整数规划的两种数学模型解法

整数规划的两种数学模型解法
整数规划的两种数学模型解法

规划模型求解

指导老师:

组员:

组员分工

实际的内容:

1·简要介绍线性规划的历史

线性规划是运筹学中最基本、应用最广泛的分支。规划模型是一类有着广泛应用的确定性的系统优化模型,1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》一书.

1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法.

1951年,美国经济学家库普曼斯(J.C.Koopmans,1910—1985)出版《生产与配置的活动分析》一书.

1950~1956年,线性规划的对偶理论出现.

1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法.

1975年,康托洛维奇与库普曼斯因“最优资源配置理论的贡献”荣获诺贝尔经济学奖.

1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法),具有重要理论意义.

1984年,在美国贝尔实验室工作的印度裔数学家卡玛卡(N.Karmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Karmarkar算法.

线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优. 现在线性规划已不仅仅是一种数学理论和方法,而且成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术.

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看 函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念 对数学发展,数学学习的巨大作用。

2·线性规划的原理:线性规划是合理利用、调配资源

的一种应用数学方法。它的基本思路就是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。前者是求极小,后者是求极大。线性规划是在满足企业内、外部的条件下,实现管理目标和极值(极小值和极大值)问题,就是要以尽少的资源输入来实现更多的社会需要的产品的产出。因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有重要的作用。其一般形式为:

n n n n n

n b x a x a x a b x a x a x a x c x c x c x f =+++=+++→+++= 2

2222121112121112211min )(

3·整数规划的原理整数规划IP (integer programming):在许多规

划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。

松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。

若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。整数线性规划数学模型的一般形式

∑==n

j cjxj

z 1

min(max)

n

i x i ,,2,10

=≥中部分或全部取整数

n j n

j i j

ij x x x m

j n

i x b x

a t

s ,...,,...2,1,...,2,10

),(.211

==≥=≥≤∑=

∑==n

j j

j x c Z 1

min)max(或

4·处理的方法和背景:整数规划又分为:

(1)割平面法

通过增加新的约束来切割可原问题伴随规划的可行域,使它在不断缩小的过程中,将原问题的整数最优解逐渐暴露且趋于可行域极点的位置,这样就有可能用单纯形法求出。

(2)分支定界法分支定界法的主要思路是首先求解整数规划的伴随规划,如果求得的最优解不符合整数条件,则增加新约束——缩小可行域;将原整数规划问题分支——分为两个子规划,再解子规划的伴随规划……,最后得到原整数规划的伴随规划。这就是所谓的“分支”。

所谓“定界”,是在分支过程中,若某个后继问题恰巧获得整数规划问题的一个可行解,那么,它的目标函数值就是一个“界限”,可以作为衡量处理其它分支的一个依据。

“分支”为整数规划最优解的出现创造了条件,而“定界”则可以提高搜索的效率

线性规划的步骤:

1.根据影响所要达到目的的因素找到决策变量;

2.由决策变量和所在达到目的之间的函数关系确定目标函数;

3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。

当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

应用举例

某厂每日八小时的产量不低于1800件。为了在进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。现有可供厂方聘请的检验员人数为一级8人和二级10人,伪是总检验费用最省,该工厂应聘请一级、二级检验员各多少名?

一·摘要

创新教育是以发掘人的创造潜能、弘扬人的主体精神、促进人的个性和谐发展为宗旨的一种深层教育。创新是一个民族进步和发展的灵魂,是国家兴旺发达的不竭动力。大学作为培养高素质创新人才的摇篮,肩负着艰巨的使命。1.创新能力的培养是创新教育的首要任务2.创新性实验计划的实施过程就是对创新潜力不断挖掘的过程,3.老师的指导是对创新思维的诱导和激发。

本文通过此厂工作量的大致估计计算,运用整数规划的方法建立数学模型,对模型的数学的高度化,高度简化,再灵活运用c++这一强悍的数学软件编程求解,任意的输入此厂的生产量即可精确求解出最佳的检验员人数和级别人数,从而使此厂损失最少,总花费最少,达到检验员的合理聘请。

模型(一)

一·问题的分析

本问题是最优解问题,可用matlab优化工具包求解,涉及到线性规划,数学软件,数学模型等知识.通过对线性规划的学习,线性规划如上所讲,本题可以理解成每天检验员工作8小时,对一二级检验员的聘请最终达到厂得花费最少的最优模型

