《普通物理》考试大纲

《普通物理》考试大纲
《普通物理》考试大纲

《普通物理》考试大纲

一、考试目的

通过对《普通物理》课程的学习,学生应对物理学的基本概念、基本理论、基本方法能够有比较全面和系统的认识和正确的理解,学会用于解决问题的物理学思想和方法,提高自身的科学素养、创新精神和创新能力,并为后续研究生课程课的学习打下坚实的基础。

三、参考书目

(1)《物理学基础》(第6版) ,[美]哈里德等著,张三慧,李椿等译,机械工业出版社,2005年。

(2)《大学物理通用教程》系列,钟锡华,陈熙谋主编,北京大学出版社,2011年。

(3)《热学》(第3版),李椿,章立源,钱尚武著,高等教育出版社,2015年。

(4)《电磁学》(第三版)赵凯华,陈熙谋著高等教育出版社 2011年。

一、量子力学的诞生背景

1、原子论的建立

2、黑体辐射与光电效应

3、原子核式结构的探索

4、波尔氢原子模型

二、量子力学基本原理一

1、波粒二象性假设

2、波函数及统计解释

3、薛定谔方程及定态薛定谔方程求解

三、量子力学基本原理二

1、算符的引入

2、算符的性质与运算规则,算符的对易关系

3、算符的本征态与本征值

4、测量与量子坍缩

四、量子力学基本原理三

1、全同性原理

2、单粒子自旋与双粒子自旋态

3、多粒子波函数

五、量子力学的应用

1、中心力场下定态薛定谔方程求解

2、氢原子定态薛定谔方程求解

3、静电磁场中粒子的薛定谔方程

4、角动量算符与角动量耦合

六、量子力学的表示理论

1、表象的引入

2、表象变换

七、量子力学方程的近似求解方法

1、定态微扰论

2、含时微扰论

3、变分法

基本要求:

1.掌握原胞、晶胞等关于晶体结构的基本概念,倒格子和正格子及布里渊区等

概念,倒格子与正格子的关系,晶向及晶面的表示方法,面间距等的相关计算。了解晶体学中14种布拉菲格子及其基本特征。

2.了解晶体结合的种类及各种结合的物理特性;掌握平衡间距、结合能等的计

算。

3.深刻理解处理晶格振动的简谐近似、最近邻近似及周期性边界条件;掌握一

维单原子和双原子链在简谐近似下的色散关系的计算,声学波和光学波的物理意义;掌握确定晶格振动谱的实验方法;掌握晶格热容的量子理论(爱因斯坦模型、德拜模型)、晶格振动模式密度的概念和计算。了解晶格的热膨胀和热传导。

4.深刻理解能带论的三个基本近似;深刻理解并掌握布洛赫定理及其应用,近

自由电子近似下电子运动的特征,紧束缚近似下计算能带的方法,费米面、费米速度、费米半径和能态密度的概念和计算。

5.理解电子准经典运动的特点和适用条件,掌握准经典运动下电子的平均速

度、加速度和有效质量的计算,掌握导体、半导体和绝缘体的能带论解释。

6.理解金属自由电子气的概念,熟练掌握电子热容的计算方法,了解金属的电

导过程,磁场中金属电子的输运性质。

参考书目:

黄昆,韩汝琦《固体物理学》高等教育出版社

方俊鑫、陆栋,《固体物理学》上海科技出版社

《原子物理学》考试大纲

原子物理学是研究原子内部基本结构和作用规律的科学,本考试科目主要考查考生对原子核外电子基本运动规律的掌握情况,也兼顾对原子核基本特性和变化规律的考查。考查的主要知识点如下:

一、原子的卢瑟福模型和电子的基本属性

二、原子的玻尔模型,如能级和轨道的概念、公式等

三、量子力学的基本原理,如德布罗意关系、不确定关系、波函数基本属性等

四、原子能级的精细结构和分裂,如电子自旋、塞曼效应等磁耦合基本规律

五、多电子原子中电子的耦合和分布规律,如泡利原理、洪特规则等

六、X射线产生的机制和规律,如莫塞莱公式等

七、原子核的基本特性,如核力、结合能、放射性衰变的基本规律等

参考书目:

《原子物理学》(杨福家著,高等教育出版社2008年第4版),

《肿瘤放射物理学》考试大纲

考点:

第一章核物理基础

1、掌握相关概念

2、理解原子衰变类型及规律;

3、掌握放射性度量方面的简单计算;

第二章电离辐射与物质的相互作用(重点)

1、熟练掌握射线与物质的相互作用过程及规律

第三章电离辐射吸收剂量的测定(重点)

1、掌握辐射剂量学中相关概念,理解各单位量的关联与区别;

2、掌握电离室结构及工作机制,掌握其吸收剂量测量原理;

3、掌握吸收剂量测量标准的发展历史及不同标准间的区别;

4、掌握吸收剂量测量的不同测量方法及特点;

5、了解剂量计的特点(不确定度、准确度、线性、能量依赖性、剂量

率依赖性等)

第四章放射源及放射治疗机

1、了解放射源及照射方式的分类及特点;

2、掌握钴60治疗机的构造及特点;

3、了解医用电子加速器的发展历史;

4、掌握现代医用直线加速的构造及工作原理;

第五章X射线剂量学(重点)

1、了解X射线产生方式及能谱分布特点;

2、掌握描述X射线剂量学的相关概念;

3、熟练掌握X射线的剂量学特点;

4、简单了解X线处方剂量计算(规则射野、不规则射野等);

5、了解全身X线照射的剂量学特点;

第六章高能电子线剂量学(重点)

1、了解医用电子线产生方式及特点;

