c++用递归的方法编写函数求Fibonacci级数

c++用递归的方法编写函数求Fibonacci级数
c++用递归的方法编写函数求Fibonacci级数

用递归的方法编写函数求Fibonacci级数,观察递归调用的过程

#include

int fib(int n);

int main()

{

int n,answer;

cout<<"Enter number:";

cin>>n;

cout<<""<

answer=fib(n);

cout<

return 0;

}

int fib(int n)

{

cout<<"Processing fib("<

if(n<3)

{

cout<<"Reutrn 1!\n";

return(1);

}

else

{

cout<<"Call fib("<

return(fib(n-2)+fib(n-1));

}

}

格林函数法求解场的问题

格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: Heat Eq.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Green ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题: ()()()()()201 f s u r r u r u r r n ρεαβ???=-??? ????+=??????? 这里讨论的是静电场()u r , ()f r ρ 代表自由电荷密度。

递归调用详解,分析递归调用的详细过程

递归调用详解,分析递归调用的详细过程 2009年05月23日星期六 22:52 一、栈 在说函数递归的时候,顺便说一下栈的概念。 栈是一个后进先出的压入(push)和弹出(pop)式数据结构。在程序运行时,系统每次向栈中压入一个对象,然后栈指针向下移动一个位置。当系统从栈中弹出一个对象时,最近进栈的对象将被弹出。然后栈指针向上移动一个位置。程序员经常利用栈这种数据结构来处理那些最适合用后进先出逻辑来描述的编程问题。这里讨论的程序中的栈在每个程序中都是存在的,它不需要程序员编写代码去维护,而是由运行是系统自动处理。所谓的系统自动维护,实际上就是编译器所产生的程序代码。尽管在源代码中看不到它们,但程序员应该对此有所了解。 再来看看程序中的栈是如何工作的。当一个函数(调用者)调用另一个函数(被调用者)时,运行时系统将把调用者的所有实参和返回地址压入到栈中,栈指针将移到合适的位置来容纳这些数据。最后进栈的是调用者的返回地址。当被调用者开始执行时,系统把被调用者的自变量压入到栈中,并把栈指针再向下移,以保证有足够的空间存储被调用者声明的所有自变量。当调用者把实参压入栈后,被调用者就在栈中以自变量的形式建立了形参。被调用者内部的其他自变量也是存放在栈中的。由于这些进栈操作,栈指针已经移动所有这些局部变量之下。但是被调用者记录了它刚开始执行时的初始栈指针,以他为参考,用正或负的偏移值来访问栈中的变量。当被调用者准备返回时,系统弹出栈中所有的自变量,这时栈指针移动了被调用者刚开始执行时的位置。接着被调用者返回,系统从栈中弹出返回地址,调用者就可以继续执行了。当调用者继续执行时,系统还将从栈中弹出调用者的实参,于是栈指针回到了调用发生前的位置。 可能刚开始学的人看不太懂上面的讲解,栈涉及到指针问题,具体可以看看一些数据结构的书。要想学好编程语言,数据结构是一定要学的。 二、递归 递归,是函数实现的一个很重要的环节,很多程序中都或多或少的使用了递归函数。递归的意思就是函数自己调用自己本身,或者在自己函数调用的下级

C语言实现二叉树的前序遍历(递归)

C语言实现二叉树的前序遍历算法实现一: #include #include typedef struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void CreateBiTree(BiTree &T) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') T=NULL; else { T=(struct BiTNode *)malloc(sizeof(struct BiTNode)); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } } int print(BiTree T)//前序遍历(输出二叉树) { if(T==NULL)return 0; else if(T->lchild==NULL && T->rchild==NULL)return 1; else return print(T->lchild)+print(T->rchild); } void main()//主函数 { BiTree T; CreateBiTree(T); printf("%d\n",print(T)); } 算法实现二: #include

#include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; int num=0; void CreatBiTree(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; CreatBiTree(p->lchild); CreatBiTree(p->rchild); } } void print(struct BiTNode *p) //前序遍历(输出二叉树){ if(p!=NULL) { if(p->lchild==NULL&&p->rchild==NULL) else { print(p->lchild); print(p->rchild); } } } void main()//主函数 { struct BiTNode *p; CreatBiTree(p); print(p); printf("%d\n",num); } 供测试使用的数据