二·模型的假设

1.假设每天生产的产品都要检验员检验完。

2.排除在工作时间内检验员因某些事情而耽误检验产品。如检验员突然生病,检验机器突然坏掉等不良事故发生。

3.每一个检验员都愿意为本厂工作。

4.每个一级检验员的检验速度都为25件/小时,正确率都为98%,每个二级检验员的检验速度都为15/小时,正确率都为95%。

三.符号说明

M:每天生产的产品量

x1:聘请的一级检验员人数

x2:聘请的二级检验员人数

c1:工人每天的工资额

c2:检验员错检,工厂每日损失额

z:此厂聘请检验员的总花费金额

四·模型建立

工厂每天应付工资为:

c1=32*x1+24*x2

由于检验员错检,工厂每日损失:

c2=[(25*8)*0.02*x1+(15*8)*0.05*x2]*2=8*x1+12*x2

工厂每天总检验费为:

z=c1+c2=40*x1+36*x2

故目标函数为:

min z=40*x1+36*x2

约束条件:

200*x1+120*x2>=1800

200*x1<=1800

120*x2<=1800

x1>=0

x2>=0

模型化简:

min z=40*x1+36*x2 得到c=[40;36]

s.t.

-5*x1-3*x2<=-45 A=[-5 -3]和b=[-45]

x1<=9 推出vlb=[0;0] vub=[9;15] x2<=15

x2>=0

五·模型的计算机求解

%%f=[-3;2;-5];A=[1 2 -1;1 4 1;1 1 0;4 0 1];b=[2;4;3;6]

%%[x,fval,exitflag]=IntLP(f,A,b,[],[],zeros(3,1),[1;1;1])

function [x,fval,exitflag]=BranchLP(f,A,b,Aeq,beq,lower,upper) %%Aeq=[-5,-3];beq=[-45];lower=[0,0];upper=[9,15];

UB=inf; exitflag=-2;

len=length(f);

k=int32(1);

lb=lower;ub=upper;

if isempty(lb)

for i=1:len

lb(i)=-Inf;

end

end

if isempty(ub)

for i=1:len

ub(i)=Inf;

end

heap(k,1)={lb}; %%heap是堆栈数组,UB为已经获得整数解最优值

heap(k,2)={ub};

while k>0 %%堆栈数组为空,则退出

lb=heap{k,1}; ub= heap{k,2};k=k-1; %%取出堆栈数据

[x1,f1,exit]=linprog(f,A,b,Aeq,beq,lb,ub);

if (exit==1) & (f1

flag=true;

for i=1:len

if abs(x1(i)-round(x1(i)))>1e-7

flag=false; %%压入堆栈数据

k=k+1;

tmp=lb;

tmp(i)=max(lb(i),fix(x1(i))+1);

heap(k,1)={tmp};

heap(k,2)={ub};

k=k+1;

tmp=ub;

tmp(i)=min(ub(i),fix(x1(i)));

heap(k,1)={lb};

heap(k,2)={tmp};

break;

end

end

if flag

x= x1;

UB= f1;

exitflag=1;

end

end

end

if exitflag==1

x=round(x);

fval=f'*x;

else

x=[];

fval=Inf;

end

还在找运行结果

六·模型的评价

本模型通过线性规划的方法,灵活运用matlab对最优化的求解的优点对本题做出一系列的分析与解释,巧妙的对本题做出一系列的假设,运算方便便捷,只需小小的一个matlab程序即可输出最优模型解,再回到现实生活中对模型的检测得出了本题得现实解,不足之处是本题做出了对检验员在工作中因为一些不可预测的原因导致无法工作的现象做出了不能发生的假设,但实际生活中是可以发生的,所以也与现实生活也有一些差距。

七·参考文献

【1】《数学建模导论》作者陈理荣北京邮电大学出版社

【2】《数学建模》作者:陈义华重庆大学出版社

【3】《数学建模与数学实验》作者:赵静但琦高等教育出版社

【4】《数学建模与数学实验》作者:刘来福增文艺北京师范大学出版社

模型(二)

一·问题的重述

某厂每日八小时的产量不低于1800件。为了在进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。现有可供厂方聘请的检验员人数为一级8人和二级10人,伪是总检验费用最省,该工厂应聘请一级、二级检验员各多少名?

