运放的应用实例和设计指南

运放的应用实例和设计指南
运放的应用实例和设计指南

1.1运放的典型设计和应用

1.1.1运放的典型应用

运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

1) 运放在有源滤波中的应用

图有源滤波

上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空,会导致运放输出异常。

滤波最常用的3种二阶有源低通滤波电路为

巴特沃兹,单调下降,曲线平坦最平滑;

切比雪夫,迅速衰减,但通带中有纹波;

贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波

电路的画法和截止频率

2) 运放在电压比较器中的应用

R785K1

ACH_BF1

FREN1

U85PS2801-1

1

2

4

3

R273

1K

R274

1K C213

22nF

FREN1

R292

200K

-

+

U87B

LM393DR2G

5

6

7

R275

1K

图电压比较

上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。

3) 恒流源电路的设计

如图所示,恒流原理分析过程如下:

U5B(上图中下边的运放)为电压跟随器,故V4

V1=;

由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V5

V3=;

而 ()

421

2020

V4-Vref V5V R R R ++?

=;

()019

1819

0-V2 V3++?=R R R ;

有以上等式组合运算得:Vref V1 V2=-

当参考电压Vref 固定为时,电阻R30为Ωk ,电流恒定输出。

该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。

但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

4) 整流电路中的应用

图整流电路

上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。

该电路功能类似一些DAC功能的接口。

5)热电阻测量电路

C31

图热电阻测量电路

上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。

该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路

图热电阻测量简化电路

6)电压跟随器

在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。

R65

5K1

R64

5K1

图电压跟随器

上图是运用运放实现了电阻分压的功能,首先用电阻获得需要输出的电压,然后用运放对该电压进行跟随,提高其输出能力。

7)单电源的应用

在运放的实际使用,我们一般为了保持运放的频率特性,一般都采用双电源供电,但有的时候在实际使用,我们只有单电源的情况,也能实现运放的正常工作。

首先我们运用运放跟随电路,实现一个VCC/2的分压:

R655K1

R645K1

图 分压电路

当然,如果在要求不是很高的场合,我们可以直接电阻分压,获得+VCC/2,但由于电阻分压的特性所在,其动态的响应速度会非常慢,请谨慎使用。

获得+VCC/2后,我们可以用单电源实现信号放大功能,如下图:

图 单电源的应用

该电路中 R66=R67//R68, 信号的输出增益G=-R67/R68 。

具体应用如下图

运放为单+5V_AD 供电,AD 芯片的电压是(基准电压芯片REF3033得到),该再电阻分压和经过运放跟随后得到,给到运放的同相输入端

图单电源差分输入并放大的应用1.1.2运放的应用要点

运放单电源供电工作的运放一定要加直流偏置(如图中的),否则运放无法工作.运放

普通运放不能直接驱动容性负载,若驱动容性负载,必须用电容进行相位补

偿或输出串电阻再接负载.

运放

同向放大器的输入端一定要对地加偏置电阻作为直流通路.

上图为典型的同相放大器。其中,同相输入端的对地电阻R2有两个作用。第一个作用是通过电阻R2给运放的同相输入端提供一个对地的直流通路,使得运放内部与同相输

入端相连的基极通过电阻R2与负电源构成回路以形成基极电流(参见下图);。

R2的第二个作用是要保证运放的同相输入端和反相输入端的外电路的对称性,或者静态参数的对称性,以充分保证运放差分放大器形式的输入级的共模抑制能力,故应满足R2=R1∥R f。

运放对外接口的运放输入端,要在正负输入管脚并联一个TVS管,防止运放因为输入信号电压过大产生极性反转,形成寄生假信号输出。

运放增益10倍以上的放大器电路,要注意控制运放的GWB带宽增益积,防止器件自激。

运放单电源运放使用中,+Vcc/2虚地点设计除了直流电位要注意稳压(最好选用基准电压芯片输出该值)外,还要确保低阻抗的交流退耦,即对地并联至少10uF以上的低频退耦和以下的高频退耦。

