文丘里流量计实验实验报告 2

文丘里流量计实验实验报告 2
文丘里流量计实验实验报告 2

《流体力学与水泵实验》实验报告

开课实验室:重庆大学第二实验楼流体力学实验室年月日

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

电磁流量计在化工行业的应用

电磁流量计在化工行业的应用 【摘要】文章介绍了电磁流量计的概述,技术原理,安装条件,以及电磁流量在煤化工行业上的应用。 【关键词】电磁流量计;化工行业;应用 0.概述 电磁流量计(Electromagnetic Flowmeter)是由直接接触管道介质的传感器和上端信号转换器两部分构成。它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μs/cm的导电液体的流量,是一种测量导电介质流量的仪表。除了可以测量一般导电液体的流量外,还可以用于测量强酸、强碱等强腐蚀性液体和均匀含有液固两相悬浮的液体,如泥浆、矿浆、纸浆等。 电磁流量计 电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积和安装维护的麻烦。电磁流量计在满足现场显示的同时,还可以输出4~20mA电流信号供记录、调节和控制用,现已广泛地应用于化工、环保、冶金、医药、造纸、给排水等工业技术和管理部门。 采用电磁感应原理测量介质流体流速的电磁流量计。它在管道的两侧加一个磁场,被测介质流过管道就切割磁力线,在两个检测电极上产生感应电势,其大小正比于流体的运动速度。可以用于测量酸、碱、盐溶液、水煤浆、矿浆、砂浆灰泥、纸浆、树脂、橡胶乳、合成纤维浆和感光乳胶等各种悬浮物、气化汽和粘性物质的流量。电磁流量计密封性能好,还可用于自来水和地下水道系统。而且测量过程不与流体接触,适于制药、生物化学和食品工业。这种流量计还可检测血液流量。它的量程比约为100:1,精度一般为1%,由于这种传感器必须保持管道内电阻和测量电路阻抗之间有一定比例关系,因此在制造上有一定困难。当被测介质的电导率约为10欧姆·厘米时就开始产生困难,电导率更低时就产生原理性困难。当电导率为10欧姆·厘米时,就达到导电介质和电介质之间的“分界线”,热噪声电平随内阻的增大而显著增加。 电磁流量计是高精度、高可靠和使用寿命长的流量仪表,所以在设计产品结构、选材、制定工艺、生产装配和出厂测试等过程中每一个环节我们都非常细致讲究,还自行设计了一套中国最先进的,专用于电磁流量计的生产设备和流量实流标定装置,从而在软件和硬件上都能切实保证产品长期的高质量。电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积

中国石油大学(华东)流量计实验报告

中国石油大学(华东)工程流体力学实验报告18-19-2 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1 2 3 文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它1-12 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3),22 1 2 22 111212()()= 22p p v v h h h z z g g ααγ γ ?=-=+ -+ - 如果假设动能修正系数1210.αα==,则最终得到理论流量为: Q μ= =理

式中 K= μ=,A为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因黏性造成的水头损失,流量应修正为: Qα = 实 其中 1.0 α<,称为流量计的流量系数。 数 1

2.实验数据记录及处理见表1-3-1。 表1-3-1 实验数据记录及处理表 (4)= 6867.01 cm3/s (5)流量系数:α== = 0.67

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计资料选型和安装标准 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪

表常数,K= 4 KB/πD 。 EMF由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF 所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s 内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

电磁流量计设计与安装标准讲

电磁流量计设计资料选型和安装规范 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V。 k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪表常数,K= 4 KB/πD 。 EMF 由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。EMF的口径范围比其他品种流量仪表宽,从几毫M到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。易于选择与流体接触件的材料品种,可应用于腐蚀性流体。 4、缺点 EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液体;有些型号仪表用于过低于室温的液体,因测量管外凝露(或霜)而破坏绝缘。 5、分类