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

函数的递归调用与分治策略

函数的递归调用与分治策 略 This manuscript was revised on November 28, 2020

函数的递归调用与分治策略 递归方法是算法和程序设计中的一种重要技术。递归方法即通过函数或过程调用自身将问题转化为本质相同但规模较小的子问题。递归方法具有易于描述和理解、证明简单等优点,在动态规划、贪心算法、回溯法等诸多算法中都有着极为广泛的应用,是许多复杂算法的基础。递归方法中所使用的“分而治之”的策略也称分治策略。 递归方法的构造 构造递归方法的关键在于建立递归关系。这里的递归关系可以是递归描述的,也可以是递推描述的。下面由一个求n的阶乘的程序为例,总结出构造递归方法的一般步骤。 [例1]从键盘输入正整数N(0<=N<=20),输出N!。 [分析]N!的计算是一个典型的递归问题。使用递归方法来描述程序,十分简单且易于理解。 [步骤1]描述递归关系递归关系是这样的一种关系。设{U1,U2,U3,…,Un…}是一个序列,如果从某一项k开始,Un和它之前的若干项之间存在一种只与n有关的关系,这便称为递归关系。 注意到,当N>=1时,N!=N*(N-1)!(N=1时,0!=1),这就是一种递归关系。对于特定的K!,它只与K与(K-1)!有关。 [步骤2]确定递归边界在步骤1的递归关系中,对大于k的Un的求解将最终归结为对Uk的求解。这里的Uk称为递归边界(或递归出口)。在本例中,递归边界为k=0,即0!=1。对于任意给定的N!,程序将最终求解到0!。 确定递归边界十分重要,如果没有确定递归边界,将导致程序无限递归而引起死

循环。例如以下程序: #include <> int f(int x){ return(f(x-1)); } main(){ cout<=1时 n!= 1 当N=0时 再将这种关系翻译为代码,即一个函数: long f(int n){ if (n==0) return(1); else return(n*f(n-1)); } [步骤4]完善程序主要的递归函数已经完成,将程序依题意补充完整即可。

格林函数()

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 上具有连续一阶导数,而在 T 中具 有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u 亦即

.)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=? (12-1-4) 第一、第二、第三类边界条件可统一地表为 ),( M u n u ?βα=??????+??∑ (12-1-5) 其中 (M )是区域边界 上的给定函数。=0, ≠0为第一类边界条件, ≠0,=0是第二类边界条件,、 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。§5.3中介绍的 函数正是描述一个单位正点量的密度分布函数。因此,若以v (r ,r 0 ) 表示位于r 0 点的单位强度的正点源在r 点产生的场,即v (r ,r 0 )应满足方程 ).() ,(00r r r r v -=?δ (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。以v (r ,r 0)乘(12-1-4), u (r )乘(12-1-6),相减,然后在区域T 中求积分,得 . )( )(0?????????--=?-?T T T dV r r u vfdV dV v u u v δ (12-1-7) 应用格林公式将上式左边的体积分化成面积分。但是,注意到在r =r 0 点,v 具有 函数的奇异性,格林公式不能用。解决的办法是先从区域T 中挖去包含r 0 的小体 积,例如半径为 的小球K (图12-1), 的边界面为 。对于剩下的体积,

C语言函数递归[1]

递归,作为C语言最经典的算法之一,是一种非常有用的程序设计方法。虽然用递归算法编写的程序结构清晰,具有很好的可读性,还往往使某些看起来不易解决的问题变得容易解决。但在递归函数中,由于存在着自调用过程,程序控制反复进入其自身,使程序的分析设计有一定困难,致使很多初学者往往对递归迷惑不解,也在这上面花了不少的时间,却收效甚微。那么,究竟什么是递归?怎么实现递归呢? 所谓递归,简而言之就是在调用一个函数的过程中又直接或间接地调用该函数本身,以实现层次数据结构的查询和访问。在函数中直接调用函数本身,称为直接递归调用。在函数中调用其它函数,其它函数又调用原函数,这就构成了函数自身的间接调用,称为间接递归调用。 而采用递归方法来解决问题,必须符合以下三个条件: 1、可以把要解决的问题转化为一个新问题,而这个新的问题的解决方法仍与原来的解决方法相同,只是所处理的对象有规律地递增或递减。 说明:解决问题的方法相同,调用函数的参数每次不同(有规律的递增或递减),如果没有规律也就不能适用递归调用。 2、可以应用这个转化过程使问题得到解决。 说明:使用其他的办法比较麻烦或很难解决,而使用递归的方法可以很好地解决问题 3、必定要有一个明确的结束递归的条件。 说明:一定要能够在适当的地方结束递归调用。不然可能导致系统崩溃。 好知道是这样以后;我们来写一个众多教材上的程序:使用递归的方法求n!。 当n>1时,求n!的问题可以转化为n*(n-1)!的新问题。比如n=4: 第一部分:4*3*2*1 n*(n-1)! 第二部分:3*2*1 (n-1)(n-2)! 第三部分:2*1 (n-2)(n-3)! 第四部分:1 (n-4)! 4-4=0,得到值1,结束递归。 我给的源程序如下: #include int fac(int n) {int c; printf("now the number is %d ",n); getchar(); if(n==1 || n==0) c=1; else c=n*fac(n-1); printf("now the number is %d and the %d! is %d",n,n,c); getchar();