运放带功率的运放的输出端要对电源和地线使用开关二极管进行钳位保护,尤其是挂接感性负载时。

运放在使用多路运放处理多路信号时需要注意,防止其中某一路信号的瞬时变化对另一路信号产生串扰,所以,设计时建议不要用一个运放处理多路信号,尽可能一路信号一个运放处理。

运放运放芯片基本上都是ESD敏感器件,运用时注意。

运放未使用的运放(多路运放中多余的通道)的引脚不应该悬空,也不应该将输入接地或接正负电源。建议将它接成跟随器的形式(输出接到反相输入),并将同相输入端连接到电源轨之间的某个电位(双电源系统的地,或电路中任何电位合适的点)。也可以将它用作缓冲放大器,把它加在系统中某个并不是很需要也没有危害的地方。

2附录

参考文献

《模拟电子技术基础》童诗白主编

《电子技术》许泽鹏主编

集成运放的线性应用实验报告

、实验目的 1、掌握运放的线性工作区特点; 2、理解运放主要参数的意义; 3、掌握运放电路线性区分析测试方法; 4、掌握运算放大电路设计方法; 5、掌握半波整流电路分析设计方法; 二、实验仪器 1. 多功能函数发生器1 台 2. 数字示波器1 台 3. 数字万用表1 台 4. 模拟电子技术实验训练箱1 台 三、实验电路 反向电压放大器电路 电压跟随器电路

加法器电路积分器电路 半波整流器电路 四、工作原理 集成运放是高增益的直流放大器。若在它的输出端和输入端之间加上反馈网络,则可以实现不同的电路功能。例如,施加线性负反馈,可以实现放大功能以及加、减、微分、积分等模拟运算功能,施加非线性负反馈,可以实现对数、乘、除等模拟运算功能以及非线性变换功能;施加线性或非线性反馈,或将正、负两反馈结合,可以实现产生

加法器电路积分器电路各种模拟信号

的功能。在使用集成运放时,要特别注意下列两个共性问题。首先,在输出信号中含有直流分量的应用场合下,必须考虑“调零”问题。第二,是相位补偿问题,不能让运算放大器产生自激现象,保证运放的稳定正常工作。此外, 为了见效 输入级偏置电流引起的误差,一般要求同相端和反相端到地直流电阻相等——保持输入端直流平衡。 五、实验内容与步骤 1、电压跟随器按图电路接线,输入信号由同相端引入,测取Vi ,Vo,探究 其关系。 2、反向电压放大器 按图电路接线,输入信号由反向端引入,测取Vi 、Vo,探究其有什么关系。

3、加法器 按如图电路接线。加入输入信号。然后分别给Vi1 、Vi2 两个电压值,并测Vi1 、Vi2 、Vo,分析其关系。 4、积分器 按电路接线输入方波信号,f=100-1000Hz ,用示波器观察Vo,并记录之。 5、半波整流电路 按图接线。输入信号为正弦波,f=100-1000Hz, 用示波器观察 Vo 的波形,并记录之

集成运放基本运算电路的分析与设计

实验报告 实验名称集成运放基本运算电路的分析与设计 课程名称模电实验 院系部:控计专业班级: 学生姓名:学号: 同组人:实验台号: 指导老师:成绩: 实验日期: 华北电力大学 一、实验目的和要求 1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。2.进一步熟悉该基本运算电路的输出与输入之间的关系。 二、实验设备 1.模拟实验箱 2.数字万用表 3.运算放大器LM324 4.10K、20K、100K的电阻若干

5.模拟实验箱上有滑动变阻器可供同学使用 三、实验原理. 实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。运放的理想参数: 1.开环电压增益 A=∞vd2.输入电阻 R=∞,R=∞icid3.输出电阻 R =0 o4.开环带宽 BW= ∞ KCMR =∞.共模抑制比5 .失调电压、电流6 、=0VI=0 ioio 根据分析时理想运放的条件,得出两个重要结论: =V 虚开路:I=0 V虚短路:i+-下图为反相比例运算放大器与同相比例运算放大器。 四、实验方法与步骤: 1.反向输入比例运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uiO相比较,分析误差产生的原因。 2.同向输入比例运算 参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。并将测量值与设计要求进行比较。 输入电压不能过大,要保证运放工作在线性区。

