分别代表工厂1和工厂2处理污水的数量(万m 3)。则问题的目标可描述为 min z =1000x 1+800x 2 约束条件有 第一段河流(工厂1——工厂2之间)环保要求 (2-x 1)/500 ≤0.2% 第二段河流(工厂2以下河段)环保要求 [0.8(2-x 1) +(1.4-x 2)]/700≤0.2% 此外有 x 1≤2; x 2≤1.4 化简得到 min z =1000x 1+800x 2 x 1 ≥1 0.8x 1 + x 2 ≥1.6 x 1 ≤2 x 2≤1.4 x 1、x 2≥0 习题1.3 ma x z =50x 1+100x 2 x 1 + x 2≤300 2x 1 + x 2≤400 x 2≤250 图1—1 x 2

强对偶性,运筹学中的术语。如果x-是原问题的最优解,y-是对

强对偶性,运筹学中的术语。如果x*是原问题的最优解,y*是对 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 强对偶性。强对偶性。运筹学中的术语。如果x*是原问题的最优解。对偶y*是对偶问题的最优解。那么有如下关系:cx*=y*b。 中文名,强对偶性。别称,cx*=y*b。应用学科,运筹学。 定律定义。矩阵形式的线性规划问题的原问题为:。 其对偶问题为:若原问题及其对偶问题均有可行解。则两者均具有最优解。且它们最优解的目标函数值相等:其中X*和Y*是最优解。T上标表示转置。 推导过程。由于原问题和对偶问题均有可行解。 根据弱对偶性的推论。原问题的目

标函数值具有上界。而对偶问题的目标函数值具有下界。因此不可能具有无界解的情况。而且“可行解”的前提也保证了没有无解的情况。所以两者都一定具有最优解。既然原问题有最优解。初始单纯形表进过若干步迭代变成最终单纯形表后。对偶其非基变量的检验数均小于等于0:。将上式变形。T≥CT。ATT≥CT。将此式与对偶问题的约束条件ATY≥CT做比较。 可以看出初始基变量Xs的检验数-CBB-1的相反数。若原问题是极小化问题Xs的检验数即为CBB-1。恰好是其对偶问题的一个可行解Y=T。由此可知。原问题有最优解时。其对偶问题有可行解使得对偶问题的可行解的目标函数值w等于原问题最优目标函数值z。w=YTb=CBB-1b=z存在两者的可行解。使得原问题和对偶问题的的目标函数值相等。由对偶问题的最优性。这时令两者的目标函数值相等的可行解均为最优解。即此时原问题和对偶问题它们最优

解下的目标函数值相等。 适用范围。无论原问题是极大化问题和极小化问题均适用。 定律定义推导过程 由于原问题和对偶问题均有可行解,根据弱对偶性的推论,原问题的目标函数值具有上界,而对偶问题的目标函数值具有下界,因此不可能具有无界解的情况,而且“可行解”的前提也保证了没有无解的情况,所以两者都一定具有最优解。 将上式变形,T≥CT,ATT≥CT,将此式与对偶问题的约束条件ATY≥CT做比较,可以看出初始基变量Xs的检验数-CBB-1的相反数,若原问题是极小化问题Xs的检验数即为CBB-1,恰好是其对偶问题的一个可行解Y=(CBB-1)T。由此可知,原问题有最优解时,其对偶问题有可行解使得对偶问题的可行解的目标函数值w等于原问题最优目标函数值z,w=YTb=CBB-1b=z 存在两者的可行解,使得原问题和

线性规划的对偶问题

线性规划的对偶问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+ x2+2x3 (2) max z =2x1+ x2+3x3+ x4 st. x1+ x2+2 x3≤10 st. x1+ x2+ x3 + x4≤5 4x1+ x2+ x3≤20 2x1- x2+3x3=-4 x j≥0 (j=1,2,3) x1- x3+ x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2= x1- x2- x3=-5 x1≥0,x4≤0,x2,,x3无约束 x1≤0, x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0); (4)模型中全部x1用3 'x代换。 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+ x4≥3 3x1+ x2+ x3+ x4≥6

x3 + x4=2 x1 + x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+ x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+ x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; (3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解; (4)比较(2)和(3)计算结果。

