正极材料理论容量计算

正极材料理论容量计算
正极材料理论容量计算

锂离子电池正极材料理论电容量的计算

常常看见文献上说该材料的理论电容量是多少mA h/g

下面给出理论计算方法:

1mol正极材料Li离子完全脱嵌时转移的电量为96500C(96500C/mol是法拉第常数)

由单位知mAh/g指每克电极材料理论上放出的电量:1mA·h=1×(10^-3)安培×3600秒=3.6C 以磷酸锂铁电池LiFePO4为例:

LiFePO4的分子量是157.756g/mol, 所以他的理论电容量是

96500/157.756/3.6=170 mA h/g

关于法拉第常数

法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214×1023mol-1与元电荷e=1.602176×10-19 C的积。尤其在确定一个物质带有多少离子或者电子时这个常数非常重要。法拉第常数以麦可·法拉第命名,法拉第的研究工作对这个常数的确定有决定性的意义。

一般认为此值是96485.3383±0.0083C/mol,此值是由美国国家标准局所依据的电解实验得到的,也被认为最具有权威性。

最早法拉第常数是在推导阿伏伽德罗数时通过测量电镀时的电流强度和电镀沉积下来的银的量计算出来的。

在物理学和化学,尤其在电化学中法拉第常数是一个重要的常数。它是一个基本常数,其值只随其单位变化。在电解、电镀、燃料电池和电池等涉及到物质与它们的电荷的工艺中法拉第常数都是一个非常重要的常数。因此它也是一个非常重要的技术常数。

在计算每摩尔物质的能量变化时也需要法拉第常数,一个例子是计算一摩尔电子在电压变化时获得或者释放出的能量。在实际应用中法拉第常数用来计算一般的反应系数,比如将电压演算为自由能。

如何计算电池材料的理论容量值

C=26.8nm/M,n是电子数,m是活性物质质量,M是活性物质的分子量

电池的化成,有的采用常温化成,有的采用高温化成,这两种化成的优缺点:主要区别应该是SEI膜的厚度和致密程度吧,高温化成形成的SEI较厚但不致密,消耗的锂比较多,常温或低温形成的较薄切致密。

电池配方:

负极配方:CMS:CMC:SBR:Super-P=94.5:2.25:2.25:1

电解液:1M-LiPF6 EC/DMC/EMC

负极设计比容量:300mAh/g

正极设计比容量:140mAh/g

充放电制度:1)恒流充电(1C,4.2V)

2)恒压充电(4.2V,20mA)

3)静置(10min)

4)恒流放电(1C,3.0V)

5)静置(10min)

6)循环(350周)

聚合物在溶剂中的溶解要遵循三原则(极性相似原则,溶剂化原则,内聚能密度相近原则),此三原则结合聚合物和溶剂的“溶度参数”值,是选择聚合物良溶剂的依据。PVDF/NMP原本是很好的聚合物/溶剂搭配,但NMP是高极性溶剂,与水的亲和力很好,所以极易吸潮,随着NMP中水份含量的增加,形成的NMP/水混合溶剂的“溶度参数”、极性、溶剂化能力等都发生漂移,而PVDF的相应值并无变化,PVDF/NMP粘合剂溶液体系随含水量的增加,渐渐变得不稳定,含水量达一定值时,PVDF可以从溶液中析出,在这一过程中溶液的性质,包括粘度、粘结性能等都会产生变化。向PVDF/NMP溶液中滴加水,局部形成不良溶剂环境,必会有PVDF析出。

不同的配料工艺以和相应的配方相结合,提供了一个普通配方:

LiCoO2:92% 导电石墨:2.5% 导电剂:2.5% PVDF:3.0%

正极活性材料80%,乙炔黑10%,PVDF10%。

企业配方:

钴酸锂94% 导电剂1% 导电剂2 % PVDF 3%

负极表面的SEI膜大致可以认为是电解液的有机溶剂被还原分解所得到的不溶性产物附着在电极表面的结果,不同的负极材料会有一定的差别,但大致认为是有:碳酸锂,烷基酯锂,氢氧化锂等组成,当然也有盐的分解产物,另外还有一些聚合物等。一般认为对于金属锂,负极在首次嵌锂时形成SEI膜,形成电压为1.5V开始(相对于金属锂),在0.8V附近大量形成,到0.2V左右基本完成。另外研究表明,首次嵌锂时为SEI膜形成的主要步骤,后序5周内都有SEI膜的形成过程,但量很少。此外SEI膜并非一成不变,在充放电过程中会有少许的变化,主要是部分有机物会发生可逆的变化。此外不同的电流密度,不同的电极表面所形成的SEI膜的组成少有差别。

正极表面的SEI膜少,以前关注很少,目前好像关注度在上升。有一种观点认为是电解液的氧化产物沉积的结果,另一种观点是由于负极表面的SEI膜部分溶解后在正极表面沉积的结果。相对来说,电解液在正极表面氧化沉积的证据不多,当然也不排除是由于量少而目前的仪器精度无法达到的情况

为什么负极要用铜箔而正极要用铝箔

1、采用两者做集流体都是因为两者导电性好,质地比较软(可能这也会有利于粘结),也相对常见比较廉价,同时两者表面都能形成一层氧化物保护膜。

2、铜表面氧化层属于半导体,电子导通,氧化层太厚,阻抗较大;而铝表面氧化层氧化铝属绝缘体,氧化层不能导电,但由于其很薄,通过隧道效应实现电子电导,若氧化层较厚,铝箔导电性级差,甚至绝缘。一般集流体在使用前最好要经过表面清洗,一方面洗去油污,同时可除去厚氧化层。

3、正极电位高,铝薄氧化层非常致密,可防止集流体氧化。而铜箔氧化层较疏松些,为防止其氧化,电位比较低较好,同时Li难与Cu在低电位下形成嵌锂合金,但是若铜表面大量

氧化,在稍高电位下Li会与氧化铜发生嵌锂发应。AL箔不能用作负极,低电位下会发生LiAl 合金化。

4、集流体要求成分纯。AL的成分不纯会导致表面膜不致密而发生点腐蚀,更甚由于表面膜的破坏导致生成LiAl合金。

极片重量为活性物质重量加基片(铝或者铜)重量, 正极按理论设计极片重量减去基片(铝密度2.7,铜8.9) 后的重量,得到活性物质重量,活性物质重量乘以140mAh/g(钴酸锂的),得到设计的多少mAh容量,负极容量按正极的1.05-1.1倍计算,方法一样,负极按

300-330mAh/g计算

公式:

锂离子电池理论容量=(厚度-2*壁厚)*(宽度-2*壁厚)*(长度-2*壁厚)/正负极加隔离膜厚度的估算值参数/100*正极设计的涂布密度参数*容量比

其中:

0.0244是正极设计的涂布密度,其实都差不多的

0.45是正负极加隔离膜厚度的估算值参数

140容量比。

但是按上计算,063048的理论容量则只有555毫安时(厚按6.3计算),这个容量只能作废品处理了。

(6.3-0.35*2)*(30-0.35*2)*(48-0.35*2)/0.45/100*0.0244*140=555

一般来说,天然石墨包覆的负极,不可逆容量要大一点。mcmb要好一点,这是实验的结果。还有一个,SEI膜的成膜电位是1.2~0.8V(vs Li/Li+),嵌锂电位是0.25~0v,这个电位中嵌入的锂才是可逆的。如果能让SEI膜在更高的电位下形成,它能阻止溶剂的进一步还原,减少不可逆容量,也就是在首次充电曲线中不可逆容量的极化比较大,容易下降到嵌锂平台,这样形成的可逆容量要高。SEI膜对电池的循环性能有至关重要的作用,没有良好的SEI膜,每次循环都有较大不可逆容量损失,这样的电池通常可以从电解液吸水,或电池内部存在结晶水时可以看出来。