二.对问题的分析

本题旨在通过此厂的产量,为了对厂的生产质量的控制,目的是达到厂的总损失最少的对一二级检验员的聘请。本题检验员的每天工作时间理解成8小时,由于一二级的检验员的人数分别是8和10人,所以可以确定次厂每天的产量为1800~2800之间。灵活运用整数规划方法建立以此厂损失费用最少的目标函数的数学模型求解此问题.

三·模型假设

1假设每天生产的产品都要检验员检验完。

2排除在工作时间内检验员因某些事情而耽误检验产品。如检验员突然生病,检验机器突然坏掉等不良事故发生。

3每一个检验员都愿意为本厂工作。

1.每个一级检验员的检验速度都为25件/小时,正确率都为

98%,每个二级检验员的检验速度都为15/小时,正确率都为95%。

四·符号说明

M:每天生产的产品量

x:聘请的一级检验员人数

y:聘请的二级检验员人数

F:此厂聘请检验员的总花费金额

五·模型建立

1.假设每天生产的产品都要没检验员检验完。

+

?15

8

25

8

?

?

y

M

x≥

?

2.由模型分析可得

≤M

2800

1800≤

M为整数

3.每一个检验员都愿意为本厂工作

≤y

x

10

0,8

0≤

且y

x为整数

4. 每个一级检验员的检验速度都为25件/小时,正确率都为98%,每个二级检验员的检验速度都为15/小时,正确率都为95%。

()()

y x x F -???+??+?-???=%951815482%981258

y x 3640+=

Min y x 3640+= (目标函数)

六·模型的简化

M y x ≥??+??158258 (1)

28001800≤≤M (2)

100,80≤≤≤≤y x 且y 、x 为整数 (3)

MinF=

y x 3640+= (4)

由(1)(2)? 1800120200≥≥+M y x ? 4535≥+y x (5) 由(3)(5)? 当10=y 时 83≤≤x ……(6)x 为整数 当8=x 时 102≤≤y ……(7)y 为整数

当10,8==y x 时 28001800≤≤M ......(8)M 为整数 所以模型简化为:MinF= y x 3640+=;x ,y 为整数 ...... (4) 约束条件 : 83≤≤x ; x 为整数 ...... (6) 102≤≤y ;y 为整数 ...... (7) 28001800≤≤M ;M 为整数 (8)

七·模型的计算机求解

利用c++编程如下:

#include

#include

using namespace std;

int main()

{

int function (int ,int );

int i,j,t,k,temp;

int x[9][11];

for(i=0;i!=9;i++)

for(j=0;j!=11;j++)

x[i][j]=0;

float M;

cout<<"please input a number M";

cout<<"\t"<<"M is between 1800 and 2800"<>M;

cout<

for(i=3;i!=9;i++)

for(j=2;j!=11;j++)

{

if(200*i+120*j>=M) x[i][j]=function(i,j);

}

t=x[8][10];

for(i=3;i!=9;i++)

for(j=2;j!=11;j++)

{

if((x[i][j]!=0)&&(x[i][j]

t=x[i][j];

}

for(i=3;i!=9;i++)

for(j=2;j!=11;j++)

{

if(x[i][j]==t)

{

cout<<"x="<

}

}

return 0;

}

int function (int a,int b)

{

return 40*a+36*b;

}

结果:输入一个M值,在1800~2800之间

八·模型的改进

本模型是假设每一个检验员的检验速度和准确率一定,实际生活中检验速度是围绕平均速度上下波动的,准确率也是如此。因此还要有加权系数分别对检验速度和准确率的一个修饰,增加模型的现实准确率。

A 1:一级检验员的速度的加权系数 A 2:一级检验员的准确率的加权系数

B 1

:二级检验员的速度的加权系数

B 2:二级检验员的准确率的加权系数

模型改进为:

y

y x x F M

y x B B A A B A ??+?-???+??+?-??=≥??+??382)%951(158482)981(258158258212111%453518001202001111≥+?≥≥+?y x M y x B A B A y y x x x F B B B A A A 2422824032392400211211+-++-=?

目标函数:y y x x x MinF B B B A A A 2422824032392400

2

1

1

2

1

1

+-++-=

九·模型评价

本模型的优点是计算方便,只需统计出厂的生产量,一个小小的c++程序即可算出最优模型的解,模拟度比较高,计算的准确度也很高。缺点是和现实也有一定的差距。

参考文献

【1】关于项目选择的整数规划模型分析《华中科技大学学报》2001年08期作者:宁艳芳

【2】林志航.计算机辅助质量系统[M].北京:机械工业出版社,1997.137~152. 【3】车阿大,林志航.质量功能展开的多目标规划模型[J].计算机集成制造系统CIMS,1998,4(6):26~30.