2、掌握描述医用电子线剂量学的相关概念;

3、熟练掌握X射线的剂量学特点;

4、简单了解电子线治疗的计划设计要点;

5、了解全身电子线照射的剂量学特点;

第七章近距离照射剂量学

1、掌握近距离照射的剂量学特点;

2、了解放射源的校准方法;

3、了解放射源的定位方法;

4、了解腔内照射剂量学特点及照射方法(巴黎系统、曼侧斯特系统)

5、了解组织间照射的剂量学特点;

第八章治疗计划设计的物理原理及生物学基础

1、了解放射剂量的临床要求(基本概念);

2、掌握临床剂量学原则及靶区剂量规定;

3、掌握X线及高能电子线射野设计原理;

第九章治疗计划的设计与执行

1、掌握放射治疗流程;

2、了解影响实际放射剂量的因素;

3、了解放射治疗计划的评估方式及特点;

第十章三维剂量计算模型和治疗方案优化

1、了解高能电子线及X线剂量计算模型及特点;

第十一章调强放射治疗

1、了解调强放射治疗的实现方式;

2、了解立体定向放射治疗的实现方式及特点;

第十二章放射治疗的质量保证及质量控制

1、了解质量控制的目的及要求;

2、简单了解放射治疗过程中质量控制方法;

第十三章辐射防护

1、了解辐射的来源及对人体健康的影响;

2、了解辐射防护的基本原则及标准

参考书目:

肿瘤放射物理学(胡逸民主编)

1.金属材料常见的三种晶体结构。

2.金属材料中的位错,晶体中的热缺陷,多晶材料晶界的平衡形貌。

3.相图热力学化学位的定义及其图解求法,相平衡原理,克劳修斯-克莱柏

隆方程,相律,二元匀晶、共晶及包晶相图

4.凝固与结晶形核,晶体的生长,固溶体材料非平衡结晶,成分过冷,复

杂二元相图分析方法,三元相图分析方法。

5.扩散与固态相变材料中扩散的微观机理,互扩散,反应扩散,固态相变

的特点与分类,过饱和固溶体的分解,增幅分解,马氏体相变。

6.材料的变形与断裂滑移,塑性变形,加工硬化,特殊塑性变形方式,回

复与再结晶。

参考书目:

1.材料科学基础(第2版),机械工业出版社,石德珂,2003年

2.材料科学基础,清华大学出版社,潘金生田民波,1998年

3.材料物理,武汉理工大学出版社,王国梅万发荣,2004年

课程使用教材:

数字电子技术基础(第5版)阎石高等教育出版社 2006 电子技术基础(模拟部分)(第5版)康华光高等教育出版社 2006

《半导体物理》考试大纲

一、半导体结构和能带

掌握半导体晶格结构和结合特性、能带和电子状态、载流子及载流子运动、有效质量及回旋共振、硅、锗的能带;

掌握半导体中的杂质与杂质能级、缺陷与缺陷能级;

二、载流子的统计分布

掌握费米分布和状态密度、平衡载流子浓度、本征半导体载流子浓度、杂质半导体载流子浓度、补偿杂质半导体、简并半导体的概念和计算方法

三、载流子输运理论

掌握载流子的散射、电导率与迁移率的经典理论、波尔兹曼方程与电导统计理论;了解霍尔效应、强场效应和热载流子;

四、非平衡载流子

掌握非平衡载流子的产生和复合、非平衡载流子的扩散和漂移、连续性方程、复合机理(直接复合、俄歇复合、间接复合、表面复合);

五、PN结

掌握PN结及其能带图、I-V特性、击穿特性等

六、半导体表面与MIS结构

掌握表面态和表面空间电荷区、表面电场效应、半导体MIS结构与特性;

物理学相关 半导体物理与器件实验教学大纲

《半导体物理与器件》课程实验教学大纲 Semiconductor Physics and devices 课程编号:(03320070) 课程教学总学时:45 实验总学时:3 总学分:3 先修课程:普通物理、量子力学、半导体物理 适用专业:光电信系科学与工程 一、目的与任务 本课程实验是光信息科学与技术专业及光电信息工程专业的主要基础课程实验之一。 本系列实验的目的和任务是通过对本实验课程的教学,培养学生对半导体拉曼光谱的测量的专业实验知识和技能,充分发挥学生的主动性和培养独立实验能力,使学生系统地掌握拉曼散射的基本原理,提高学生实验技能,学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验教学的基本要求 (1)掌握实验的基本原理; (2)了解所涉及的常用装置、仪器的正确使用方法; (3)测试有关数据; (4)数据处理,将理论计算结果与实验测试结果进行比较,得出拉曼光谱线,并对其进行分析。 通过实验,使学生能正确进行相应的仪器操作和使用、准确判断实验现象和结果的合理性,同时具有处理测量数据的能力。 三、本课程开设的实验项目: 注:1、类型---指设计性、综合性、验证性;2、要求---指必修、选修;3、该表格不够可拓展。 四、实验成绩的考核与评定办法: 实验成绩的考核,以实验报告和实验过程为考核依据,实验报告要求对基本原理、测量方法、实验数据记录和处理等过程描述详细准确。考试课成绩按百分制记分,实验课成绩在本门课程总成绩中由任课老师在10%~15%内确定。五、大纲说明

学生在实验前应认真阅读实验指导书,了解实验目的和实验原理, 明确本次实验中所需测量结果, 所采用的实验方法, 使用什么仪器, 控制什么条件,需要注意什么问题,并设计好记录数据表格(包含原始数据、中间计算数据及实验结果)等。在检查完实验器材完整后,根据预习内容进行实验,认真分析实验现象,整理实验结果,填写在实验报告相应位置处。老师检查实验结果并认可后,学生须切断电源、清理实验仪器、整洁实验台面,经老师同意后学生方可离开实验室。 制定人:祝远锋审定人:批准人: 时间: 2013/4/25