3.反向输入比例求和运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uOi相比较,分析误差产生的原因。 4.减法运算 参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。然后将测量值与设计要求进行比较。. 输入电压不能过大从而保证运放工作在线性区。五、实验结果与数据处理反向输入比例运算(V) U i U(V) o A 实验值u A-5 计算值 -5 -5 -5 u同向输入比例运算自行设计的电路图 自行设计的表格 (V)i (V) U o A 实验值u A6 6 6 6 计算值u反向输入求和运算 U(V) i1U-1 1 -1 (V) 1 i2U实验值o U计算值o减法运算自行设计电路图 自行设计表格 U (V) i1. -1 1 -1 1 (V) U i2U 实验值o U 计算值o六、思考题第

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

CMOS 两级运放设计

CMOS 两级运放的设计 1设计指标 在电源电压0-5V,采用0.5um上华CMOS工艺。完成以下指标: 2电路分析 2.1 电路图 2.2电路原理分析

两级运算放大器的电路结构如图1.1所示,偏置电路由理想电流源和M8组成。M8将电流源提供的电流转换为电压,M8和M5组成电流镜,M5将电压信号转换为电流信号。输入级放大电路由 M1~M5 组成。M1 和M2 组成PMOS 差分输入对,差分输入与单端输入相比可以有效抑制共模信号干扰;M3、M4 电流镜为有源负载,将差模电流恢复为差模电压。;M5 为第一级提供恒定偏置电流,流过M1,2的电流与流过M3,4的电流 1,23,45/2 d d d I I I ==。输出级放大电路 由M6、M7 组成。M6 将差分电压信号转换为电流,而M7 再将此电流信号转换为电压输出。M6 为共源放大器,M7 为其提供恒定偏置电流同时作为第二级输出负载。相位补偿电路由Cc 构成,构成密勒补偿。 3 性能指标分析 3.1 直流分析 由于第一级差分输入对管M1和M2相同,有 第一级差分放大器的电压增益为: 1 124m v ds ds g A g g -= + 第二极共源放大器的电压增益为 6 267 m v ds ds g A g g -= + 所以二级放大器的总的电压增益为 1626 1224675246672()()m m m m v v v ds ds ds ds g g g g A A A g g g g I I λλλλ=== ++++ 3.2频率特性分析 设1C 为第一级输出节点到地的总电容,有 1 2 2446GD DB GD DB GS C C C C C C =++++ 设2C 表示第二级输出节点与地之间的总电容,有 2 6 77DB DB GD L C C C C C =+++

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

运放的应用实例和设计指南

1.1 运放的典型设计和应用 1.1.1 运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图5.2 有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用

图5.3 电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=; 而 () 421 2020 V4-Vref V5V R R R ++? =; ()019 1819 0-V2 V3++?=R R R ; 有以上等式组合运算得:Vref V1 V2=- 当参考电压Vref 固定为1.8V 时,电阻R30为3.6Ωk ,电流恒定输出0.5mA 。 该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。 但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

单电源供电运放电路设计

单电源供电运放电路设计 模拟电路设计,在学习中还属于薄弱环节。以设计单电源供电、由运用运放构成、输入方波、输出三角波的电路为例,探讨一下设计中一些需要考虑的问题。 1. 运放双电源供电 运放通常使用正负相等的双电源供电,输入信号和输出信号均以“地”(电位为0)为参考点。 -+o m V +m -V 图 1.1 图1.1双电源供电电路需要关注如下问题: (1)电路的静态(输入信号为0,输入端接地)时,同相、反相输入端直流电位应近似为0(理想为0),输出端为0(0为运放理想情况,实际可能相差较大,因为运放开环具有极高增益、且有运放的失调、R 的差异等)。静态输出不为0的解决办法是:在电容上并联一个100--500倍R 的电阻,使电路在静态时形成-100到-500倍增益的放大电路,选用100—500倍R 的并联电阻,是让RC 的积分特性仍近