【5】《数学建模导论》作者陈理荣北京邮电大学出版社

【6】《数学建模》作者:陈义华重庆大学出版社

【7】《数学建模与数学实验》作者:赵静但琦高等教育出版社

【8】《数学建模与数学实验》作者:刘来福增文艺北京师范大学出版社

整数规划的两种数学模型解法

规划模型求解 指导老师: 组员: 组员分工 实际的内容: 1·简要介绍线性规划的历史 线性规划是运筹学中最基本、应用最广泛的分支。规划模型是一类有着广泛应用的确定性的系统优化模型,1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》一书. 1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法. 1951年,美国经济学家库普曼斯(J.C.Koopmans,1910—1985)出版《生产与配置的活动分析》一书. 1950~1956年,线性规划的对偶理论出现. 1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法. 1975年,康托洛维奇与库普曼斯因“最优资源配置理论的贡献”荣获诺贝尔经济学奖. 1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法),具有重要理论意义. 1984年,在美国贝尔实验室工作的印度裔数学家卡玛卡(N.Karmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Karmarkar算法.

线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优. 现在线性规划已不仅仅是一种数学理论和方法,而且成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术. 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看 函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念 对数学发展,数学学习的巨大作用。 2·线性规划的原理:线性规划是合理利用、调配资源 的一种应用数学方法。它的基本思路就是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。前者是求极小,后者是求极大。线性规划是在满足企业内、外部的条件下,实现管理目标和极值(极小值和极大值)问题,就是要以尽少的资源输入来实现更多的社会需要的产品的产出。因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有重要的作用。其一般形式为: n n n n n n b x a x a x a b x a x a x a x c x c x c x f =+++=+++→+++= 2 2222121112121112211min )(

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点 整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。 松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。 若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。 一、整数线性规划数学模型的一般形式 ∑==n j j j x c Z 1 min)max(或 中部分或全部取整数n j n j i j ij x x x m j n i x b x a t s ,...,,...2,1,...,2,10 ),(.211 ==≥=≥≤∑= 整数线性规划问题可以分为以下几种类型 1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。有时,也称为全整数规划。

2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。 3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。 1 解整数规划问题 0—1型整数规划 0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的 ???? ? ????≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

01型整数规划模型

甲乙公司不合作即竞争下所争取到的不同名专业推广者所建立的不同动态规划模 型的组合方案如下:其中X 为可能竞争到的专业推广者人数,即动态规划模型中第一天的

专业推广者推 广能力的份数,Y 为第二天需要的专业推广者推广能力的份数,即第三天安排从事推广 工作的专业推广者的人数;Z 为第三天需要的专业推广者推广能力的份数,即第三天安排从事推广工作的专业推广者的人数;a 为x 名专业推广者累计从事培训工作出来的兼职推广者的批数(每批20 人),其中,有多种组合方案;甲公司雇佣这些兼职推广者均工作一天,从事推广工作,第二天辞退a ?b 批兼职推广员,其余的b 批继续从事推广工作一天后辞退,即兼职宣传员总共最多雇佣2 天;cost 为花费的成本,即资金的使用数量;F 为不同方案下所达到的总推广效益。上表可以提供给甲公司做决策依据,根据效益的大小甲公司可以决策的目标方向顺序是从①--⑧,即不合作的情况下甲公司可以尽量争取到9 人,如若 不行,考虑争取4 人。 §5.4 0—1型整数规划模型 1、 0—1型整数规划模型概述 整数规划指的是决策变量为非负整数值的一类线性规划,在实际问题的应用中,整数规划模型对应着大量的生产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平面解法(这里不作介绍,感兴趣的读者可参考相关书籍)。在整数规划问题中,0—1型整数规划则是其中较为特殊的一类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着大量的最优决策的活动与安排讨论,我们将列举一些模型范例,以说明这个事实。 0—1型整数规划的的数学模型为: 目标函数 n n x c x c x c z M i n M a x +++= 2211)( 约束条件为: ???? ?? ?==≥≤++=≥≤++=≥≤++1 | 0 ) ,() ,() ,(2211222221211 1212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21 这里,0 | 1表示0或1。 2、0—1型整数规划模型的解法