【习题】函数调用Word版

函数调用 【实验目的】: 1. 掌握函数的定义和调用方法。 2. 练习重载函数的使用。 3. 练习有默认参数值的函数的使用。 4. 练习使用系统函数。 5. 熟悉多文件工程结构。 【实验内容】: 1.编写函数int add(int x, int y),实现两个整型数据x,y的求和功能。 ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值 的变化。 2.编写一个求x的n次方的程序int pow(int m, int n),计算m的n次方的结果。 3.利用上题中设计两个函数,设计一个求两个整数的平方和的程序。要求如下: a)主函数中调用求和函数: int add(int x, int y);

求和函数add中调用上题设计的int pow(int m, int n)函数来计算其平方。 4.多文件程序结构:一个文件可以包含多个函数定义,但是一个函数的定义必须完 整的存在于一个文件中。要求: a)将add函数的声明部分放在头文件(add.h)中,实现部分放在源文件(add.cpp) 中。 b)将pow函数的声明部分放在头文件(pow.h)中,实现部分放在源文件(pow.cpp) 中。 c)在main函数中调用add函数,计算从屏幕终端输入的两个数据之和。(main 函数的实现在main.cpp中) 5.将第2题设计的pow函数修改成为递归函数。

6.设计一个函数int fac(int n),利用函数的递归调用,来计算n!(n的阶乘)。 ·要求:单步调试程序,记录递归函数的调用过程。 7.使用系统函数pow(x,y)计算x y的值,注意包含头文件cmath。 8.从键盘输入两个数字,分别赋值给变量a、b,设计一个子函数swap,实现这两个数字交换次序。(注:根据需要自己设计函数的参数及返回值) ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值的变化。 9.设计一个函数,求圆的面积。 要求:在主函数中调用子函数calArea计算圆的面积。并将calArea函数设计为内联函数。

c语言递归函数示例

1.编写计算X的Y次幂的递归函数getpower(int x,int ),并在主程序中实现输入输出。#include"stdio.h" long getpower(int x,int y) { if(y==1) return x; else return x*getpower(x,y-1); } void main() { int num,power; long answer; printf("please input a number:"); scanf("%d",&num); printf("please input the number's power series:"); scanf("%d",&power); answer=getpower(num,power); printf("结果是:%ld\n",answer); } 结果说明:输入61再输入5求得61的5次幂为844596301. 2编写计算学生年龄的递归函数。 #include int age(int n) { int c; if(n==1) c=10; else c=age(n-1)+2; return c; } void main() { int n=5; printf("the five student'sage is:%d years old\n",age(n)); }

结果说明:第五个学生的年龄为18岁。 3.编写递归函数实现Ackman函数。 #include Acm(int m,int n) { if(m==0) return n+1; else if(n==0) return Acm(m-1,1); else return Acm(m-1,Acm(m,n-1)); } int main() { printf("Acm(2,1)=%d\n",Acm(2,1)); printf("Acm(3,2)=%d\n",Acm(3,2)); return 0; } 结果说明:利用递归函数求得Acm(2,1)=5,Acm(3,2)=29. 实验小结:

第十一讲 函数的递归调用及函数中的变量定义

第十一讲函数的递归调用及函数中的变量定义 一、函数的递归调用 1.递归的概念 直接递归调用:调用函数的过程中又调用该函数本身,自己调用自己。 间接递归调用:调用f1函数的过程中调用f2函数,而f2中又需要调用f1。 以上均为无终止递归调用。为了让这种调用终止,一般要用if语句来控制使递归过程到某一条件满足时结束。 2、递归法 类似于数学证明中的反推法,从后一结果与前一结果的关系中寻找其规律性。 递归法:从结果出发,归纳出后一结果与前一结果直到初值为止存在的关系 编程思想:设计一个函数(递归函数),这个函数不断使用下一级值调用自身,直到结果已知处——选择控制结构 其一般形式是: 递归函数名f (参数n) { if (n=初值) 结果=常量; else 结果=含f(x-1)的表达式; return 结果; } 例1.输入一个n,编写函数求n!,根据不同的算法,我们可以用三种方式。 方式一:用递推算法,Sn=n!的递推关系如下: 1 (n=1,0) Sn= Sn-1×n n>1 是一种累计乘积的关系,先得到上一个数的阶乘,然后再得到得到下个数的阶乘,用循环结构来实现。 程序代码如下: main()

{ int n; float sn; float fac(int ); /*函数的声明*/ printf("Input n="); scanf("%d",&n); sn=fac(n); /*函数的调用*/ printf("%d!=%.0f",n,sn); } float fac(int n) /*函数的定义*/ { float f=1.0; int i; if (n==0||n==1) return f; for(i=1;i<=n;i++) f=f*i; return f; } 方式二:用递归算法,f(n)=n!的递归求解关系如下: 1 (n=1,0) f(n)= f(n-1)×n n>1 递归程序分两个阶段执行—— ①回推(调用):欲求n! →先求 (n-1)! →(n-2)! →…→ 1! 若1!已知,回推结束。 ②递推(回代):知道1!→2!可求出→3!→…→ n! 注意:在此可画图来说明 程序清单如下: main() { int n; float sn; float fac(); /*函数的声明*/ clrscr(); printf("Input n=");

C语言递归练习(附答案)

dic递归基础练习题: 1.求1+2+3+……+n的值 int sum(int a,int b) { if(b==a) return a; return a+sum(a+1,b); } 2. 求1*2*3*……*n的值 cheng(int begin,int end) { if(begin==end) return begin; return begin * cheng(begin+1,end); } 3. 数的全排列问题。将n个数字1,2,…n的所有排列按字典顺序枚举出猴 2 3 1 2 1 3 3 1 2 3 2 1 4. 数的组合问题。从1,2,…,n中取出m个数,将所有组合按照字典顺序列出。 如n=3,m=2时,输出: 1 2 1 3 2 3 5. 小猴子第一天摘下若干桃子,当即吃掉一半,又多吃一个.第二天早上又将剩下的桃子吃一半,又多吃一个.以后每天早上吃前一天剩下的一半另一个.到第10天早上猴子想再吃时发现,只剩下一个桃子了.问第一天猴子共摘多少个桃子? fruit(int begin,int times) { if(times==10) return begin; return fruit((begin+1)*2,times+1); } 6. 有雌雄一对兔子,假定过两个月便可繁殖雌雄各一的一对小兔子。问过n个月后共有多少对兔子? 7. 一个人赶着鸭子去每个村庄卖,每经过一个村子卖去所赶鸭子的一半又一只。这样他经过了七个村子后还剩两只鸭子,问他出发时共赶多少只鸭子?经过每个村子卖出多少只鸭子? duck(int begin,int times) { if(times==7) return begin; return duck((begin+1)*2,times+1); }

格林函数(免费)

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u ? 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u ? (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v ? (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u ? 亦即 .)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 ∑ 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=?? ? (12-1-4)

C语言程序设计 递归调用的概念

7.3.1递归调用的概念 函数的递归调用指的是一个函数执行过程中出现了直接或间接调用函数本身的调用方式。如果直接调用函数本身称为直接递归;如果调用了另外一个函数,那个函数又调用该函数,则称为间接递归。 递归方法的基本思想是将一个问题向下分解具有同样解决方法但规模不断缩小的子问题,不断进行这样的分解,直到分解的子问题有一个已知解。下面通过一个例子来讲解递归的概念。 例如,某数列为k(n)的定义为: 1n=1 k(n)=2×k(n-1)n为偶数 3×k(n-1)n为奇数 求该数列的第四项k(4)。 从以上数列的定义来看,该数列的任何一项均受前一项的约束,在求解k(4)时,首先要求解k(3),要求解k(3)就必须先知道k(2)的值,k(2)的值取决于k(1)的值。由于k(1)的值是已知的,然后再由k(1)反推回去计算k(2),k(3),k(4),得到K(4)的值。求解过程可以用图7-2表示。 k(4)=k(3)×2 k(3)=k(2)×3 k(2)=k(1)×2 k(1)=1k(2)=1×2=2 k(3)=2×3=6 k(4)=6×2=12 图7-2回推和递推过程 从图7-2可以看出,求解过程分为两个阶段:第一阶段是“回推”,将第4个值表示为第3个值的函数,将第3个值表示为第2个值的函数,再回推到第1个,而k(1)是已知的,到达了递归的边界。第二阶段使用“递推”,从已知的第1个值推出第2个值,从第2个值推出第3个值,从第3个值就推出了第4个值。整个的回推和递推过程就称为递归过程。 可以用一个函数描述上面的递归过程: int k(int n)/*递归计算函数*/ { int m;/*m存放函数的返回值*/ if(n==1)m=1; else if(n%2==0)m=k(n-1)*2;/*调用自身,n为偶数*/ else m=k(n-1)*3;/*调用自身,n为奇数*/ return(m);

