深入探析快速傅立叶变换(FFT)

深入探析快速傅立叶变换(FFT)
深入探析快速傅立叶变换(FFT)

深入探析快速傅立叶变换(FFT)

摘要: FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念。在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础。

关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的概念首先应该搞清楚这样几个问题:(1)为什么需要FFT (2) 变换究竟是如何进行的(3) 变换前后信号有何种对应关系(4) 在使用测试工具(示波器或者其它软件平台)进行FFT的方法和需要注意的问题(5) 力科示

波器与泰克示波器的FFT计算方法的比较

在这篇文章中我尝试用更加浅显的讲解,尽量不使用公式推导来说一说FFT 的那些事儿。

一, 为什么需要FFT?

首先FFT(快速傅立叶变换)是离散傅立叶变换的快速算法,那么说到FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的?

傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后15年这个论文才被发表出来。

谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它(棱角),逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。

为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

傅立叶变换的物理意义在哪里?

傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率

的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。当然这是从数学的角度去看傅立叶变换。

那么从物理的角度去看待傅立叶变换,它其实是帮助我们改变传统的时间

域分析信号的方法转到从频率域分析问题的思维,下面的一幅立体图形可以帮助我们更好得理解这种角度的转换:

所以,最前面的时域信号在经过傅立叶变换的分解之后,变为了不同正弦波

信号的叠加,我们再去分析这些正弦波的频率,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个

信号的频谱提取出来,这在频谱分析方面也是经常用的。

傅立叶变换提供给我们这种换一个角度看问题的工具,看问题的角度不同了,问题也许就迎刃而解!

二、变换是如何进行的?

首先,按照被变换的输入信号类型不同,傅立叶变换可以分为4种类型:

1 非周期性连续信号傅立叶变换(Fourier Transform)

2 周期性连续信号傅立叶级数(Fourier Series)

3 非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform)

4 周期性离散信号离散傅立叶变换(Discrete Fourier Transform)

下面是四种原信号图例:

这里我们要讨论是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,我们要讨论的FFT也只不过是DFT的一

种快速的算法。

DFT的运算过程是这样的:

其中,

X(k)—频域值

X(n)—时域采样点

n—时域采样点的序列索引

k—频域值的索引

N—进行转换的采样点数量

可见,在计算机或者示波器上进行的DFT,使用的输入值是数字示波器经

过ADC后采集到的采样值,也就是时域的信号值,输入采样点的数量决定了转换的计算规模。变换后的频谱输出包含同样数量的采样点,但是其中有一半的值是冗余的,通常不会显示在频谱中,所以真正有用的信息是N/2+1个点。

FFT的过程大大简化了在计算机中进行DFT的过程,简单来说,如果原来计算DFT的复杂度是N2次运算(N代表输入采样点的数量),进行FFT的运

算复杂度是Nlg10(N),因此,计算一个1,000采样点的DFT,使用FFT算法只需要计算3,000次,而常规的DFT算法需要计算1,000,000次!

我们以一个4个点的DFT变换为例来简单说明FFT是怎样实现快速算法的:

计算得出:

其中的红色部分在FFT中是必须计算的分量,其他蓝色部分不需要直接计算,可以由红色的分量直接推导得到,比如:

x(1)e-j0 = -1*x(1)e-jπ

x(2)e-j0 = x(2)e-j2π

… …

这样,已经计算出的红色分量只需要计算机将结果保存下来用于之后计算时调用即可,因此大大减少了DFT的计算量。

三、变换前后信号有何种对应关系?

我们以一个实际的信号为例来说明:

示波器采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT 之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2

的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是

一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频

率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A

的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),

而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n 所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析精确到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析精确到0.5Hz。如果要提高频率分辨率,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。

下面这幅图更能够清晰地表示这种对应关系:

变换之后的频谱的宽度(Frequency Span)与原始信号也存在一定的对应关系。根据Nyquist采样定理,FFT之后的频谱宽度(Frequency Span)最大只能是原始信号采样率的1/2,如果原始信号采样率是4GS/s,那么FFT之后的频宽最多只能是2GHz。时域信号采样周期(Sample Period)的倒数,即采样率(Sample Rate)乘上一个固定的系数即是变换之后频谱的宽度,即Frequency Span = K*(1/ΔT),其中ΔT为采样周期,K值取决于我们在进行FFT之前是否对原始信号进行降采样(抽点),因为这样可以降低FFT的运算量。如下图所示:

可见,更高的频谱分辨率要求有更长的采样时间,更宽的频谱分布需要提高对于原始信号的采样率,当然我们希望频谱更宽,分辨率更精确,那么示波器的长存储就是必要的!它能提供您在高采样率下采集更长时间信号的能力!值得强调的是,力科示波器可以支持计算128Mpts的FFT,而其它某品牌则只有3.2Mpts。

四、在使用测试工具(示波器或者其它软件平台)进行FFT的方法和需要注意的问题?