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模MATLAB算法大全第02章 整数规划

-16- 第二章 整数规划 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。 1.2 整数规划的分类 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.2 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21min x x z += 0,0, 5422121≥≥=+x x x x 其最优实数解为:4 5 min ,45,021===z x x 。 ③有可行解(当然就存在最优解),但最优解值变差。 例2 原线性规划为 21min x x z += 0,0, 6422121≥≥=+x x x x 其最优实数解为:2 3 min ,23,021===z x x 。 若限制整数得:2min ,1,121===z x x 。 (ii ) 整数规划最优解不能按照实数最优解简单取整而获得。 1.3 求解方法分类: (i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。 (iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。 下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,

数学建模(整数规划)

整数规划模型

实际问题中 x x x x f z Max Min T n "),(),()(1==或的优化模型 m i x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件 多元函数决策变量个数n 和数 线性规划条件极值约束条件个数m 较大最优解在可行域学 规 非线性规划解 的边界上取得划 整数规划

Programming +Integer 所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。 型整数规划

+整数线性规划 max(min) n z c x =1j j j n =∑1 s.t. (,) 1,2,,ij j i j a x b i m =≤=≥=∑"12 ,,,0 () n x x x ≥"且为整数 或部分为整数

+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化? m 1?1 max j j j c y =∑ 1 0j j y =?被装载 s.t. m j j v y V ≤∑0 j ?没被装载1 j m =1 j j j w y W =≤∑ 0 or 1 1,2,,j y j m =="

(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h 前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:https://www.360docs.net/doc/0412736591.html, I)网址htt//li d LINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。 LINGO——解决线性规划LP—Linear Programming,非线性规划NLP—Nonlinear Programming,整数规划IP—Integer Programming g g整划g g g 问题。

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

数学建模b题标准答案

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):北京大学 参赛队员(打印并签名) :1. 姚胜献 2. 许锦敏 3. 刘迪初 指导教师或指导教师组负责人(打印并签名):刘业辉 日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 交巡警服务平台的设置与调度 摘要 本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。 针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。 针对问题一的第二个子问题,为了实现对中心城区A的13个交通要道的快速全封锁,以最短的封锁时间为目标,建立了0-1整数规划模型,利用lingo软件编程求解,给出了该区交巡警服务平台警力合理的调度方案,并求得对13个交通要道实现全封锁最短需要8.02分钟。 问题一的第三个子问题是交巡警服务平台的选址问题。考虑到建设新的服务平台需要投入更多的成本和警务资源,还需平衡各个服务平台的工作量。因此,以增加最少的服务平台数和服务平台工作量方差最小为目标,采用集合覆盖理论,建立了双目标0-1整数规划模型,用基于MATLAB的模拟退火算法求解出增加的服务平台数为4个,新增 的服务平台具体位置为A 28,A 40 ,A 48 ,A 88 ,并得到各个服务平台的工作强度方差为2.28。 针对问题二的第一个子问题,通过建立线性加权评价模型定量评价了该市现有交巡警服务平台设置方案的合理性,结果发现全市服务平台覆盖率较低且各个区的工作量不均衡,得出全市服务平台的布局存在明显的不合理的结论。并确定各区域人口密度、各区域公路总长度以及各区域平均每天总的发案率为各区域对交巡警需求的指标,然后根据各个区对服务平台需求量的不同,提出了较为合理的分配全市警力资源的解决方案。 对于问题二的第二个子问题,以围堵范围最小和调动警力最少的原则,通过分析案发后嫌疑犯可能到达的位置,给出了围堵方案。 关键词:交巡警服务平台 0-1整数规划模拟退火法