似为RC 确定(100-500R 的影响近似忽略)。此时输出静态电压若还有较小的输出静态电位偏差(指不为0),可通过运放的调零电路解决。电路如图1.2所示。 -+o R m V +m -V 图1.2 (2)运放反相输入端的电阻,称为静态平衡(匹配)电阻,主要抵消运放输入电流在输入端产生微小差模直流电压。这里需要注意,运放的两个输入端必须有直流通路,为其提供输入电流,这样运放才能在放大状态下正常工作。LT1226运放内部的输入部分电路见图1.3。除加电源外,只有给运放内部T1、T2的基极适当的直流偏置(适当的直流电位及基极电流),才能工作于放大区。

图1.3 2. 运放单电源供电 运放使用单电源供电,需要将电路的静态工作电位调整到0.5VCC 。即两个输入端及输出端的静态电位均应为0.5VCC 。解决的办法之一是通过两个电阻分压,提供给运放的输入端。类似与晶体管电路中讲 到的分压式负反馈偏置电路,分压电路需要有稳定的分压值,使基极电流的影响可以忽略。电路见图1.4。 -+i v o v R m V +m -V 图1.4

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

集成运算放大器

成绩评定表

课程设计任务书

摘要 本设计是根据要求进行的集成运算放大器的设计,用Protel软件设计实验电路,并绘制出PCB电路板,根据电路图对设计进行制作,最后进行调试测试。通过对Protel软件的学习与应用,加深对相关原理的理解,并对protel软件有初步的认识和一定的操作能力,为后续相关课程和相关软件的学习与应用打下坚实的基础。并根据通信电子线路所学的知识,掌握电路设计,熟悉电路的制作,运用所学理论和方法进行一次综合性设计训练,从而培养独立分析问题和解决问题的能力。根据相关课题的具体要求,按照指导老师的指导,进行具体项目的设计,提高自己的动手能力和综合水平。 本设计采用LM324芯片,它是一个四运算放大器的基本电路,在四运算放大器电路中起到了至关重要的作用。通过LM324芯片与其他相关电子元件的组合,画出调制与解调电路图,并完成PCB电路的绘制,完成课题的设计,可以算是对自我综合能力的一次有益尝试。 关键字:Protel、PCB、LM324、四运算放大器

目录 1 Protel的简要介绍 (5) 1.1 Protel的发展历史 (5) 1.2 Protel99SE简介 (5) 2 设计任务及要求 (6) 2.1设计任务 (6) 2.2设计要求 (6) 3 电路原理介绍 (7) 3.1 反向运算放大器 (7) 3.2 反向加法器 (7) 3.3 差动运算放大器 (7) 3.4积分器电路 (8) 4 原理图设计 (10) 4.1电路元件明细表 (10) 4.2 绘制原理图 (10) 4.3 元件生成清单 (12) 5 印刷版图的绘制 (12) 5.1 准备电路原理图和网络表 (12) 5.2 创建PCB文件以及网络表的装入 (15) 5.3 元件的布局以及印刷板的布线 (15) 6收获和体会 (16) 7 主要参考文献 (17)

运放设计原理及电路说明

运放设计原理及电路说明 一、集成电路及其特点集成电路是利用氧化,光刻,扩散,外延,蒸铝等集成工艺,把晶体管,电阻,导线等集中制作在一小块半导体(硅)基片上,构成一个完整的电路。按功能可分为模拟集成电路和数字集成电路两大类,其中集成电路运算放大器(线性集成电路,以下简称集成运放)是模拟集成电路中应用最广泛的,它实质上是一个高增益的直接耦合多级放大电路。集成电路的特点1.单个元件精度不高,受温度影响也大,但元器件的性能参数比较一致,对称性好。适合于组成差动电路。2.阻值太高或太低的电阻不易制造,在集成电路中管子用得多而电阻用得少。3.大电容和电感不易制造,多级放大电路都用直接耦合。 4. 在集成电路中,为了不使工艺复杂,尽量采用单一类型的管子,元件种类也要少所以,集成电路在形式上和分立元件电路相比有很大的差别和特点。常用二极管和三极管组成的恒流源和电流源代替大的集电极电阻和提供微小的偏量电流,二极管用三极管的发射结代替5.在集成电路中,NPN管都做成纵向管,β大;PNP管都做成横向管,β 小而PN结耐压高。NPN管和PNP管无法配对使用。对PNP管,β和 (β+1)差别大,IB往往不能忽略。 ?二、集成运放电路的组成及各部分的作用1.组成 ?2.作用如图所示,集成运放电路由四部分组成,输入级是一个双端输入的高性能差动放大电阻,要求其Ri高,Aod大,KCMR大,静态电流小,该 级的好坏直接影响集成运放的大多数性能参数,所以更新变化最多。中间级的作用是使集成运放具有较强的放大能力,故多采用复合管做放大管,以电流源做集电极负载。输出级要求具有线性范围宽,输出电阻小,非线性失真小等特点。偏置电路用于设置集成运放各级放大电路的静态工作点