浙江大学硕士生入学考试842试卷

浙江大学 2012年攻读硕士学位研究生入学考试试题 考试科目 信号系统与数字电路A 编号 842 一、简单计算题(每题5分,共25分) 1、已知x(t)和h(t)如下图所示,求y(t) = x(t)*h(t)。 2、求x (t )=te ?(t+2)u(t +1)的单边拉普拉斯变换X(s)。 3、考虑一离散LTI 系统,其单边脉冲响应为h [n ]=(13)n u[n]。求激励信号x [n ]=u [?n ]+u[n]时的响应。 4、设有一带通系统,其频率响应为H (jω)=12+j (ω?10)+12?j (ω?10),求系统的单位冲激响应h(t)。 5、某序列x[n],其离散傅立叶变换为,若给定下列条件: (1)、x[n]是反因果的; (2)Im[XX(e jω)(e jω)]=sin 2ω?sin ω; (3)、12π∫|X(e jω)|2dω=2x ?x 试求x[n]。 二、如下图所示系统,一个单位脉冲响应为h [n ]=(1 4)n u[n +12]的LTI 系统的输出乘以单位阶跃函数u[n]后,得到总的系统输出。回答下列问题,并简要陈述你的理由。(10分) (1)、整个系统是LTI 的吗? (2)、整个系统是因果的吗?稳定的吗?

三、研究一个LTI 系统,输入x[n]和输出y[n]满足差分方程(15分) y [n ]?y [n ?1]?34 y [n ?2]=x[n ?1] (1)、求该系统的系统函数H(z),并画出零极点图; (2)、求系统的单位脉冲响应h[n],并分析其因果性与稳定性; (3)、求系统的频率响应。 四、某系统微分方程为(15分) d 2y(t)dt 2+3dy(t)dt +2y (t )=dx(t)dt +3x(t) (1)、画出系统直II 型结构框图; (2)、若输入信号x (t )=e ?t u(t),则系统完全响应为y (t )=[(2t +3)e ?t ?2e ?2t ]u(t)。试求系统的零输入响应,零状态响应及自由响应与强迫响应。 五、下图所示系统中,假设采样与重构都是理想的,且H (e jω)= jωT ,?π≤ω≤π,试求 T=(1/10)s ,输入x c (t )=cos(16πt)时相应的输出y c (t)。(10分)

半导体物理考研总结

1.布喇格定律(相长干涉):点阵周期性导致布喇格定律。 2.晶体性质的周期性:电子数密度n(r)是r的周期性函数,存在 3.2πp/a被称为晶体的倒易点阵中或傅立叶空间中的一个点,倒易点中垂线做直线可得布里渊区。 3.倒易点阵: 4.衍射条件:当散射波矢等于一个倒易点阵矢量G时,散射振幅 达到最大 波矢为k的电子波的布喇格衍射条件是: 一维情况(布里渊区边界满足布拉格)简化为: 当电子波矢为±π/a时,描述电子的波函数不 再是行波,而是驻波(反复布喇格反射的结果) 5.布里渊区: 6.布里渊区的体积应等于倒易点阵初基晶胞的体积。 7.简单立方点阵的倒易点阵,仍是一个简立方点阵,点阵常数为2π/a,第一布里渊区是个以原点为体心,边长为2π/a的立方体。 体心立方点阵的倒易点阵是个面心立方点阵,第一布里渊区是正菱形十二面体。面心立方点阵的倒易点阵是个体心立方点阵,第一布里渊区是截角八面体。 8.能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。(边界处布拉格反射形成驻波,造成能量差)

9.第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 绝缘体:至一个全满,其余全满或空(初基晶胞内的价电子数目为偶数,能带不 交叠)2N. 金属:半空半满 半导体或半金属:一个或两个能带是几乎空着或几乎充满以外,其余全满 (半金属能带交叠) 10.自由电子: 11.半导体的E-k关系: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体物理刘恩科考研复习总结

半导体物理刘恩科考研 复习总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以 在整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围 内,可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取 向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂 质。) 2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能

普通生物学科目研究生考试大纲

普通生物学科目研究生考试大纲 本门课程总分150分,考试时间180分钟 一、考试内容-中国在职研究生招生网官网 本课程包括三部分内容:普通生物学、植物生物学、动物生物学,第一部分为主体,分值在90分左右(主要考查对生物学一般概念、原理的掌握程度,生态学部分不在本课程考查范围之内),后两部分分值各占30分左右(主要考查考生对动植物结构、功能和主要分类群典型特征的掌握程度)。 第一部分普通生物学 (一)绪论:生物界与生物学 1. 生物的特征 2. 生物界是一个多层次的组构系统 3. 把生物界划分为5个界 4. 生物和它的环境形成相互联结的网络 5. 在生物界巨大的多样性中存在着高度的统一性 6. 研究生物学的方法 7. 生物学与现代社会生活的关系 (二)细胞 1.生命的化学基础 1)原子和分子 2)组成细胞的生物大分子 3)糖类 4)脂质 5)蛋白质 6)核酸 2. 细胞结构与细胞通讯 1)细胞的结构 2)真核细胞的结构 3)生物膜——流动镶嵌模型 4)细胞通讯 3. 细胞代谢 1)能与细胞 2)酶