各种材料计算公式

各种材料计算公式 地砖 规格:1000*1000、800*800、600*600、500*500、400*400、300*300、200*200、100*100 粗略计算法:用砖数量=房间面积/一块地砖的面积*1.1 精确计算法:用砖数量=(房间面积/砖长)*(房间宽度/砖宽)*1.1 例:房间长5米,宽3米,砖规格400X400 用砖数量 =(15米/0.4米)*(3米/0.4米)*1.1=104块 实木地板 常用规格:900*90、750*90、600*90 粗略计算法:使用地板块数=房间面积/一块地板的面积*1.08 精确计算法:使用地板块数=(房间长度/地板长度)*(房间宽度/地板宽度)*1.08 例:长5米,宽3米,地板规格750*90 用板数量=(5米/0.75米)*(3米/0.09米)*1.08=239块 注:实木地板在铺装中通常有8%的损耗 复合地板 常见规格:1.2米*0.19米 粗略计算法:地板块数=房间面积/一块地板面积*1.05 精确计算法:地板块数=(房间长度/地板长度)*(房间宽度/地板宽度)*1.05 例:长5米,宽3米 用板数量=(5米/1.2米)*(3米/0.19米)*1.05米约=70块 注:通常有3%--5%的损耗按面积算千万不要忽视! 涂料 规格:5升、15升 家装常用5升,5升涂料刷面积为35平方米(涂2面) 计算方法:墙面面积=(长+宽)*2*层高

顶面面积=长*宽、地面面积=长*宽 总使用桶数=(墙面面积+顶面积+地面面积)/35平方米 例:长5米,宽3米 墙面积=(5米+3米)*2*2.85平方米=45.6平方米 顶面面积=5米*3米=15平方米 地面面积=5米*3米=15平方米 涂料量=(45.6+15+15)平方米/35平方米=75.6平方米/35平方米=2桶 注:以上只是理论上涂刷量,因在施工中要加入适量清水,所以以上用量只是最低涂刷量 墙纸 规格:每卷长10米,宽0.53米 计算方法:墙纸总面积=地面面积*3 (地面积=长*宽) 墙纸的卷数=墙纸总面积/(0.53米*10米) 常见墙纸规格为每卷长10m,宽0.53m。 粗略计算方法:墙纸的总面积=地面面积×3,墙纸的卷数=墙纸的总面积÷(0.53×10)精确的计算方法:使用的分量数=墙纸总长度÷房间实际高度, 使用单位的总量数=房间的周长÷墙纸的宽度, 使用墙纸的卷数=使用单位的总量数÷使用单位的分量数 因为墙纸规格固定,因此在计算它的用量时,要注意墙纸的实际使用长度,通常要以房间的实际高度减去踢脚板以及顶线的高度。 另外房间的门、窗面积也要在使用的分量中减去。这种计算方法适用于素色或细碎花的墙纸。墙纸的拼贴要考虑对花,图案越大,损耗越大,因此要比实际用量多买10%左右。 隔墙、吊顶 常用的隔墙吊顶有哪些? 隔墙:玻璃(多与铝合金型材塑钢型材组成固定隔断、推拉隔断)石膏板、轻质砖、玻璃砖(价格高)木材、各种板材。常用柜子、鱼缸、屏风