数学建模——混合整数规划

实验四 混合整数规划 一、问题重述 某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。根据专家经验,对每个项目投资总额不能太高,应有上限。这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。 请帮该公司解决以下问题: (1) 就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高? (2) 在具体投资这些项目时,实际还会出现项目之间互相影响的情况。公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? 其中M 为你的学号后3位乘以10。 (3) 如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。投资项目 总体风险可用投资项目中最大的一个风险来衡量。专家预测出各项目的风险率,如表2所示。 二、符号说明 i A ::投资额; i b :i A 个项目所获得的年利润; i C :第i A 个项目投资所获得的利润; 'i C :第i A 个项目同时投资所获得的利润; i m :投资i A 的上限; i y :表示0—1变量; i p :投资第i A 个项目的投资风险; 三、模型的建立 对于问题一 目标函数:8 1max i i i c x ==∑

s.t. 150000i i i i i i b x b x m ?≤? ??≤?∑ 对于问题二 设定0—1变量 131130...,1...,A A y A A ?? ?项目不同时投资项目同时投资 452450...,1...,A A y A A ???项目不同时投资 项目同时投资 2678326780...,,1...,,A A A A y A A A A ?? ?,项目不同时投资 ,项目同时投资 目标函数:'''' 11133111332445524455' '''322 66 77 88 322667788max ()(1)()()(1)()()(1)() y x c x c y x c x c y x c x c y x c x c y x c x c x c x c y x c x c x c x c =++-++++-++ ++++-+++ s.t. 1 13 131 24545 23267826783 1500001000i i i i i i b x k y x x x x y k y x x x x y k y x x x x x x x x y k b x m ?≤?? =??≤??≥?? ≤???≥? ?≤? ?≥?? ≤?∑ 对于问题三: 目标函数: max min max() i i i i i i c x b x p =∑ s.t. 150000i i i i i i b x b x m ?≤? ??≤?∑ 对于问题三模型的简化 固定投资风险,优化收益,设a 为固定的最大风险。 max i i i c x =∑

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数

整数规划和多目标规划模型及应用

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题,例如比较著名的Y ALMIP ,读者可以自行到网上下载相关的工具包并进行学习。这里我们给出开罗大学的Sherif 和Tawfik 在MA TLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,笔者在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ) ,,2,1(0 ..min 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对 应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。 在该函数中,输出参数有x, fval 和exitflag 。其中x 为整数规划问题的最优解向量,fval 为整数规划问题的目标函数在最优解向量x 处的函数值,exitflag 为函数计算终止时的状态指示变量。 例1 求解整数规划问题: ????? ?? ??≥≥≤+≥-+= 0, 12 1124 124 ..max 212212121,且取整数值x x x x x x x t s x x f

数学建模整数规划

整数规划 前面介绍的线性规划问题中,只要求决策变量非负,也就是说决策变量可以取小数,然而在许多经济管理的实际问题中,决策变量只有取非负的整数才有实际意义。如果一个线性规划问题要求全部的决策变量都取整数,那么这样的线性规划问题称为全整数规划或纯整数规划问题。如果只要求一部分决策变量取整数,那么这样的线性规划问题称为混合整数规划问题。如果决策变量只能取0或者1,那么就称为0-1规划问题 整数规划在实际中的应用: 1. 指派问题: 某公司人事部门欲安排四个人去做四项不同的工作,每个人只能完成一项工作,一项工作只能由一个人完成。每个人完成各项工作所消耗的时间(单位:分钟)如下表所示, (2) 如果把(1)中的消耗时间数据看成创造效益的数据,那么应该如何指派,可以使得 总的效益最大? (3) 如果在(1)中再增加一项工作E ,甲 、乙、丙、丁四人完成工作E 的时间分别为 17,20,15,16分钟,那么应该指派这四个人干哪四项工作,可使得这四个总的消耗时间为最少? 解:(1) 引入0-1变量ij x ,并令? ??=项工作时个人不做第当第项工作时 个人去做第当第j i j i x ij 01, 于是这个分派问题的数学模型为: ?? ? ?? ? ?? ?? ? ?? ? ???====+++=+++=+++=+++=+++=+++=+++=+++++++++++ +++++++=4,3,2,1,4,3,2,1101111111119242017181516262027241828201920min 443424144333231342322212413121114443424134333231242322211413121144434241343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Z ij ,或 用管理运筹学2.0软件求解结果如下: **********************最优解如下************************* 目标函数最优值为 : 71