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶 问题的转化及其应用 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

线性规划原问题与对偶问题的转化及其应用 摘要 线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解. 关键词:线性规划;原问题;对偶问题;转化LinearProgrammingistheOriginalProblemandtheTransformationoftheDu alProblemandApplications Abstract:Linearprogramminginoperationalresearchisresearchearlier,rapiddevelopmentandw ideapplication,themethodisanimportantbranchofmature,目录

1引言 线性规划问题是运筹学里的一个重要的分支,它的应用比较广泛,因而是辅助人们进行现代科学管理的一种数学方法.随着线性规划理论的逐步深入,人们发现线性规划问题具有对偶性,即每一个线性问题都伴有另外一个线性问题的产生,两者相互配对,密切联系,反之亦然.我们把线性规划的这个特性称为对偶性.于是,我们将其中的一个问题称为原问题,另一个问题则称为它的对偶问题.对偶性不仅仅是数学上的理论问题,而且也是线性规划中实际问题的内在经济联系的必然反映.我们通过对对偶问题的深入研究,发现对偶问题能从不同角度对生产计划进行分析,从而使管理者能够间接地获得更多比较有用的信息. 2文献综述 国内外研究现状 在所查阅到的国内外参考文献[1-15]中,有不少文章是探讨了原问题转化为对偶问题的方法以及对偶性质的证明,并在对偶理论的应用方面有所研究.如郝英奇,胡运权在[1]、[10]中主要介绍了线性规划中原问题与对偶问题中的一些基本概念,探究了实际问题中的数学模型以及解.孙君曼,冯巧玲,孙慧君,李淑君等在[2]中探讨了对偶理论中互补松弛定理在各种情况下的使用方法,使学生更好地掌握互补松弛定理的含义和应用方法.胡运权,郭耀煌,殷志祥等在[3]、[5]中系统的介绍了线性规划中原始问题与对偶问题的两种形式.郭鹏,徐玖平等在[6]、[8]中用不同例子来说明了原问题转化为对偶问题的必要性.崔永新等在[9]、[15]中探讨了对偶问题的相关定理以及对偶问题的可行解和最优解之间的若干性质.李师正,王德胜在[11]中探讨了如何用计算机计算对偶问题的最优解.岳宏志,蔺小林,孙文喻等在[12]、[14]中

《运筹学》第3章习题

第三章线性规划对偶理论与灵敏度分析习题 一、 思考题 1. 对偶问题和对偶变量的经济意义是什么 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么 3.什么是资源的影子价格它和相应的市场价格之间有什么区别 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化有多少种不同情况如何去处理 二、 判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

运筹学--第一章 线性规划

习题一1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、 无穷多最优解、无界解或无可行解。 (1) min z =6x1+4x2(2) max z =4x1+8x2 st. 2x1+x2≥1 st. 2x1+2x2≤10 3x1+4x2≥1.5 -x1+x2≥8 x1, x2≥0 x1, x2≥0 (3) max z =x1+x2(4) max z =3x1-2x2 st. 8x1+6x2≥24 st. x1+x2≤1 4x1+6x2≥-12 2x1+2x2≥4 2x2≥4 x1, x2≥0 x1, x2≥0 (5) max z =3x1+9x2(6) max z =3x1+4x2 st. x1+3x2≤22 st. -x1+2x2≤8 -x1+x2≤4 x1+2x2≤12 x2≤6 2x1+x2≤16 2x1-5x2≤0 x1, x2≥0 x1, x2≥0 1.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。 (1) max z =3x1+5x2(2) min z =4x1+12x2+18x3 st. x1+x3=4 st. x1+3x3-x4=3 2x2+x4=12 2x2+2x3-x5=5 3x1+2x2+x5=18 x j≥0 (j=1, (5) x j≥0 (j=1, (5) 1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。 (1) max z =10x1+5x2 st. 3x1+4x2≤9 5x1+2x2≤8 x1, x2≥0 (2) max z =100x1+200x2 st. x1+x2≤500 x1≤200 2x1+6x2≤1200 x1, x2≥0 1.4. 分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类: 9

相关文档
最新文档