3)物质的跨膜转运 4)细胞呼吸 5)光合作用 5. 细胞的分裂和分化 1)细胞周期与有丝分裂 2)减数分裂将染色体数由2n减为n 3)个体发育中的细胞 (三)动物的形态与功能(重点参阅动物生物学部分) 1. 高等动物的结构与功能 1)动物是由多层次的结构所组成的 2)动物的结构与功能对生存环境的适应 3)动物的外部环境与内部环境 2. 营养与消化 1)营养 2)动物处理食物的过程 3)人的消化系统及其功能 4)脊椎动物消化系统的结构与功能对食物的适应 3. 血液与循环 1)人和动物体内含有大量的水 2)血液的结构与功能 3)哺乳动物的心脏血管系统 4. 气体交换与呼吸 1)人的呼吸系统的结构与功能 2)人体对高山的适应 3)危害身体健康的呼吸系统疾病 5. 内环境的控制 1)体温调节 2)渗透调节与排泄 6. 免疫系统与免疫功能 1)人体对抗感染的非特异性防卫 2)特异性反应(免疫应答) 3)免疫系统的功能异常 7. 内分泌系统与体液调节 1)体液调节的性质

半导体集成电路课程教学大纲(精)

《半导体集成电路》课程教学大纲 (包括《集成电路制造基础》和《集成电路原理及设计》两门课程) 集成电路制造基础课程教学大纲 课程名称:集成电路制造基础 英文名称:The Foundation of Intergrate Circuit Fabrication 课程类别:专业必修课 总学时:32 学分:2 适应对象:电子科学与技术本科学生 一、课程性质、目的与任务: 本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。 二、教学基本要求: 1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。 2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。 3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。 4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。 5、掌握溅射、蒸发原理,了解系统组成,形貌及台阶覆盖问题的解决。 6、掌握硅化学汽相淀积(CVD)基本化学过程及动力学原理,了解各种不同材料、不同模式CVD方法系统原理及构造。 7、掌握外延生长的基本原理;理解外延缺陷的生成与控制方法;了解硅外延发展现状及外延参数控制技术。 8、掌握光刻工艺的原理、方法和流程,掩膜版的制造以及刻蚀技术(干法、湿法)的原理、特点,光刻技术分类;了解光刻缺陷控制和检测以及光刻工艺技术的最新动态。 9、掌握金属化原理及工艺技术方法;理解ULSI的多层布线技术对金属性能的基本要求,用Cu布线代替A1的优点、必要性;了解铝、铜、低k材料的应用。 10、掌握双极、CMOS工艺步骤;了解集成电路的隔离工艺,集成电路制造过程中质量管理基础知识、统计技术应用和生产的过程控制技术。 三、课程内容: 1、介绍超大规模集成电路制造技术的历史、发展现状、发展趋势;硅的晶体结构特点;微电子加工环境要求、单晶硅的生长技术(直拉法、区熔法)和衬底制备(硅圆片制备及规格,

浙江大学《计算机学科专业基础》(878)考研大

2017浙江大学《计算机学科专业基础》(878) 考研大纲 2017浙江大学《计算机学科专业基础》(878)考研大纲 《计算机学科专业基础》(878)是浙江大学自主命题,2017年《计算机学科专业基础》(878)综合考试有较大调整,《计算机专业基础》(878)涵盖程序设计、数据结构两门学科专业基础课程。 Ⅰ考查目标 《计算机专业基础》(878)综合考试涵盖程序设计、数据结构两门学科专业基础课程。要求考生比较系统地掌握上述专业基础课程的基本概念、基本原理和基本方法,能够综合运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、笔试 三、试卷内容结构

程序设计基础(C)60分 数据结构90分 四、试卷题型结构 单项选择题70分(35小题,每小题2分) 综合应用题80分 Ⅲ考查范围 程序设计基础(C) 【考查目标】 1.理解C程序设计语言结构,掌握数据表示和输入输出的基本方法,掌握流程控制、函数设计与调用方法; 2.理解模块化程序设计方法,掌握基本的C语言程序设计过程和技巧; 3.掌握初步的算法设计及数据组织方法,具备基本的问题分析和利用C语言进行求解问题的能力。 一、数据表达与组织 (一)常量,变量,运算与表达式

(二)一维和二维数组,字符数组和字符串 (三)指针与数组,结构与数组 (四)指针与结构,单向链表 二、语句及流程控制 (一)复合语句 (二)分支控制(if、switch) (三)循环控制(for、while、do—while) 三、程序结构和函数 (一)C程序结构 (二)函数的定义、参数传递和调用 (三)函数的递归调用 (四)变量的存储类别、作用域,全局变量和局部变量四、输入/输出和文件 (一)标准输入和输出 (二)文本文件与二进制文件

西安电子科技大学2018考研大纲:半导体物理与器件物理.doc

西安电子科技大学2018考研大纲:半导体 物理与器件物 出国留学考研网为大家提供西安电子科技大学2018考研大纲:801半导体物理与器件物理基础,更多考研资讯请关注我们网站的更新! 西安电子科技大学2018考研大纲:801半导体物理与器件物理基础 “半导体物理与器件物理”(801) 一、 总体要求 “半导体物理与器件物理”(801)由半导体物理、半导体器件物理二部分组成,半导体物理占60%(90分)、器件物理占40%(60分)。 “半导体物理”要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。重点掌握半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律等。 “器件物理”要求学生掌握MOSFET器件物理的基本理