流体力学实验 文丘里实验报告单

文丘里流量计实验 一、实验目的和要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技能; 2.掌握气一水多管压差计量测压差的技能; 3.通过实验与量纲分析,了解应用量纲分析与实验结台研究水力学问题的途径,进而掌握文丘里流量计水力特征。 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文丘里管过水能力关系式 h K p Z p Z g d d d q V ?=+-+-= )]/()/[(21 )( 422114 2 12 1 γγπ ‘ (6-9) 1)/(/ 24 4 212 1 -= d d g d K π )()(2 21 1γ γ p Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。 由于阻力的存在,实际通过的流量V q 恒小于' V q 。今引入一无量纲系数’ V V q q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即 h K q q V V ?=' =μμ (6-10) 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图6-10 所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1.自循环供水器; 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.有色水水管 6.稳水孔板 7.文丘里实验管段 8.测压计气阀 9.测压计10.滑尺11.多管压差计12.实验流量调节阀 图6—10文丘里流量计实验装置图 四、实验方法与步骤 1.测记各有关常数。 2.开电源开关,全关阀12,检核测管液面读数 4321h h h h -+-是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm ,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm ,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。 五、实验结果处理及分析 1.记录计算有关常数。 实验装置台号No____ =1d m , =2d m , 水温=t ℃, =ν m 2/s , 水箱液面标尺值=?0 cm , 管轴线高程标尺值=? cm 。 2 整理记录计算表6-9 6-10

图文解说_电磁流量计设计说明

图文解说:电磁流量计设计 由ADI_Amy于 2016-8-5 创建的讨论 ?喜欢?显示0 喜欢0 ?评论? 0 "若不能度量,则无法管理。"这是工业领域的一句口头禅,尤其适合于流量测量。简单说来,对流量监测的需求越来越多,常常还要求更高速度和精度的监测。前不久ADI举办了在线研讨会“工业过程控制应用的电磁流量计设计”,我们已经分享了完整的讲义文档,需要的戳【在线研讨会讲义PPT下载】工业过程控制应用的电磁流量计设计自取。 这里我们为大家讲解下讲义的部分容 电磁流量变送器——信号链框图 电磁流量传感器的特性是:无压力损耗,不受速度、密度、温度、压力和传导率的影响,可以实现高精度测量。流量计系统由以下组件组成:电源、信号调理、转换器、处理器、显示键盘和多个通信组件,比如无线,RS485/422,4-20毫安电流,HART。 电磁流量变送器——传感器工作原理 其工作原理基于法拉第电磁感应定律。这意味着带电导体通过一个磁场并切割磁力线时在管道两侧将会产生感应电动势。电磁场是由电流流经测量管外面的线圈产生的。感应电压的幅度直接与速度和导体的电导率、管道直径以及磁场强度的成比例,具体来说,我们可以将法拉第定律表述为E = K x B x D x V,其中V表示导电流体的速度,B表示磁场强度,D表示测量管段的直径,E表示电极上的电压,而K是一个常数。B、D、K可以是固定值,因此方程简化为E与V的比例关系。

大部分电磁流量计使用低频率方波来激励传感器线圈。可以是1/25、1/16,1/10或者1/4 电网频率,以及电网频率的一半。低频方波励磁的幅度不变,但改变电流流入流出线圈的方向。 传感器信号调理——模拟前端共模抑制比 共模电压必须被电磁流量计转换器所抑制,模拟前端电路在其中所起的作用最大。如果电路具有对于120 分贝共模抑制比,则0.28V 共模电压可以降低至0.28 μV,而如果共模抑制比是100 dB,则抑制为2.8 μV。 共模信号中的直流成分可以通过对信号进行交流耦合或者校准得以消除。但是,共模信号中的交流成分即使经过抑制也会呈现为噪声成分,出现在放大器输出端。它无法简单地通过交流耦合消除。必须采取措施,否则可能影响噪声性能。在120 dB共模抑制比的情况下,0.1V噪声下降至0.1μV。在100 dB共模抑制比的情况下,该噪声仅能抑制到最低1μV,因此共模抑制比参数很重要。 电磁流量计——信号处理电路架构比较 虽然具体的实现方式可能有所不同,电磁流量计的传感器信号处理可以分为模拟同步解调和数字过采样两种主要方法。 模拟解调是一种传统的方法,但现今仍然在业使用广泛。它通常使用前置放大器,带通滤波放大器,采样保持,同步解调,模数转换器和微控制器。 下图显示典型的模拟同步解调电路的信号链。传感器输出的微伏或毫伏级信号首先被集成仪表放大器或者分立器件搭建的仪表放大器放大。