钢材理论重量计算办法

钢材理论重量计算办法 钢材理论重量计算的计量单位为公斤( kg )。 其基本公式为: W (重量, kg ) = F (断面积 mm2 )× L (长度, m )×ρ(密度, g/cm3 )× 1/1000 钢的密度为: 7.85g/cm3 ,各种钢材理论重量计算公式如下: 名称(单位)计算公式符号意义计算举例 圆钢盘条 (kg/m) W= 0.006165 ×d 2 d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d 2 d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢 (kg/m) W= 0.00785 ×a 2 a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= 0.00785 ×202=3.14kg 扁钢 (kg/m) W= 0.00785 ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= 0.00785 ×40 ×5= 1.57kg 六角钢 (kg/m) W= 0.006798 ×s 2 s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= 0.006798 ×502=17kg 八角钢 (kg/m) W= 0.0065 ×s 2 s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= 0.0065 ×802=41.62kg 等边角钢 (kg/m) W= 0.00785 ×[d (2b – d )+0.215 (R2 – 2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg 不等边角钢 (kg/m) W= 0.00785 ×[d (B+b – d )+0.215 (R2 – 2 r 2 )] B= 长边宽 b= 短边宽 d= 边厚 R= 内弧半径 r= 端弧半径求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(30+20 –4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.46kg 槽钢 (kg/m) W=0.00785 ×[hd+2t (b – d )+0.349 (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚

原料量的计算

一、原料量的计算: 设某一段时间内同时生产出X kg 间苯二胺产品、Y kg邻苯二胺产品和Z kg 对苯二胺产品中含有29.38kg纯的混合二胺,则其中的纯的间苯二胺为24.48kg 、纯的邻苯二胺为4.12kg 、纯的对苯二胺为0.78kg,所以有: 0.998X+0.002Z=24.48 (1) 0.998Y+0.002Z=4.12 (2) 0.001X+0.001Y+0.994Z=0.78 (3) 联立(1)(2)(3)式可解出:X=24.5275 Y=4.1267 Z=0.777 由题目每小时生产的间苯二胺的量为:30000×103÷300÷24=4166.667 kg/h 则每小时生产纯混合二胺的量为:A=4166.667÷X×29.38 则脱甲醇工序每小时的纯混合二胺原料的量为:B=A÷0.995÷0.995÷0.985 则脱甲醇工序每小时的加氢反应液原料的量为:C=B÷0.2938 即:C=4166.667÷24.5275×29.38÷0.995÷0.995÷0.985÷0.2938=17420.20 kg/h 精馏过程物料衡算: 若输入原料液为100kg/h,则各物料的实际质量为:甲醇:50.52kg ,水:19.88kg , 催化剂:0.13kg ,间苯二胺:24.48kg ,邻苯二胺:4.12kg ,对苯二胺:0.78kg ,焦油等高沸物: 0.09kg 。 设塔顶产品流量为D,塔底为W,三种二胺以及焦油和催化剂都不在塔顶出现,所以塔的物料衡算只对甲醇和水进行,因预先要考虑甲醇和三种二胺都各自损失0.5%变为同等质量的焦油,所以进料中水和甲醇的量的总和为: 19.88+50.52×0.995=19.88+50.2674=70.1474 对甲醇列物料衡算方程D×0.99+(70.1474-D)×0.001=50.2674 解得D=50.76 则W=100-50.76= 49.24 所以D=50.76kg/h W=49.24kg/h 物料 输入 F 输出 D 输出 W kg/h Wt% kg/h Wt% kg/h Wt% 甲醇50.2674 50.2674 50.248 99 0.0194 0.0394 水19.88 19.88 0.5076 1 19.3724 39.3393 间苯二胺24.3576 24.3576 24.3576 49.4627 邻苯二胺 4.0994 4.0994 4.0994 8.3246 对苯二胺0.7761 0.7761 0.7761 1.5758 催化剂0.13 0.13 0.13 0.264 焦油0.4895 0.4895 0.4895 0.994 ∑100 100 50.7556 100 49.2444 100 模拟时把催化剂和焦油的量并入间苯二胺中,用于模拟输入的物料组成如下表 物料 输入 F kg/h Wt% 甲醇50.2674 50.2674 水19.88 19.88 间苯二胺24.9771 24.9771 邻苯二胺 4.0994 4.0994 对苯二胺0.7761 0.7761 ∑100 100