论和基本的分析方法,使学生具备基本的器件分析、求解、应用能力。要求掌握MOS基本结构和电容电压特性;MESFET器件的基本工作原理;MOSFET器件的频率特性;MOSFET器件中的非理想效应;MOSFET器件按比例缩小理论;阈值电压的影响因素;MOSFET的击穿特性;掌握器件特性的基本分析方法。 “半导体物理与器件物理”(801)研究生入学考试是所学知识的总结性考试,考试水平应达到或超过本科专业相应的课程要求水平。 二、 各部分复习要点 ●“半导体物理”部分各章复习要点 (一)半导体中的电子状态 1.复习内容 半导体晶体结构与化学键性质,半导体中电子状态与能带,电子的运动与有效质量,空穴,回旋共振,元素半导体和典型化合物半导体的能带结构。 2.具体要求 半导体中的电子状态和能带 半导体中电子的运动和有效质量 本征半导体的导电机构

2018年浙江大学845自动控制原理考研大纲

《自动控制原理》(科目代码845)考试大纲这个大纲是2017年9月25日浙大控制官网才出的,虽然是新的,但是和以前基本 一模一样,没有变化。 参考书目: (1)各出版社出版的各种自动控制原理教材及习题集 (2)孙优贤、王慧主编. 自动控制原理.北京:化工出版社,2011年6月 (3)胡寿松主编. 自动控制原理(第四版、第五版、第六版). 分别于2001年2月、 2007年6月、2013年5月由科学出版社的(该书初版于1979年,前三版均由国防工业出版社出版,亦可作为参考书) 特别提醒:本考试大纲仅适合报考2018级浙江大学控制科学与工程学院硕 士研究生、专业课考《自动控制原理》(科目代码845)的考生。该门课程的 满分为150分。 一、总的要求 全面掌握自动控制系统的基本概念与原理,深入理解与掌握自动控制系统分析与 综合设计的方法,并能用这些基本的原理与方法举一反三地分析问题、解决问题。 二、基本要求 (1)自动控制的一般概念:掌握自动控制的基本概念、基本原理与自动控制系统组 成、分类,能熟练地将具体对象的控制系统物理结构图表示抽象成控制系统的方块图表示,能清楚地分析其中各种物理量、信息流之间的关系。 (2)动态系统的数学模型:能建立给定典型环节与系统的数学模型,包括微分方程、 传递函数、状态空间等模型;能熟练地通过方块图简化方法与信号流图等方法获得系统总的传递函数;能根据要求进行各种数学模型之间的相互转换。 (3)线性时不变连续系统的时域分析:熟悉一阶、二阶及高阶系统的特征,掌握基 于微分方程模型的时域分析,包括微分方程的求解、拉普拉斯变换的应用;状态空间模型的求解与分析;系统时间响应的性能指标计算;系统的稳定性分析、稳态误差系数与稳态误差的计算等。 (4)根轨迹:掌握根轨迹法的基本概念、根轨迹绘制的基本法则及推广法则;能正 确绘制根轨迹并利用根轨迹分析方法进行系统性能的分析,根据性能要求进行设计。

历年华东师范大学906半导体物理考研真题答案资料

历年华东师范大学906半导体物理考研真题答案资料一、考试解读: part 1 学院专业考试概况: ①学院专业分析:含学院基本概况、考研专业课科目:906半导体物理的考试情况; ②科目对应专业历年录取统计表:含华东师范大学信息科学技术学院电子工程系相关专业的历年录取人数与分数线情况; ③历年考研真题特点:含华东师范大学考研专业课906半导体物理各部分的命题规律及出题风格。 part 2 历年题型分析及对应解题技巧: 根据华东师范大学906半导体物理考试科目的考试题型(名词解释题、简答题、论述题等),分析对应各类型题目的具体解题技巧,帮助考生提高针对性,提升答题效率,充分把握关键得分点。 part 3 2018真题分析:

最新真题是华东师范大学考研中最为珍贵的参考资料,针对最新一年的华东师大考研真题试卷展开深入剖析,帮助考生有的放矢,把握真题所考察的最新动向与考试侧重点,以便做好更具针对性的复习准备工作。 part 4 2019考试展望: 根据上述相关知识点及真题试卷的针对性分析,提高2019考生的备考与应试前瞻性,令考生心中有数,直抵华东师范大学考研的核心要旨。 part 5 华东师范大学考试大纲: ①复习教材罗列(官方指定或重点推荐+拓展书目):不放过任何一个课内、课外知识点。 ②官方指定或重点教材的大纲解读:官方没有考试大纲,高分学长学姐为你详细梳理。 ③拓展书目说明及复习策略:专业课高分,需要的不仅是参透指定教材的基本功,还应加强课外延展与提升。 part 6 专业课高分备考策略: ①考研前期的准备;

②复习备考期间的准备与注意事项; ③考场注意事项。 part 7 章节考点分布表: 罗列华东师范大学906半导体物理的专业课试卷中,近年试卷考点分布的具体情况,方便考生知晓华东师大考研专业课试卷的侧重点与知识点分布,有助于考生更具针对性地复习、强化,快准狠地把握高分阵地。 二、华东师范大学历年考研真题与答案: 汇编华东师大考研专业课考试科目的2010-2016、2018年考研真题试卷,并配备2010-2016、2018年考研真题答案详解。本部分包括了(解题思路、答案详解)两方面内容。首先对每一道真题的解答思路进行引导,分析真题的结构、考察方向、考察目的,向考生传授解答过程中宏观的思维方式;其次对真题的答案进行详细解答,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力。 2018年华东师范大学906半导体物理考研真题答案详解 2016年华东师范大学906半导体物理考研真题答案详解 2015年华东师范大学906半导体物理考研真题答案详解 2014年华东师范大学906半导体物理考研真题答案详解

南京信息工程大学2020考研大纲:820普通物理学(光学)