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

流体力学实验文丘里实验报告单

文丘里流量计实验 一、实验目的与要求 1.了解文丘里流量计的构造与原理,掌握用文丘里流量计量测管道流量的方法与应用 气一水压差计测压差的技术。掌握测定文丘里流量计的流量系数μ的方法。 2.通过测量与计算,掌握用方格纸绘制Q-Δh 与Re-μ曲线(分别取Δh 、μ为纵坐标 的方法) 3.比较体积法与文丘里流量计测流量的精度。 二、实验原理 根据能量方程式与连续性方程式,可得不计阻力作用时的文丘里流量计理论流量计算式: h K p Z p Z g d d d Q ?=+-+-= )]/()/[(21)(4'221142 12 1γγπ 1)/(/24 42121-= d d g d K π )()(2 21 1γ γp Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。d ?、d ?为喉部收缩前后管道的内径。 由于阻力的存在,实际通过的流量Q 恒小于'Q 。今引入流量系数’ Q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即: h K Q Q ?=' =μμ 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1、自循环供水器; 2、实验台 3、可控硅无级调速器 4、恒压水箱 5、有色水水管 6、稳水孔板 7、文丘里实验管段8、测压计气阀9、测压计10、滑尺11、多管压差计12、实验流量调节阀 文丘里流量计实验装置图 四、实验步骤 1、打开无极调速器向恒压水箱中注水至满,全关流量调节阀12,检核测管液面读数 4321h h h h -+-就是否为0,不为0时,需查出原因并予以排除。 2、全开调节阀12检查各测管液面就是否都处在滑尺读数范围内。否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm,即速拧紧气阀8。 3、全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 4、逐次关小调节阀,改变流量7~9次,重复步骤(4),注意调节阀门应缓慢。 5、把测量值记录在实验表格内,并进行有关计算。 6、如测管内液面波动时,应取时均值。 7、实验结束,需按步骤2校核压差计就是否回零。 五、实验结果处理及分析 1、记录计算有关常数。 =1d m, =2d m, 水温=t ℃, =ν m 2/s, 水箱液面标尺值=?0 cm, 管轴线高程标尺值=? cm 。 2、实验数据记录 记录表

文丘里流量计实验

文丘里流量计实验(新) 一、实验目的和要求、 1、掌握文丘里流量计的原理。 2、学习用比压计测压差和用体积法测流量的实验技能。 3、利用量测到的收缩前后两断面1-1和2-2的测管水头差h ?,根据理论公式计算管道 流量,并与实测流量进行比较,从而对理论流量进行修正,得到流量计的流量系数 μ,即对文丘里流量计作出率定。 一、实验装置 1. 仪器装置简图 12 4567 321 8 9101112 1234 图一 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文丘里实验管段 8. 测压计气阀 9. 测压计 10. 滑尺 11. 多管压差计 12. 实验流量调节阀

[说明] 1. 在文丘里流量计7的两个测量断面上, 分别有4个测压孔与相应的均压环连通, 经均压环均压后的断面压强,由气—水多管压差计9测量, 也可用电测仪测量。 2. 功能 (1) 训练使用文丘里管测量管道流量和采用气—水多管压差计测量压差的技术; (2) 率定流量计的流量系数μ, 供分析μ与雷诺数Re的相关性; (3) 可供实验分析文氏流量计的局部真空度, 以分析研究文氏空化管产生的水力条件与构造条件及其他多项定性、定量实验。 3. 技术特性 (1) 由可控硅无级调速器控制供水流量的自循环台式装置实验仪; (2) 恒压供水箱、文丘里管及实验管道采用丘明有机玻璃精制而成。文丘里管测压断面上设有多个测压点和均压环; (3) 配有由有机玻璃测压管精制而成的气 水多管压差计, 扩充了测压计实验内容; (4) 为扩充现代量测技术, 配有压差电测仪, 测量精度为0.01; (5) 供电电源: 220V、50HZ; 耗电功率:100W; (6) 流量: 供水流量0~300ml/s, 实验管道过流量0~200ml/s; (7) 实验仪专用实验台: 长×宽=150cm×55cm 。 二、安装使用说明: 1. 安装仪器拆箱以后, 按图检查各个部件是否完好, 并按装置图所示安装实验仪, 各测点与测压计各测管一一对应,并用连通管联接, 调速器及电源插座可固定在实验台侧壁或图示位置, 调速器及电源插座位置必须高于供水器顶; 2. 通电试验加水前先接上220V交流市电, 顺时针方向打开调速器旋钮, 若水泵启动自如, 调速灵活, 即为正常。请注意, 调速器旋钮逆时针转至关机前的临界位置, 水泵转速最快, 即出水流量最大; 3. 加水 (1) 供水器内加水加水前,需先把供水器及水箱等擦干净, 水质要求为洁净软水, 经过滤净化更佳,若水的硬度过大, 最好采用蒸馏水。加水量以使水位刚接近自循环供水器与回水管接口为宜,并检查供水器是否漏水。 (2) 多管压差计内加水做实验之前需对多管压差计内加水, 先打开气阀8, 在测管2、3内注水至h2=h3 ≈ 24.5cm, 并检查测压计管1与管2、管3与管4之间是否连通, 再检查管2、3之间底部,若有气泡, 也需排除。 4. 排气开启水泵供水, 待水箱溢流后, 来回开关实验流量调节阀数次, 待