经典运放电路分析

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接

近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖 丁解牛”了。 1)反向放大器: 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

两级CMOS运算放大器的设计与spectrum仿真

LAB2 两级CMOS 运算放大器的设计 V SS vout iref 图 1两级CMOS 运算放大器 一:基本目标: 参照《CMOS 模拟集成电路设计第二版》p223.例设计一个CMOS 两级放大器,满足以下指标: 5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =- 5GB MHz = 10L C pF = 10/SR V s μ> out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤ 相位裕度:60o 为什么要使用两级放大器,两级放大器的优点: 单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。在单级放大器中,增益是与输出摆幅是相矛盾的。要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。因为多一层管子就要至少多增加一个管子的过驱动电压。这样在共源共栅结构的增益与输出电压范围相矛盾。为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。

表1 典型的无缓冲CMOS 运算放大器特性 二:两级放大电路的电路分析: 图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流 1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结 构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。图1所示,Cc 为引入的米勒补偿电容。 表2 m μ工艺库提供的模型参数 表3 一些常用的物理常数

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

100db二级运放的设计

高增益二级运放的设计 重庆邮电大学重庆国际半导体学院年级:2011级 班级:1611101 姓名:王强

引言 相对与数字集成电路的规律性和离散性,计算机辅助设计方法学在给定所需功能行为描述的数字系统设计自动化方面已经非常成功。但这并不适用于模拟电路设计。一般来说,模拟电路设计仍然需要手工进行。因此,仔细研究模拟电路的设计过程,熟悉那些提高设计效率、增加设计成功机会的原则是非常必要的。 运算放大器(简称运放)是许多模拟系统和混合信号系统中的一个完整部分。各种不同复杂程度的运放被用来实现各种功能:从直流偏置的产生到高速放大或滤波。伴随者每一代CMOS 工艺,由于电源电压和晶体管沟道长度的减小,为运放的设计不断提出复杂的课题。 运算放大器的设计可以分为两个较为独立的两个步骤。第一步是选择或搭建运放的基本结构,绘出电路结构草图。一般来说,决定好了电路结构以后,便不会更改了,除非有些性能要求必须通过改变电路结构来实现。 一旦结构确定,接着就要选择直流电流,手工设计管子尺寸,以及设计补偿电路等等,这个步骤包含了电路设计的绝大部分工作。为了满足运放的交流和直流要求,所有管子都应被设计出合适的尺寸。然后在手工计算的基础上,运用计算机模拟电路可以极大的方便对电路进行调试和修改。但要记住,手算是绝对必需的!通过手算,可以深入的理解电路,对于设计多边形法则也可以更好进行权衡和把握。 电路分析 图1.1 M1 M2 M3 M4 M5 M6 M7M8M9 M10 M11M12Vin+ Vin-Vout Vin1Iss GND VDD

电路结构 最基本的CMOS 二级米勒补偿运算放大器的结构如图1.1所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 电路描述 输入级放大电路由M 1~M 8组成。M 1和M 2组成NMOS 差分输入对, 差分输入与单端输入相比可以有效抑制共模信号干扰。 输出级放大电路由M 9、M 10组成。M 9为共源放大器,M 10为其提供恒定偏置电流同时作为第二级输出负载。相位补偿电路由R 和C C 构成,与电容C C 一起跨接在第二级输入与第一级输出之间,构成RC 密勒补偿。 静态特性 暂时不考虑电阻R ,绘出电路的等效模型,如图1.2所示。 图1.2 由于第一级差分输入对管M 1 、M 2 相同,可以得到: 112m G gm gm == (1) R 1表示第一级输出电阻,其值可以表示为: 1113557||m o o m o o R g r r g r r = (2) 则第一级的电压增益为: ()1111113557||V m m m o o m o o A G R g g r r g r r == (3) 对第二级有: 29m G gm = (4) 2910||o o R r r = (5) ()2229910||V m m o o A G R g r r == (6) ()()12112211135579910||||V V V m m m m o o m o o m o o A A A G R G R g g r r g r r g r r === (7) ` `` +-V in1 +-V in2+- V out G m1V in1 G m2V in2 R 1 R 2 C 1 C 2 C C