南京信息工程大学2020考研大纲:820普通物理 学(光学) 考研大纲频道为大家提供南京信息工程大学2019考研大纲:820普通物理学(光学),一起来看看吧!更多考研资讯请关注我们网站的更新! 南京信息工程大学2019考研大纲:820普通物理学(光学) 科目代码:820 科目名称:普通物理学(光学) 第一部分:大纲内容 《普通物理学(光学)》大纲主要包括《普通物理学》中的光学部分,主要内容涉及到《普通物理学》或《大学物理》教材中的“光学”部分,主要包括几何光学、波动光学、信息与偏振光学和波与粒子四个方面的内容。 一、几何光学 1、几何光学中的基本定律和原理 主要包括光的反射定律、折射定律、全反射和光的可逆性原理。 2、光在球面上的折射 主要包括球面折射公式、高斯公式、球面折射成像的作图法和球面折射的横向放大率。 3、薄透镜 主要包括薄透镜的基本概念,薄透镜成像公式和放大镜及其放大倍率的计算。 二、波动光学

1、光波及其相干条件 主要包括光波和光程的概念,光的相干条件和获得相干光的方法。 2、分波前干涉 主要包括杨氏双缝干涉的基本原理及其应用。 3、分振幅干涉 主要包括薄膜干涉的基本原理及其应用,迈克尔逊干涉的基本原理及其应用。 4、惠更斯-菲涅尔原理 主要包括惠更斯-菲涅尔原理和衍射现象的分类及其条件。 5、夫琅禾费衍射 主要包括单缝的夫琅禾费衍射衍射条件及其特征,圆孔的的夫琅禾费衍射衍射条件及其特征。 6、衍射光栅 主要包括光栅常数、谱线缺级和衍射光栅的应用。 7、衍射规律的应用 主要包括光学系统分辨本领的分析,X射线在晶体中的衍射。 三、偏振光学 1、偏振光学 主要包括自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光的概念,偏振光的获得和检测,旋光现象,磁致旋光效应、原理 及其应用,电光效应、原理及其应用,光的吸收及其应用,光的色 散及其应用和光的散射及其应用。 四、波与粒子 1、黑体辐射

半导体物理-兰州大学物理学院

《半导体物理实验》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:半导体物理实验 所属专业:电子材料与器件工程专业本科生 课程性质:专业必修课 学分: 4 (二)课程简介、目标与任务; 本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。 (四)教材与主要参考书。 教材:《半导体物理实验讲义》,自编教材 参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社, 2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976 二、课程内容与安排 实验一绪论

1、介绍半导体物理实验的主要内容 2、学生上课要求,分组情况等 实验二四探针法测量电阻率 一、实验目的或实验原理 1、了解四探针电阻率测试仪的基本原理; 2、了解的四探针电阻率测试仪组成、原理和使用方法; 3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。 二、实验内容 1、测量单晶硅样品的电阻率; 2、测量FTO导电层的方块电阻; 3、对测量结果进行必要的修正。 三、实验仪器与材料 四探针测试仪、P型或N型硅片、FTO导电玻璃。 实验三椭圆偏振法测量薄膜的厚度和折射率 一、实验目的或实验原理 1、了解椭圆偏振法测量薄膜参数的基本原理; 2、掌握椭圆偏振仪的使用方法,并对薄膜厚度和折射率进行测量。 二、实验内容 1、测量硅衬底上二氧化硅膜的折射率和厚度; 三、实验主要仪器设备及材料 椭圆偏振仪、硅衬底二氧化硅薄膜。 实验四激光测定硅单晶的晶向 一、实验目的或实验原理 1、理解激光测量Si单晶晶面取向的原理;

浙江大学化工原理考研大纲

太原科技大学全国硕士研究生招生考试 业务课考试大纲(初试) 科目代码:837 科目名称:化工原理 1.前言 化工原理课程研究生入学考试主要测试考生化工单元操作的掌握情况。测试分两个方面:一是化工单元过程原理,测试考生基本概念,过程计算和熟悉程度;二是综合应用化工单元过程原理能力,从而对考生有较全面的评价。 2.题型说明 化工原理考试采用闭卷考试,试卷由以下三部分构成: (1)基本概念题:由选择题、填空题和解答题构成。 (2)计算题:包括过程计算、公式推导。 (3)实验题:包括实验设计、实验原理和实验现象解释。 3.考试内容 3.1绪论 (1)化学工程及其发展。 (2)化工原理课程的性质、内容和任务。 (3)四个基本关系:物料衡算、热量衡算、平衡关系及速率关系。 3.2流体流动 (1)流体静力学方程及其应用。 (2)流量与流速、定态与非定态流动、连续性方程式、能量衡算式、柏努利方程式的应用。 (3)牛顿粘性定律与流体的粘度、非牛顿型流体的概念、流动类型与雷诺准数、滞流与湍流、边界层的概念。 (4)流体在直管中的流动阻力、摩擦系数、因次分析、管路上的局部阻力、管路系统中的总能量损失。 (5)并联管路与分支管路。 (6)测速管、孔板与文丘里流量计和转子流量计。 3.3流体输送设备 (1)离心泵的工作原理和主要部件、离心泵的基本方程式、离心泵的性能参数与特性曲线、离心泵的性能改变和换算、离心泵的气蚀现象与允许吸上高度、离心泵的工作点与调节、离心泵的联用、离心泵的类型与选用。其它类型泵,如往复泵、旋转泵、漩涡泵的工作原理和适用范围。 (2)离心通风机的结构、性能参数和选择,离心鼓风机和压缩机、旋转鼓风机、真空泵。 3.4非均相物系的分离 (1)沉降速度、降沉室、沉降槽。 (2)过滤操作的基本概念、过滤基本方程式、恒压过滤、恒速过滤与先恒速后恒压过滤、过滤常数的测定、过滤设备、滤饼的洗涤、过滤机的生产能力。