我们先来看一个简单的例子---

Problem:在示波器上采集一个连续的,周期性的信号,我们希望在示波器上进行FFT计算之后,观察到信号中心频率(Center Frequency)在2.48GHz,频宽(Frequency Span)为5MHz,频谱分辨率(Bandwidth Resolution)为10KHz的频谱图,应该如何设置示波器的采集?

首先,根据频谱分辨率(Bandwidth Resolution)10KHz可以推算出,至少需要采集信号的时间长度为1/10KHz=100us,因此至少要设置示波器时基为10us/Div;为了尽量保证FFT之后频谱图在各个频点的信号能量精度,测量时需要时域信号幅值占满整个栅格的90%以上;采样率设置应至少满足Nyquist采样率,即至少设置>5GS/s采样率才能够看到中心频率在2.48GHz 的频率谱线;选择合适的窗函数(Von Hann汉宁窗)和频谱显示方式(power spectrum);使用Zoom工具,将频谱移动到Center 2.48GHz,Scale 500KHz/Div位置,Zoom设置方法如下图所示:

在力科示波器中进行FFT的运算有几种不同的输出类型:

Linear Magnitude(Volts),

Phase(Degrees),

Power Spectrum(dBm),

Power Spectral Density(dBm)

这几种输出类型都是由FFT计算之后的结果换算而来,我们知道FFT计算之后的结果包含实部(Real)和虚部(Imaginary)成分,它们的单位都是Volts。具体的换算方式如下:

Linear Magnitude(Volts)=

Phase(Degrees)=

Power Spectrum(dBm)=

Power Spectral Density(dBm)=,其中为频谱分辨率,ENBW为与所选加权函数(窗)相关的有效噪声带宽。

几种典型周期函数的频谱图:

频谱泄露:

所谓频谱泄露,就是信号频谱中各谱线之间相互干扰,使测量的结果偏离实际值,同时在真实谱线的两侧的其它频率点上出现一些幅值较小的假谱。产生频谱泄露的主要原因是采样频率和原始信号频率不同步,造成周期的采样信号的相位在始端和终端不连续。简单来说就是因为计算机的FFT运算能力有限,只能处理有限点数的FFT,所以在截取时域的周期信号时,没有能够截取整数倍的周期。信号分析时不可能取无限大的样本。只要有截断不同步就会有泄露。如下图所示:

图中被测信号的开始端相位和截止端相位相同,表示在采集时间内有整数倍周期的信号被采集到,所以此时经行FFT运算后得出的频谱不会出现泄露。

上图的信号频率为2.1MHz,采集时间内没有截取整数倍周期的信号,FFT运算之后谱线的泄露现象严重,可以看到能量较低的谱线很容易被临近的能量较高的谱线的泄露给淹没住。

因此,避免频谱泄露的方法除了尽量使采集速率与信号频率同步之外,还可以采用适当的窗函数。

另外一个方法是采集信号时间足够长,基本上可以覆盖到整个有效信号的时间跨度。这种方法经常在瞬态捕捉中被使用到,比如说冲击试验,如果捕捉的时间够长,捕捉到的信号可以一直包括了振动衰减为零的时刻。在这种情况下,可以不加窗函数。

窗函数其实就是一个加权函数,它在截取的信号时间段内有值,时间段之外值为0:,记为:

w(t)=g(t) -T/2

w(t)=0 其它

加窗在时域上表现的是点乘,因此在频域上则表现为卷积。卷积可以被看成是一个平滑的过程。这个平滑过程可以被看出是由一组具有特定函数形状的滤波器,因此,原始信号中在某一频率点上的能量会结合滤波器的形状表现出来,从而减小泄漏。基于这个原理,人们通常在时域上直接加窗。

大多数的信号分析仪一般使用矩形窗(rectangular),汉宁(hann),flattop 和其它的一些窗函数。

不同的窗函数对频谱谱线的影响不同,基本形状可以参看下图:

可以看到,不同的窗函数的主瓣宽度和旁瓣的衰减速度都不一样,所以对于不同信号的频谱应该使用适当的窗函数进行处理。

矩形窗(Rectangular):加矩形窗等于不加窗,因为在截取时域信号时本身就是采用矩形截取,所以矩形窗适用于瞬态变化的信号,只要采集的时间足够长,信号宽度基本可以覆盖整个有效的瞬态部分。

汉宁窗(Von Hann):如果测试信号有多个频率分量,频谱表现的十分复杂,且测试的目的更多关注频率点而非能量的大小。在这种情况下,需要选择一个主瓣够窄的窗函数,汉宁窗是一个很好的选择。

flattop窗:如果测试的目的更多的关注某周期信号频率点的能量值,比如,更关心其EUpeak,EUpeak-peak,EUrms,那么其幅度的准确性则更加的重要,可以选择一个主瓣稍宽的窗,flattop窗在这样的情况下经常被使用。

五、力科示波器与泰克示波器的FFT计算方法的比较

您可能也已经发现了这个问题:在示波器上进行FFT运算时,使用力科示波器和使用Tek示波器的计算结果似乎相差很大。产生这种差别的原因一方面可能是两者有效运算的采样点不一样。另外一个重要原因是LeCroy和Tek所使用的FFT运算的参考值不同,LeCroy使用dBm为单位(参考值是1mW的功率值),而Tek使用dB为单位(参考值是1V rms的电压值),参考值不同产生的计算结果当然不一样!

dB(Deci-bel,分贝) 是一个纯计数单位,本意是表示两个量的比值大小,没有单位。在工程应用中经常看到貌似不同的定义方式(仅仅是看上去不同)。对于功率,dB = 10*lg(A/B)。对于电压或电流,dB = 20*lg(A/B)。此处A,B代表参与比较的功率值或者电流、电压值。dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。

dBm是一个考征功率绝对值的值,计算公式为:10lg(功率值/1mw)。

此外,还有dBV、dBuV、dBW等等,仅仅是参考值选择的不同而已。

这里推荐一个工具网站,可以在不同的比较值之间进行转换:

http://www.giangrandi.ch/electronics/anttool/decibel.html 如下是一个实测的例子,使用同一信号分别用LeCroy和Tek示波器进行FFT运算

使用LeCroyWaveRunner 64Xi的测试结果

使用Tek DPO4104的测试结果

所使用的信号幅值是 6.55 mV rms , 信号频率是25 MHz

力科使用的计算方式如下:

dBm= 10 Log10 (((vrms^2)/50)/0.001)= 10Log10 ((4.29E-5/50)/0.001)= 10Log10(8.5E-7/0.001)=10Log10 (8.5e-4)=10 (-3.066)= -30.66dBm

Tek使用的计算方式如下:

dB= 20Lg (6.61E-3)= 10(-4.3596)=-43.59

换算关系如下:

不仅仅只是FFT计算方式的差别,我们以力科的WaveMaster 8Zi-A和Tek的DPO70000系列为例,在WaveMaster上您可以做最多128M个采样点的FFT运算,而在DPO70000上只能做3.2M个点的FFT运算,所以,这种差别才是本质上的!

FFT超全快速傅里叶

快速傅里叶变换 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示 采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高

快速傅里叶变换(FFT)课程设计

快速傅里叶变换(FFT)的DSP 实现 (马灿明 计算机学院 计算机应用技术 2110605410) 摘要:本文对快速傅里叶变换(FFT)原理进行简单介绍后,然后介绍FFT 在TMS320C55xx 定 点DSP 上的实现,FFT 算法采用C 语言和汇编混合编程来实现,算法程序利用了CCS 对其结果进行了仿真。 关键字:FFT ,DSP ,比特反转 1.引言 傅里叶变换是将信号从时域变换到频域的一种变换形式,是信号处理领域中一种重要的分析工具。离散傅里叶变换(DFT )是连续傅里叶变换在离散系统中的表现形式。由于DFT 的计算量很大,因此在很长一段时间内使其应用受到很大的限制。 20世纪60年代由Cooley 和Tukey 提出了快速傅里叶变换(FFT )算法,它是快速计算DFT 的一种高效方法,可以明显地降低运算量,大大地提高DFT 的运算速度,从而使DFT 在实际中得到了广泛的应用,已成为数字信号处理最为重要的工具之一。 DSP 芯片的出现使FFT 的实现变得更加方便。由于多数的DSP 芯片都能在单指令周期内完成乘法—累加运算,而且还提供了专门的FFT 指令(如实现FFT 算法所必需的比特反转等),使得FFT 算法在DSP 芯片上实现的速度更快。本节首先简要介绍FFT 算法的基本原理,然后介绍FFT 算法的DSP 实现。 2.FFT 算法的简介 快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。 2.1离散傅里叶变换DFT 对于长度为N 的有限长序列x(n),它的离散傅里叶变换(DFT )为 1,1,0, )()(1 0-==∑-=N k W n x k X n n nk N (1) 式中, N j N e W /2π-= ,称为旋转因子或蝶形因子。 从DFT 的定义可以看出,在x(n)为复数序列的情况下,对某个k 值,直接按(1) 式计算X(k) 只需要N 次复数乘法和(N-1)次复数加法。因此,对所有N 个k 值,共需要N 2 次复数乘法和N(N-1)次复数加法。对于一些相当大有N 值(如1024点)来说,直接计算它的DFT 所需要的计算量是很大的,因此DFT 运算的应用受到了很大的限制。 2.2快速傅里叶变换FFT 旋转因子W N 有如下的特性。 。对称性: 2/N k N k N W W +-= 。周期性: N k N k N W W += 利用这些特性,既可以使DFT 中有些项合并,减少了乘法积项,又可以将长序列的DFT