金属材料计算公式

角钢,扁钢,钢管,板材,管材,弯头理论重量计算公式 一,,弯头重量计算公式 圆环体积=2X3.14X3.14(r^2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2X3.14X3.14((r^2)-(r''^2))R r''--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。 1、180°弯头按表2倍计算,45°按1/2计算; 2、R1.0DN弯头重量按表2/3计算; 3、表中未列出壁厚的重量,可取与之相近的两个重量计算平均值; 4、90°弯头计算公式; 0.0387*S(D-S)R/1000 式中 S=壁厚mm D=外径mm R= 弯曲半径mm 二,以下是焊接弯头的计算公式 1.外径-壁厚X壁厚X0.0387X弯曲半径÷1000, =90°弯头的理论重量 举例:426*1090°R=1.5D的 (426-10)*10*0.387*R600÷1000=96.59Kg 180°弯头按表2倍计算,45°按1/2计算; 2..(外径-壁厚)X壁厚X0.02466XR倍数X1.57X公称通径=90°弯头的理论重量 举例:举例:426*1090°R=1.5D的 (426-10)*10*0.02466*1.5D*1.57*400=96.6Kg 180°弯头按表2倍计算,45°按1/2计算。 三、圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 不锈钢管:(外径-壁厚)×壁厚×0.02491=公斤/米 板材:每米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚)

正极材料理论容量计算

锂离子电池正极材料理论电容量的计算 常常看见文献上说该材料的理论电容量是多少mA h/g 下面给出理论计算方法: 1mol正极材料Li离子完全脱嵌时转移的电量为96500C(96500C/mol是法拉第常数) 由单位知mAh/g指每克电极材料理论上放出的电量:1mA·h=1×(10^-3)安培×3600秒=3.6C 以磷酸锂铁电池LiFePO4为例: LiFePO4的分子量是157.756g/mol, 所以他的理论电容量是 96500/157.756/3.6=170 mA h/g 关于法拉第常数 法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214×1023mol-1与元电荷e=1.602176×10-19 C的积。尤其在确定一个物质带有多少离子或者电子时这个常数非常重要。法拉第常数以麦可·法拉第命名,法拉第的研究工作对这个常数的确定有决定性的意义。 一般认为此值是96485.3383±0.0083C/mol,此值是由美国国家标准局所依据的电解实验得到的,也被认为最具有权威性。 最早法拉第常数是在推导阿伏伽德罗数时通过测量电镀时的电流强度和电镀沉积下来的银的量计算出来的。 在物理学和化学,尤其在电化学中法拉第常数是一个重要的常数。它是一个基本常数,其值只随其单位变化。在电解、电镀、燃料电池和电池等涉及到物质与它们的电荷的工艺中法拉第常数都是一个非常重要的常数。因此它也是一个非常重要的技术常数。 在计算每摩尔物质的能量变化时也需要法拉第常数,一个例子是计算一摩尔电子在电压变化时获得或者释放出的能量。在实际应用中法拉第常数用来计算一般的反应系数,比如将电压演算为自由能。 如何计算电池材料的理论容量值 C=26.8nm/M,n是电子数,m是活性物质质量,M是活性物质的分子量 电池的化成,有的采用常温化成,有的采用高温化成,这两种化成的优缺点:主要区别应该是SEI膜的厚度和致密程度吧,高温化成形成的SEI较厚但不致密,消耗的锂比较多,常温或低温形成的较薄切致密。 电池配方: 负极配方:CMS:CMC:SBR:Super-P=94.5:2.25:2.25:1 电解液:1M-LiPF6 EC/DMC/EMC 负极设计比容量:300mAh/g 正极设计比容量:140mAh/g 充放电制度:1)恒流充电(1C,4.2V) 2)恒压充电(4.2V,20mA) 3)静置(10min) 4)恒流放电(1C,3.0V) 5)静置(10min) 6)循环(350周)