半导体物理笔记总结 对考研考刘恩科的半导体物理很有用 对考研考刘恩科的半导体物理很有用

半导体物理 绪 论 一、什么是半导体 导体 半导体 绝缘体 电导率ρ <10- 9 3 10~10- 9 10> cm ?Ω 此外,半导体还有以下重要特性 1、 温度可以显著改变半导体导电能力 例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C 27 300K )时,电阻率由214000Ω降至0.2Ω 3、 光照可以明显改变半导体的导电能力 例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。 另外,磁场、电场等外界因素也可显著改变半导体的导电能力。 综上: ● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。 二、课程内容 本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。 预备知识——化学键的性质及其相应的具体结构 晶体:常用半导体材料Si Ge GaAs 等都是晶体 固体 非晶体:非晶硅(太阳能电池主要材料) 晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(6 10-m )按一定方式规则排列——称为长程有序。 单晶:主要分子、原子、离子延一种规则摆列贯穿始终。 多晶:由子晶粒杂乱无章的排列而成。 非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有 序——短程有序。 §1 化学键和晶体结构 1、 原子的负电性 化学键的形成取决于原子对其核外电子的束缚力强弱。 电离能:失去一个价电子所需的能量。 亲和能:最外层得到一个价电子成为负离子释放的能量。(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0? (Li 定义为1) ● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。 ● 价电子向负电性大的原子转移 ⅠA 到ⅦA ,负电性增大,非金属性增强

中国科学院大学 考研《普通物理(甲)》考试大纲

中国科学院大学考研《普通物理(甲)》 考试大纲 一、考试科目基本要求及适用范围概述 本《普通物理(甲)》考试大纲适用于中国科学院大学理科类的硕士研究生入学考试。普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。 二、考试形式 考试采用闭卷笔试形式,考试时间为180分钟,试卷满分150分。 试卷结构:单项选择题、简答题、计算题,其分值约为1:1:3 三、考试内容: 大学理科的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。 四、考试要求: (一) 力学 1. 质点运动学: 熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。 2.质点动力学: 熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。 3.刚体的转动: 熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。 4.简谐振动和波: 熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;面简谐波波动方程;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。 5.狭义相对论基础: 理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础;相对论的质能守恒定律。 (二) 电磁学 1. 静电场: 熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。 2. 稳恒电流的磁场:

19考研-浙江大学软件工程878考试大纲

19考研|浙江大学软件工程878专业考试大纲 《计算机专业基础》(878)综合考试涵盖程序设计、数据结构两门学科专业基础课程。要求考生比较系统地掌握上述专业基础课程的基本概念、基本原理和基本方法,能够综合运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、笔试 三、试卷内容结构 程序设计基础(C)60分 数据结构90分 四、试卷题型结构

单项选择题70分(35小题,每小题2分) 综合应用题80分 Ⅲ考查范围 程序设计基础(C) 【考查目标】 1.理解C程序设计语言结构,掌握数据表示和输入输出的基本方法,掌握流程控制、函数设计与调用方法; 2.理解模块化程序设计方法,掌握基本的C语言程序设计过程和技巧; 3.掌握初步的算法设计及数据组织方法,具备基本的问题分析和利用C语言进行求解问题的能力。 一、数据表达与组织 (一)常量,变量,运算与表达式 (二)一维和二维数组,字符数组和字符串 (三)指针与数组,结构与数组 (四)指针与结构,单向链表 二、语句及流程控制 (一)复合语句 (二)分支控制(if、switch)

(三)循环控制(for、while、do—while) 三、程序结构和函数 (一)C程序结构 (二)函数的定义、参数传递和调用 (三)函数的递归调用 (四)变量的存储类别、作用域,全局变量和局部变量四、输入/输出和文件 (一)标准输入和输出 (二)文本文件与二进制文件 (三)文件打开、关闭、读写和定位 五、编译预处理和命令行参数 (一)宏定义和宏函数 (二)命令行参数和使用 六、基本算法设计与程序实现 (一)简单排序算法(插入、选择、冒泡)、二分查找(二)链表、文件中查找 (三)级数求和、进制转换

823普通物理考试大纲

硕士研究生招生考试业务课考试大纲 考试科目: 普通物理 科目代码: 823 一、 参考书目: 《普通物理学教程:力学》(第二版),漆安慎,高等教育出版社,2005年 《电磁学》(上、下册)(第二版),赵凯华,高等教育出版社,1985年 或包含以下“考试内容范围”所列内容的任意一套“普通物理”或“大学物理”教科书。 二、考试内容范围: 力学部分: (一)、质点运动学 1、直角坐标系中质点的位置矢量、速度、加速度、运动学方程 2、质点运动的角量描述(即角位置、角速度、角加速度等),自然坐标系中质点的切向和法向加速度 3、掌握已知运动方程()r r t 求)(t v 和)(t a ,已知加速度)(t a 求)(t v ,)(t r 的方法 (二)、质点动力学 1、动量、动量守恒定律、动量定理的应用 2、牛顿运动定律及其应用 3、功的计算,质点和质点系的动能定理 4、保守力和非保守力,重力、弹簧弹力、万有引力的功及其相关的势能 5、势能与保守力的关系,机械能守恒定律及应用 6、关于质点对于某固定点的角动量定理及角动量守恒 (三)、刚体力学 1、刚体定轴转动的运动学方程、角速度、角加速度 2、刚体定轴转动转动惯量的计算。 3、刚体定轴转动时的动能表示式、转动定理、角动量守恒定律及其应用