详解FFT(快速傅里叶变换FFT.

kn N W N N 第四章 快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。 快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。 DFT 的定义式为 N ?1 X (k ) = ∑ x (n )W N R N (k ) n =0 在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。算出全部 N 点 X (k ) 共需 N 2 次复数乘法 和 N ( N ? 1) 次复数加法。即计算量是与 N 2 成正比的。 FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。 W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT 运算: (1) 周期性: ( k + N ) n N = W kn = W ( n + N ) k (2) 对称性:W ( k + N / 2 ) = ?W k N N 利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。例子: 求当 N =4 时,X(2)的值

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

实验四 快速傅里叶变换(FFT)

实验四 快速傅里叶变换(FFT ) 4.1实验目的 1)加深对快速傅里叶变换(FFT )基本理论的理解; 2)了解使用快速傅里叶变换(FFT )计算有限长序列和无限长序列信号频谱的方法; 3)掌握用MATLAB 语言进行快速傅里叶变换时常用的子函数。 4.2实验原理 1)用MATLAB 提供的子函数进行快速傅里叶变换 从理论学习可知,DFT 是唯一在时域和频域均为离散序列的变换方法,它适用于有限长序列。尽管这种变换方法是可以用于数值计算的,但如果只是简单的按照定义进行数据处理,当序列长度很大时,则将占用很大的内存空间,运算时间将很长。 快速傅里叶变换是用于DFT 运算的高效运算方法的统称,FFT 只是其中的一种。FFT 主要有时域抽取算法和频域抽取算法,基本思想是将一个长度为N 的序列分解成多个短序列,如基2算法、基4算法等,大大缩短了运算的时间。 MATLAB 中提供了进行快速傅里叶变换(FFT )的子函数,用fft 计算DFT ,用ifft 计算IDFT 。 2)用FFT 计算有限长序列的频谱 基本概念: 一个序号从1n 到2n 的时域有限长序列()x n ,它的频谱()j X e ω定义为它的离散时间傅里叶变换,且在奈奎斯特(Nyquist )频率范围内有界并连续。序列的长度为N ,则211N n n =?+。计算()x n 的离散傅里叶变换(DFT )得到的是()j X e ω的N 个样本点()k j X e ω。其中数字频率为 k 2πω()d ωk k N == 式中:d ω为数字频率的分辨率;k 取对应-(N -1)/2到(N -1)/2区间的整数。 在实际使用中,往往要求计算出信号以模拟频率为横坐标的频谱,此时对应的模拟频率为 s s 2π2π?ω/T ()()T k k k k kD N L ==== 式中:D 为模拟频率的分辨率或频率间隔;T s 为采样信号的周期,Ts =1/Fs ;定义信号时域长度L =N T s 。