c语言_递归下降分析程序实验_共13页

实验二递归下降语法分析程序的设计与实现 、实验目的:加深对语法分析器工作过程的理解;加强对递归下降法实现语法分析程序的掌握;能够采用一种编程语言实现简单的语法分析程序;能够使用自己编写的分析程序对简单的程序段进行语法翻译。 、实验内容:在实验1的基础上,用递归下降分析法编制语法分析程序,语法分析程序的实现可以采用任何一种编程工具。 三、实验要求: 1.对语法规则有明确的定义; 2.编写的分析程序能够进行正确的语法分析; 3.*对于遇到的语法错误,能够做出简单的错误处理,给出简单的错误提示,保证顺利完成语法分析过程; 4.实验报告要求用文法的形式对语法定义做出详细说明,说明语法分析程序的工作过程,说明错误处理的实现*。 四、实验学时:4学时 五、实验步骤: 1.定义目标语言的语法规则; 2.根据语法规则输入语句段,用递归下降分析的方法进行语法分析,直到结束; 3.*对遇到的语法错误做出错误处理。 六、实验内容: 1.编程实现给定文法的递归下降分析程序。 E—T|E+T T—F|T*F F—(E)|i

2.(参考课本P74)对文法先进行消除左递归。 3.分析程序由一组递归过程组成,文法中每个非终结符对应一个过程几个全局过程和变量: ADVANCE,把输入串指示器IP指向下一个输入符号,即读入一个单字符号 SYM,IP当前所指的输入符号 ERROR,出错处理子程序 每个非终结符有对应的子程序的定义,首先在分析过程中,当需要从某个非终结符出发进行展开(推导)时,就调用这个非终结符对应的子程序。 4.具体实现时: 当遇到终结符,编写:if (当前读到的输入符号=i) 读入下一个输入符号 当遇到非终结符E时,编写语句:调用E() 当遇到E-->编写语句if (当前读到的输入符号不属于Follow (E)) Error(); (4)当某个非终结符的规则有多个候选式时,按LL(1)文法的条件能唯一的选择一个候选式进行推导。 #in elude using n ames pace std; char 〃字符串的存入 a[80]; char sym; 〃单个的判断字符 int //字符串下标 i=0; void //功能识别函数 E(); void //功能识别函数 E2(); void //功能识别函数 T(); void //功能识别函数 T2();

格林函数以及拉普拉斯方程

格林函数 格林函数的概念及其物理意义 格林函数法是求解导热问题的又一种分析解法。 从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。这些热作用都可以看做广义上的热源。从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。在此仅讨论用格林函数法求解非稳态导热问题。 用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。 “瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。δ函数的定义为

二叉树遍历C语言递归非递归六种算法

二叉树遍历C语言(递归-非递归)六种算法

————————————————————————————————作者:————————————————————————————————日期:

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

递归原理讲解

程序函数递归原理讲解 一、栈 在说函数递归的时候,顺便说一下栈的概念。 栈是一个后进先出的压入(push)和弹出(pop)式数据结构。在程序运行时,系统每次向栈中压入一个对象,然后栈指针向下移动一个位置。当系统从栈中弹出一个对象时,最近进栈的对象将被弹出。然后栈指针向上移动一个位置。程序员经常利用栈这种数据结构来处理那些最适合用后进先出逻辑来描述的编程问题。这里讨论的程序中的栈在每个程序中都是存在的,它不需要程序员编写代码去维护,而是由运行是系统自动处理。所谓的系统自动维护,实际上就是编译器所产生的程序代码。尽管在源代码中看不到它们,但程序员应该对此有所了解。 再来看看程序中的栈是如何工作的。当一个函数(调用者)调用另一个函数(被调用者)时,运行时系统将把调用者的所有实参和返回地址压入到栈中,栈指针将移到合适的位置来容纳这些数据。最后进栈的是调用者的返回地址。当被调用者开始执行时,系统把被调用者的自变量压入到栈中,并把栈指针再向下移,以保证有足够的空间存储被调用者声明的所有自变量。当调用者把实参压入栈后,被调用者就在栈中以自变量的形式建立了形参。被调用者内部的其他自变量也是存放在栈中的。由于这些进栈操作,栈指针已经移动所有这些局部变量之下。但是被调用者记录了它刚开始执行时的初始栈指针,以他为参考,用正或负的偏移值来访问栈中的变量。当被调用者准备返回时,系统弹出栈中所有的自变量,这时栈指针移动了被调

用者刚开始执行时的位置。接着被调用者返回,系统从栈中弹出返回地址,调用者就可以继续执行了。当调用者继续执行时,系统还将从栈中弹出调用者的实参,于是栈指针回到了调用发生前的位置。 可能刚开始学的人看不太懂上面的讲解,栈涉及到指针问题,具体可以看看一些数据结构的书。要想学好编程语言,数据结构是一定要学的。 二、递归 递归,是函数实现的一个很重要的环节,很多程序中都或多或少的使用了递归函数。递归的意思就是函数自己调用自己本身,或者在自己函数调用的下级函数中调用自己。 递归之所以能实现,是因为函数的每个执行过程都在栈中有自己的形参和局部变量的拷贝,这些拷贝和函数的其他执行过程毫不相干。这种机制是当代大多数程序设计语言实现子程序结构的基础,是使得递归成为可能。假定某个调用函数调用了一个被调用函数,再假定被调用函数又反过来调用了调用函数。这第二个调用就被称为调用函数的递归,因为它发生在调用函数的当前执行过程运行完毕之前。而且,因为这个原先的调用函数、现在的被调用函数在栈中较低的位置有它独立的一组参数和自变量,原先的参数和变量将不受影响,所以递归能正常工作。程序遍历执行这些函数的过程就被称为递归下降。 程序员需保证递归函数不会随意改变静态变量和全局变量的值,以避免在递归下降过程中的上层函数出错。程序员还必须确保有一个终止条件来结束递归下降过程,并且返回到顶层。

格林函数法

§3.4 格林函数法 利用一个点电荷的边值问题的解,可以解决同类边值问题:对于给定空间区域V 内的电荷分布ρ和V 的边界S 上(第一类边值问题)各点的电势S ?,或者(第二类边值问题)各点的电场法向分量S n ???。 静电场的电势函数满足泊松(Simeon Denis Poisson, 1781-1840)方程 20 ρ ?ε?=? 其中()r ρG 为电荷密度。位于r ′G 处的单位点电荷的密度分布函数为()r r δ′?G G ,它所产生的静电势(,)G r r ′G G 满足类似的微分方程 2 ()(,)r r G r r δε′?′?=?G G G G , (3.15) 和相应的边条件。以此Green 函数取代格林公式(0.12)中的函数()r ψG ,可得积分方程 0()(,)()(,)()(,)(),V S r G r r r G r r r dV G r r r dS n n ??ρε?′′????′′′′′′=+???′′??? ?∫∫∫∫∫G G G G G G G G G G w (3.16) 第一类边值问题的Green 函数:在边界S 上各点的电势为零的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第一类Green 函数,记为1(,)G x x ′G G 。利用(3.16)式可以得到第一类边值问题的解,即 0(,)()(,)()().V S G r r r G r r r dV r dS n ?ρε?′?′′′′′=?′?∫∫∫∫∫G G G G G G G w (3.17) 第二类边值问题的Green 函数:在边界S 上各点的电场法线分量为常数01 S ε的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第二类Green 函数,记为2(,)G x x ′G G 。利用(3.16)式可以得到第二类边值问题的解,即 0()1()(,)()(,)().V S S r r G r r r dV G r r dS r dS n S ??ρε?′?′′′′′′′=++′?∫∫∫∫∫∫∫G G G G G G G G w w (3.18) 【无界空间的格林函数】(P58) 【半无限空间的格林函数】(P59) 【球外空间的格林函数】(P60) 【球内空间的格林函数】(补充题)

相关文档
最新文档