电磁流量计的工作原理及设计

电磁流量计的工作原理及设计 今天为大家介绍一项国家发明授权专利——电磁流量计。该专利由阿自倍尔株式会社申请,并于2018年9月7日获得授权公告。 内容说明本发明涉及在各种工艺系统中测量流体的流量的电磁流量计,尤其涉及一种具备测量流体的电导率的功能的电磁流量计。 发明背景电磁流量计为如下测量设备,其具备:励磁线圈,其在与在测定管内流动的流体的流动方向垂直的方向上产生磁场;以及一对电极,它们配置在测定管上,沿与由励磁线圈产生的磁场正交的方向配置,该测量设备一边交替切换流至励磁线圈的励磁电流的极性、一边检测上述电极间产生的电动势,由此测量在测定管内流动的被检测流体的流量。通常,电磁流量计大致分为接触式和电容式(非接触式),所述接触式是使设置在测定管上的电极直接接触测量对象的流体来检测上述流体的电动势,所述电容式(非接触式)是经由流体与电极间的静电电容来检测上述流体的电动势而不会使设置在测定管上的电极接触测量对象的流体。 电容式电磁流量计是利用信号放大电路(例如差动放大电路)来放大电极间产生的电动势,之后利用模数转换电路转换为数字信号,并将该数字信号输入至微控制器等程序处理装置来执行规定的运算处理,由此算出流量。这种电容式电磁流量计因电极不易劣化、容易维护,所以近年来特别受到业界关注。 此外,电磁流量计当中,存在具备不仅测量流体的流量、还测量该流体的电导率(所谓的导电率)的功能的电磁流量计。例如,专利文献3中揭示有一种配备双电极方式的电导率计的电磁流量计,所述双电极方式的电导率计对2个电极间施加正弦波或矩形波等的交流信号并测定在电极间流通的电流,由此求出电导率。该专利文献揭示的电导率计是通过将2个电极均浸入测量对象的液体来测量电导率。 发明内容本发明者对在电容式电磁流量计中追加测量流体的电导率的功能这一内容进行了研究。然而,根据本发明者的研究,明确了存在以下所示的问题。

流体力学实验报告 流量计实验报告

中国石油大学(华东)流量计实验实验报告 实验日期:2011.4.18 成绩: 班级:石工09-13班学号:09021614 姓名:石海山教师: 同组者:尚斌宋玉良武希涛杜姗姗 实验三、流量计实验 一、实验目的 1、掌握孔板、文丘利节流式流量计的工作原理及用途; 2、测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3、了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。 二、实验装置 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。 F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图3-1 管流综合实验装置流程图

三、实验原理 1、文丘利流量计 文丘利管是一种常用的两侧有管道流量的装置,属压差式流量计(见图3-2)。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的官道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。 2、孔板流量计 如图3-3所示,在管道上设置空板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上压差计,通过量测两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。孔板流量计也属于压差式流量计,其特点是结构简单。 图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图 3、理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即压差计液面高差h ?),因此,通过量测到的h ?建立了两个断面平均流速1v 和2v 之间的关系: h ?=1h -2h =(1z + γ 1 p )-(2z + γ 2 p )= g v 22 2 2α- g v 22 1 1α (3-1) 如果假设动能修正系数1α=2α=1.0,则最终得到理论流量为: 理Q = ) ( 1 2 A A A A A -h g △2=h K △μ 其中:K =g A 2