4、刚体定轴转动与质点平动的组合求解 (四)、振动和波动 1.简谐振动的运动学方程及动力学方程 2.同方向、同频率和同方向不同频率简谐振动的合成 3.波的干涉 (五)、狭义相对论 1、狭义相对论的基本假设及本质含义 电磁学部分 (一)、静电场 1、库仑定律,电场和电场强度 2、高斯定理及应用 3、电势,电场强度与电势的相互关系 4、掌握各种对称性带电体周围的电势与场强的分布规律和计算 5、掌握电容器与电容计算方法及其电能储存,静电场能量的计算。 6、有介质时的高斯定理 (二)、恒磁场 1、磁场,磁感应强度,毕奥--萨伐尔定律 2、掌握磁通量的定义及计算方法,磁场的高斯定理 3、安培环路定理,磁场对载流导线及线圈的作用 4、带电粒子在电场和磁场中的运动 (三)、电磁感应 1、电磁感应的基本定律,动生与感生电动势的计算

半导体集成电路课程教学大纲

《太阳能电池及其应用》课程教学大纲 (春季) 课程英文名称:Solar cells and their applications 一、先修课程:半导体物理,微电子器件与IC设计,微电子工艺学 二、适用专业:集成电路工程领域工程硕士 三、课程性质:选修 四、教学目的及要求 本课程讲授太阳能电池的理论基础和设计技术,介绍太阳能电池的制备技术,太阳能电池光伏应用技术,为太阳能电池的设计与开发提供理论指导,为今后从事光伏技术工作打下良好基础。 要求掌握各种太阳能电池的工作原理,太阳能电池光伏应用基础,太阳能电池的设计方法和太阳能电池的关键制备技术,光伏发电系统与设计。主要内容有:太阳能电池概论;硅太阳能电池;薄膜太阳能电池;纳米技术在太阳能电池中的应用;柔性太阳能电池;太阳能电池发展方向;太阳能电池关键技术;透明导电薄膜技术;太阳能电池新技术;太阳能电池设计;太阳能光伏发电系统;太阳能电池应用。 五、教学内容 第一章绪论 §1-1 能源概论 §1-2 太阳能资源分布 §1-3 太阳辐射 §1-4 太阳能利用 第二章太阳能电池概论 §2-1 光电转换 §2-2 太阳能电池性能参数与测试 §2-3 电池效率极限 第三章各种太阳能电池 §3-1 晶体硅电池

§3-2 砷化镓电池 §3-3 CIGS系列太阳能电池 §3-4 有机与燃料敏化电池 §3-5 CdTe电池 §3-6 薄膜技术与薄膜电池 §3-7 其他新型电池 第四章太阳能电池制备技术 §4-1 单晶硅电池制备技术 §4-2 多晶硅电池制备技术 §4-3 其他电池制备技术 第五章太阳能电池应用技术 §5-1 应用概论 §5-2 光伏系统 §5-3 蓄电池 §5-4 逆变器 §5-5 充放电控制 §5-6 发电系统的设计 六、学时分配 七、主要参考书 [1] Practical Handbook of Photovoltaics: Fundamentals and Applications ,Edited by: Tom Markvart and Luis Castaner.

浙江大学844考研大纲

《信号与电路基础》(科目代码844)考试大纲 特别提醒:本考试大纲仅适合2013年硕士研究生入学考试。该门课程包括两部分内容,(-)信号与系统部分,占100分;(二)数字电路部分, 占50分。 (一)信号系统部分 1.考研建议参考书目 《信号与系统》(第二版),于慧敏等编著,化学工业出版社。 2.基本要求 要求学生掌握用基本信号(单位冲激、复指数信号等)分解一般信号的数学表示和信号分析法;掌握LTI系统分析的常用模型(常系数线性微分、差分方程、卷积表示、系统函数及模拟框图等);掌握信号与系统分析的时域法和变换域法。要求学生掌握信号与系统分析的一些重要概念和信号与系统的基本性质,熟练掌握信号与系统的基本运算;掌握信号与系统概念的工程应用及方法:调制、采样、滤波、抽取和内插;掌握连续时间信号的离散化处理的原理和基本设计方法。 一.信号与系统的基本概念 (1)连续时间与离散时间的基本信号 (2)信号的运算与自变量变换 (3)系统的描述与基本性质 二.LTI系统的时域分析 (1)连续时间LTI系统的时域分析:卷积积分,卷积性质 (2)离散时间LTI系统的时域分析:卷积和,卷积性质 (3)零输入、零状态响应,单位冲激响应 (4)LTI系统的基本性质 (5)用微分方程、差分方程表征的LTI系统的框图表示 三.连续时间信号与系统的频域分析 (1)连续时间LTI系统的特征函数 (2)连续时间周期信号的傅里叶级数表示 (3)非周期信号连续时间的傅里叶变换 (4)傅里叶变换性质 (5)连续时间LTI系统频率响应,连续时间LTI系统的频域分析 (6)信号滤波、理想低通滤波器 四. 离散时间信号与系统的频域分析 (1)离散时间LTI系统的特征函数 (2)离散时间周期信号的傅立叶级数表示 (3)非周期离散时间信号的傅立叶变换 (4)离散时间傅立叶变换的性质 (5)离散时间LTI系统的频率响应,离散时间LTI系统的频域分析 五.采样、调制与通信系统 (1)连续时间信号的时域采样定理 (2)欠采样与频谱混叠 (3)离散时间信号的时域采样定理,离散时间信号的抽取和内插

相关文档
最新文档