数学建模数学规划

数模第二阶段培训(数学规划) 例1 油品混合问题 一种汽油的特性可用两个指标来描述,其点火性用“辛烷比率”来描述,其挥发性用“蒸汽压”来描述。某石油炼制厂生产两种汽油,这两种汽油的特性及产量如表1所示 表1 某厂炼制的汽油特性 辛烷比率蒸汽压(10-2克/cm2)可供数量(万公升) 第一种汽油104 4 3 第二种汽油94 9 7 用这两种汽油可以合成航空汽油与车用汽油两种最终产品,其性能如表2所示 表2 航空汽油与车用汽油性能要求 辛烷最小比率最大蒸汽压(10-2克 /cm2)最大需要量(万公 升) 售价(万元/万 公升) 航空汽油102 5 2 1.2 车用汽油96 8 不限0.7 根据油品混合工艺知道,当两种汽油混合时,其产品汽油的蒸汽压及辛烷比率与其组成成分的体积及相应指标成正比。问该厂应如何混合油品才能获得最大收益? 例2企业季度生产计划问题 某厂甲、乙两种产品,第一季度的最大需求量及单位产品利润和每月的库存成本如表1所示。 表1 产品需求量、利润及库存成本 需求量利润 (未计库存成本) (元/单位产品) 每月库存成本(元/单位产品) 一月二月三月 甲产品250 540 700 3.0 0.2 乙产品180 150 700 4.5 0.3 生产这两种产品都必须经过由两道工序,分别使用A、B两类机器。A类机器有4台,B类机器有5台,每台机器每月运转180工时。生产单位甲产品需机器A0.9工时,机器B1.0工时;生产单位乙产品需机器A0.5工时,机器B0.75工时。 该厂仓库容量为100平方米,存贮每单位甲产品需占面积0.75平方米,每单位乙产品需占面积1.2平方米。该季度开始时无库存量,计划在本季度结束时甲、乙两种产品各库存40单位。分别求解以下两个问题:

数学建模线性规划以及预测求解

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):103 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 高亚勇 2. 陆彦丽 3. 陈昊 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

电脑组装及销售 摘要 本文针对电脑组装及销售问题进行了分析、讨论,运用了多项式 0000000000000000模型,利用MATLAB 软件进行求解得出结论,为金牛公司的电脑组装及销售,提供了方案。 针对问题1:根据附件3金牛公司过去18个月投放市场销售的台式机数量和销售价格,建立了三次多项式拟合模型,利用MATLAB 编程,对2011年1月到2012年6月金牛公司过去18个月投放市场销售的台式机数量和销售价格进行了预测(见表000000)。 针对问题2:根据附件1金牛公司各种型号台式机以及附件4金牛公司库存电脑硬件零件的情况,通过公司获得最大利润,建立了线性规划模型求解,利用lingo 软件进行计算,建立图表(000000000000)进行与目前库存电脑零件进行对比,得出现有库存不能够满足旺季销售的需要,从而对目前库存零件进行优化组装。 针对问题3:根据问题3的要求,2012年5月份以后由于青羊公司生产金牛C,金牛D ,金牛E 三种型号的台式机,同时投放市场,使得金牛公司的三种型号的销售价格分别降低4%,3%,2%,且销售量分别下降2%,2%,1%,但不影响金牛公司其他型号电脑的价格和销量,即通过表(0000000)再次建立三次多项式拟合,得出函数表达式Yc=。。。。。。。。。。。。。。。,Yd=000000000000,Ye=0000000000,得出7,8月份金牛C,D,E 型号数量。通过公司获得最大利润,建立线性规划模型求解,得出表达式65432110644.97324.98456.675531518x x x x x x Z +++++=,通过公司库存零件的数量的约束,运用lingo 编程(详附件x ),得出生产最优方案。 针对问题4:为了与青羊公司竞争,金牛公司采用提升配置的方案,将C,D 两个型号的台式机的内存由“金士顿2GB DDR3”一条增加到了两条,即内存由原来的2G 扩大到了4G 。因此使C,D 两型号的台式机成本相应增加,同时公司又以原来的进价购进了这种内存300条,即库存零件相应的数量相应增加,则C,D 型号每台的利润相应变化,则目标函数也相应变化,65432110641094968763531518x x x x x x z +++++=,再通过公司库存零件的数量约束,运用lingo 编程(详x ),得出最优生产方案。 针对问题5:结合问题3和问题4的最大利润,可得出金牛公司用“提升配置不提升价格”的方法可取。(生产安排意见见模型求解5) 关键字:多项式拟合 销售量 MATLAB Lingo 线性规划模型 公司最大利润

数学建模心得体会3篇

数学建模心得体会3篇 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它

的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。 数学建模学习心得体会 许校的讲座再次激起了我们对这个曾经的相识思考的热情。 同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。 首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。 其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。 许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。 数学建模学习心得(2): 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,

相关文档
最新文档