快速傅里叶变换(FFT)试题

第一章 快速傅里叶变换(FFT ) 4.1 填空题 (1)如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点 的有限长序列)1270 (≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 点的序列,如果 采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 点。 解:64+128-1=191点; 256 (2)如果一台通用机算计的速度为:平均每次复乘需100s μ,每次复加需20s μ,今用来计算N=1024点的DFT )]([n x 。问直接运算需( )时间,用FFT 运算需要( )时间。 解:①直接运算:需复数乘法2 N 次,复数加法) (1-N N 次。 直接运算所用计算时间1T 为 s s N N N T 80864.12512580864020110021==?-+?=μ)( ② 基2FFT 运算:需复数乘法 N N 2log 2 次,复数加法N N 2log 次。 用FFT 计算1024点DTF 所需计算时间2T 为 s s N N N N T 7168.071680020log 100log 2 222==?+?=μ。 (3)快速傅里叶变换是基于对离散傅里叶变换 和利用旋转因子k N j e π2-的 来减少计算量,其特点是 _______、_________和__________。 解:长度逐次变短;周期性;蝶形计算、原位计算、码位倒置 (4)N 点的FFT 的运算量为复乘 、复加 。 解:N N L N mF 2log 2 2== ;N N NL aF 2log == 4.2 选择题 1.在基2DIT —FFT 运算中通过不断地将长序列的DFT 分解成短序列的DFT ,最后达到2点DFT 来降低运算量。若有一个64点的序列进行基2DIT —FFT 运算,需要分解 次,方能完成运算。 A.32 B.6 C.16 D. 8 解:B 2.在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为 。 A. 8 B. 16 C. 1 D. 4 解:C 3.在时域抽取FFT 运算中,要对输入信号x(n)的排列顺序进行“扰乱”。在16点FFT 中,原来x(9)

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

快速傅里叶变换FFT原理与实现

FFT原理与实现 2010-10-07 21:10:09| 分类:数字信号处理 | 标签:fft dft |举报|字号订阅 在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征。尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理。因此至DFT被发现以来,在很长的一段时间内都不能被应用到实际的工程项目中,直到一种快速的离散傅立叶计算方法——FFT,被发现,离散傅立叶变换才在实际的工程中得到广泛应用。需要强调的是,FFT并不是一种新的频域特征获取方式,而是DFT的一种快速实现算法。本文就FFT的原理以及具体实现过程进行详尽讲解。 DFT计算公式 本文不加推导地直接给出DFT的计算公式: 其中x(n)表示输入的离散数字信号序列,WN为旋转因子,X(k)为输入序列x(n)对应的N个离散频率点的相对幅度。一般情况下,假设x(n)来自于低通采样,采样频率为fs,那么X(k)表示了从-fs/2率开始,频率间隔为fs/N,到fs/2-fs/N截至的N个频率点的相对幅度。因为DFT计算得到的一组离散频率幅度值实际上是在频率轴上从成周期变化的,即X(k+N)=X(k)。因此任意取连续的N个点均可以表示DFT的计算效果,负频率成分比较抽象,难于理解,根据X(k)的周期特性,于是我们又可以认为X(k)表示了从零频率开始,频率间隔为fs/N,到fs-fs/N 截至的N个频率点的相对幅度。 N点DFT的计算量

根据(1)式给出的DFT计算公式,我们可以知道每计算一个频率点X(k)均需要进行N次复数乘法和N-1次复数加法,计算N各点的X(k)共需要N^2次复数乘法和N*(N-1)次复数加法。当x(n)为实数的情况下,计算N点的DFT需要2*N^2次实数乘法,2*N*(N-1)次实数加法。 旋转因子WN的特性 1.WN的对称性 2.WN的周期性 3.WN的可约性 根据以上这些性质,我们可以得到式(5)的一系列有用结果 基-2 FFT算法推导 假设采样序列点数为N=2^L,L为整数,如果不满足这个条件可以人为地添加若干个0以使采样序列点数满足这一要求。首先我们将序列x(n)按照奇偶分为两组如下: 于是根据DFT计算公式(1)有:

详解FFT(快速傅里叶变换FFT

kn N W N N 第四章 快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。 快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。 DFT 的定义式为 N ?1 X (k ) = ∑ x (n )W N R N (k ) n =0 在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。算出全部 N 点 X (k ) 共需 N 2 次复数乘法 和 N ( N ? 1) 次复数加法。即计算量是与 N 2 成正比的。 FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。 W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT 运算: (1) 周期性: ( k + N ) n N = W kn = W ( n + N ) k (2) 对称性:W ( k + N / 2 ) = ?W k N N 利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。例子: 求当 N =4 时,X(2)的值