文丘里管实验-陈娟

、实验目的 1、在文丘里管收缩段和扩张段,观察压力水头、速度水头沿程的变化规律,加深对伯 努利方程的理解。 2、 了解文丘里流量计的工作原理。 3、 掌握文丘里管流量系数的测定方法。 、实验原理 1、理想流体伯努利方程的验证 文丘里管是在管路中安装一段断面急速变小, 而后又逐渐恢复原来断面的异径管, 如图 3所示。 在收缩段,由于流体流动断面减小, 因而流速增加,测压管水头连续下降, 喉管处断面 最小,流速最大, 测压管水头因而最低;相反,在渐扩管中流体流动截面逐渐扩大,流速 减小,测压管水头也不断得到恢复。 这些现象都是由于流体流径文丘里管时, 遵守连续性方 程 vA 二Q (常数) 2 —H (常数) 文丘里管实验 理想 总水 头线 J J L 2 V i 1 J 2 V ii 2g r 2g = i — 1 = H 2 V 4 2g - — — 三 h i E - h 4 — h i . —— 1 L — — - - --- -- --- 喉管 和伯努利方程 图3理想流体伯努利方程示意图

2g 以上两个方程表明,无论流体流动过程中断面几何参数如何变化,所有断面上的总水头

H 和流量都保持不变,也就是说流体流动一直遵守着能量守恒和物质守恒这两个基本定 律。 上述现象和规律将在实验中通过 将公式(2)作如下变换,并以下标 管。公式(2)可以写成 11根测压管的液面变化加以验证。为了便于实验分析,现 i 表示测压管序号,例如 i =4表示第四根测压管即喉 h i 2 V | _ = h 2g 2 2g 、 2 两边同除以V 4 ,并移项得 V 2 2g 公式⑴可以写成 V i A i = V 4 A 4 = V j A 所以 V i 代入公式(3)得 V 4 V j V 4 公式⑶和公式(4)表明,测压管水头变化的相对值,完全决定于流动断面的几何比例, 从而进 一步揭示了断面流速与测压管水头之间的关系。我们根据公式 (4)画出测压管水头相 对变化的理论曲线和实际曲线 (分别为上式右项和左项),通过比较,两者应当是一致的(横 坐标为测压管序号,纵坐标分别为以上两项) 。 2、流量系数的测定 将公式(1)、⑵应用于1、4两断面,可以得到 前式代入后式得 2 曲 +h h 4 2g 2gm -h 4) 1_(M W1丿

电磁流量计的原理及设计

电磁流量计的原理及设计 今天为大家介绍一项国家发明专利——电磁流量计。该专利由横河电机株式会社申请,并于2019年1月8日获得授权公告。 内容说明本公开涉及一种电磁流量计,更特别地,涉及一种抑制构造成覆盖测量管内部的内衬材料的变形的技术。 发明背景由于构造为利用电磁感应来测量导电流体的流量的电磁流量计是耐用的且具有高精度,所以被广泛用于工业用途。电磁流量计构造为使被测量的导电流体能够流入沿正交方向施加了磁场的测量管中,并且测量所产生的电动势。由于电动势与被测量流体的流量成正比,所以可以基于测量的电动势来获得被测量流体的体积流量。 在电磁流量计中,测量管具有附接于测量管上的用于电动势测量的电极及类似物且与安装到设备及类似物上的管道联接,且基于联接结构而分类成凸缘型和薄片型。在凸缘型中,电磁流量计的测量管形成有大的凸缘且使螺栓能够穿过管道的凸缘和测量管的凸缘,使得测量管与管道的凸缘联接。在薄片型中,电磁流量计的测量管形成有小的凸缘且联接到管道的凸缘,而使得螺栓不能穿过测量管的凸缘。 发明内容本发明的示例性实施例提供了能够抑制内衬材料由于被测量流体的压力而变形的电磁流量计。 根据示例性实施例的电磁流量计,包括:测量管,其具有凸缘部,所述凸缘部构造为通过螺栓紧固而与管道侧凸缘联接;内衬材料,其构造为覆盖所述测量管的内侧和所述凸缘部的联接侧表面的具有预定直径的内周区域;以及接地环,其构造为设置在所述凸缘部和所述管道侧凸缘之间,其中,所述接地环具有环形板部和沿着所述环形板部的外周形成的壁部。 所述壁部的内径可以构造为比所述凸缘部的联接侧表面上的被所述内衬材料覆盖的所述预定直径大。当所述凸缘部和所述管道侧凸缘通过螺栓紧固而联接起来时,所述内衬材料

相关文档
最新文档