三极管两级放大器设计.doc

方案分析: 两级放大的参数选取能在不失真的情况下尽可能的放大小信号,所以,两级放大的参数极为重 要。 电路分析: 图 4-1 三极管两级放大器 I b 1 V cc U BE1 U BE1 R6;I c1 I b1 , I e1 (1 ) I b 1; R2 (1 )( R5 R6) R3 R5 静态工作点:由公式 U ce1V cc I c1 R 4 I e1 (R 5 R 6 ) ;可求出Q1的静态工作点,即Ube1等于 7V,由于 Q1和 Q2间是电容耦合,所以两个晶体管的静态工作点不相互影响,由公式 V cc U be2 I b 2 R7(1)( R10 Q2 的静态工作点电容相当于短路, U be2 R11 ) R8 R10 R11 I c2 I b 2 , I e 2 (1 ) I b 2; U ce2 V cc I c 2 R 9 I e 2 (R 10 R 11 ) 可算出Ube2 为 6V。图中的电容C2, C4, C6 均为滤波电容,画出微变等效电路, 图 4-2微变等效电路 U o R4 (R9 // R L ) A r be1 R5 ? R10 所以电容C9 和 C10的作用就提高放大倍数, U i r be2 ,如果电路接入 RL,则放大倍数会减小。

Multisim仿真: 仿真图: 图 4-3两级放大nultisim仿真 图 4-4 5mV 1kHz函数发生器图4-5交流电流表 图 4-6 Ic1电流值图4-7 Uce1电压值

图 4-8 Ic2电流值图4-9Uce2电压值 图 4-10无负载的输出电压Uo图4-11有负载的输出电压Uo 无负载的放大倍数:328 倍有负载的放大倍数:197 倍

运算放大器电路及版图设计报告

目录 摘要 (2) 第一章引言 (3) 第二章基础知识介绍 (4) 2.1 集成电路简介 (4) 2.2 CMOS运算放大器 (4) 2.2.1理想运放的模型 (4) 2.2.2非理想运算放大器 (5) 2.2.3运放的性能指标 (5) 2.3 CMOS运算放大器的常见结构 (6) 2.3.1单级运算放大器 (6) 2.3.2简单差分放大器 (6) 2.3.3折叠式共源共栅(Folded-cascode)放大器 (7) 2.4版图的相关知识 (8) 2.4.1版图介绍 (8) 2.4.2硅栅CMOS工艺版图和工艺的关系 (8) 2.4.3 Tanner介绍 (9) 第三章电路设计 (10) 3.1总体方案 (10) 3.2各级电路设计 (10) 3.2.1第三级电路设计 (10) 3.2.2第二级电路设计 (11) 3.2.3第一级电路设计 (12) 3.2.4三级运放整体电路图及仿真结果分析 (14) 第四章版图设计 (15) 4.1版图设计的流程 (15) 4.1.1参照所设计的电路图的宽长比,画出各MOS管 (15) 4.1.2 布局 (17) 4.1.3画保护环 (17) 4.1.4画电容 (17) 4.1.5画压焊点 (18) 4.2 整个版图 (19) 第五章 T-Spice仿真 (21) 5.1提取T-Spice文件 (21) 5.2用T-Spice仿真 (24) 5.3仿真结果分析 (26) 第六章总结 (27) 参考文献 (28)

摘要 本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。 设计的主要结果归纳如下: (1)运算放大器的基本工作原理 (2)电路分析 (3)设计宽长比 (4)画版图 (5)仿真 (6)结果分析 关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice仿真

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

相关文档
最新文档