快速傅里叶变换的原理及其应用

快速傅里叶变换的原理及其应用 摘要: 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着 重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词:快速傅氏变换;图像处理;matlab 前言: 傅里叶变换在信号处理中具有十分重要的作用,但是基于离散时间的傅里叶变换具有很大的时间复杂度,根据傅里叶变换理论,对一个有限长度且 长度为N的离散信号,做傅里叶变换的时间复杂度为) O,当N很大时τ, (2 N 其实现的时间是相当惊人的(比如当N为4 10 10时,其完成时间为τ8 (τ为计算机的时钟周期)),故其实现难度是相当大的,同时也严重制约了DFT在信号分析中的应用,故需要提出一种快速的且有效的算法来实 现。正是鉴于DFT极其复杂的时间复杂度,1965年..JWCooley 和..JWTukey巧妙地利用 NW因子的周期性和对称性,提出了一个DFT的快速算法,即快速傅里叶变换(FFT),从而使得DFT在信号处理中才得到真正的广泛应用。 傅立叶变化的原理; (1)原理

快速傅里叶变换(FFT)原理及源程序

《测试信号分析及处理》课程作业 快速傅里叶变换 一、程序设计思路 快速傅里叶变换的目的是减少运算量,其用到的方法是分级进行运算。全部计算分解为M 级,其中N M 2log =;在输入序列()i x 中是按码位倒序排列的,输出序列()k X 是按顺序排列;每级包含2N 个蝶形单元,第i 级有i N 2 个群,每个群有12-i 个蝶形单元; 每个蝶形单元都包含乘r N W 和r N W -系数的运算,每个蝶形 单元数据的间隔为12-i ,i 为第i 级; 同一级中各个群的系数W 分布规律完全相同。 将输入序列()i x 按码位倒序排列时,用到的是倒序算法——雷德算法。 自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。 若已知某数的倒序数是J ,求下一个倒序数,应先判断J 的最高位是否为0,与2 N k =进行比较即可得到结果。如果J k >,说明最高位为0,应把其变成1,即2 N J +,这样就得到倒序数了。如果J k ≤,即J 的最高位为1,将最高位化为0,即2N J -,再判断次高位;与4N k =进行比较,若为0,将其变位1,即4 N J +,即得到倒序数,如果次高位为1,将其化为0,再判断下一位……即从高位到低位依次判断其是否为1,为1将其变位0,若这一位为0,将其变位1,即可得到倒序数。若倒序数小于顺序数,进行换位,否则不变,防治重复交换,变回原数。 注:因为0的倒序数为0,所以可从1开始进行求解。 二、程序设计框图 (1)倒序算法——雷德算法流程图

(2)FFT算法流程

快速傅里叶变换fft变换

快速傅里叶变换FFT的C语言算法彻底研究LED音乐频谱显示的核心算法就是快速傅里叶变换,FFT的理解和编程还是比较难的,特地撰写此文分享一下研究成果。 一、彻底理解傅里叶变换 快速傅里叶变换(Fast Fourier Transform)是离散傅里叶变换的一种快速算法,简称FFT,通过FFT可以将一个信号从时域变换到频域。模拟信号经过A/D转换变为数字信号的过程称为采样。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的2倍,这称之为采样定理。假设采样频率为fs,采样点数为N,那么FFT结果就是一个N点的复数,每一个点就对应着一个频率点,某一点n(n 从1开始)表示的频率为:fn=(n-1)*fs/N。举例说明:用1kHz的采样频率采样128点,则FFT结果的128个数据即对应的频率点分别是0,1k/128,2k/128,3k/128,…,127k/128 Hz。这个频率点的幅值为:该点复数的模值除以N/2(n=1时是直流分量,其幅值是该点的模值除以N)。 二、傅里叶变换的C语言编程 1、对于快速傅里叶变换FFT,第一个要解决的问题就是码位倒序。假设一个N 点的输入序列,那么它的序号二进制数位数就是t=log2N.码位倒序要解决两个问题:①将t位二进制数倒序;②将倒序后的两个存储单元进行交换。如果输入序列的自然顺序号i用二进制数表示,例如若最大序号为15,即用4位就可表示n3n2n1n0,则其倒序后j对应的二进制数就是n0n1n2n3,那么怎样才能实现倒序呢?利用C语言的移位功能! 程序如下,我不多说,看不懂者智商一定在180以下!复数类型定义及其运算#define N 64 //64点 #define log2N 6 //log2N=6 /*复数类型*/ typedef struct { float real; float img; }complex; complex xdata x[N]; //输入序列 /*复数加法*/ complex add(complex a,complex b) { complex c; c.real=a.real+b.real; c.img=a.img+b.img; return c; } /*复数减法*/ complex sub(complex a,complex b) { complex c; c.real=a.real-b.real;

相关文档
最新文档