成本核算公式

成本核算公式 1.正确核算原材料成本; 原材料成本是指为生产饮食品所耗用的各种原材料的总和,核算时要注意; A.不合理的原材料不能计入成本. B.凡能利用的下脚料应适当做价,并冲减原材料成本. C.外地采购原材料的费用可列入成本. D.材料成本的价格,按照高进高出,有涨有落,随行就市的原则,一般都以实际价格为准. 一般购进的原材料都是毛料,需要加工成净料,这样原材料的重量会发生增减变化.所以算成本时,一般需要测定净料成本, ------ 先测定净料率--------在计算净料成本. 净料率又称折卸率,是净料数量与毛料数量的比率,公式; 净料率=净料数量÷毛料数量×100﹪ 净料率核算成本原材料的关键因素,他取决于原材料的进货质量和净料处理技术.由于原材料受产地和季节变化影响,所以净料率的核定要以实际出发.根据正常情况核定. 在确定净料率后,就可以计算成本公式; 净料成本=原材料购进单价÷净料率×净料用量

凡是一料多档的原材料,净料成本计算.公式; \单位净料成本=原材料总价格-[其他各档净料总和+下脚料价格]÷净料重量 净料成本=单位净料成本×净料用量 菜肴成本=主料金额+辅料金额+调料金额 列;红烧鱼一盘,用净整条鱼重420克另耗用辅料2元调料2元鱼金价每斤40元净料率85﹪ 菜肴成本=40÷0.85×0.42+2+2=23.76 这盘红烧鱼的原材料成事23.76元 2.合理确定毛利率; 由于饮食业的经营特点,食品价格不可能固定不变,大部分只能用毛利率控制,毛利率是毛率额与销售价格或原材料成本的比率,即; 销售毛利率[内扣毛利率]=毛利率÷销售价格×100﹪ 成本毛利率[外加毛利率] =毛利额÷原材料成本×100﹪ 毛利率关系到菜品种的毛利水平和价格水平,决定着企业的盈亏,同时还关系着消费者的利益.毛利率高菜品就高,反之毛利率低菜品也低. 在实际工作中毛利率分为综合毛利率和分类毛利率两类.

不锈钢理论重量计算公式(所有钢材)

不锈钢理论重量计算公式(所有钢材) 角钢:每米重量=0.00785*(边宽+边宽-边厚)*边厚圆钢:每米重量=0.00617*直径*直径(螺纹钢和圆钢相同)扁钢:每米重量=0.00785*厚度*边宽 管材:每米重量=0.0246615*壁厚*(外径-壁厚)板材:每米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚)紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 铝花纹板:每平方米重量=2.96*厚度 有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 有色金属板材的计算公式为:每平方米重量=比重*厚度 不锈钢板理论重量计算公式 钢品理论重量重量(kg )=厚度(mm )×宽度(mm )×长度(mm )×密度值密度钢种 7.93 201,202,301,302,304,304L,305,321 7.75 405,410,420 7.98 309S,310S,316S,316L,347 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢元棒,钢丝,理论计算公式 ★ 直径×直径×0.00609=kg/m(适用于410 420 420j2 430 431)例如:¢50 50×50×0.00609=15.23K g/米 ★直径×直径×0.00623=kg/m(适用于301 303 304 316 316L 321)例如:¢50 50×50×0.00623=15.575Kg/米 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢型材,理论计算公式◆六角棒对边×对边×0.0069=Kg/米◆方棒边宽×边宽×0.00793=Kg/米 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢管,理论计算公式 ○(外径-壁厚)×壁厚×0.02491=Kg/米例如¢57×3.5 (57- 3.5)×3.5×0.02491= 4.66Kg/米

锂电池的相关参数以及计算方法

(1)(1)电极材料的理论容量 电极材料理论容量,即假定材料中锂离子全部参与电化学反应所能够提供的 容量,其值通过下式计算: 其中,法拉第常数(F)代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214 ×1023mol-1与元电荷e=1.602176 ×10-19 C的积,其值为96485.3383±0.0083 C/mol 故而,主流的材料理论容量计算公式如下: LiFePO4摩尔质量157.756 g/mol,其理论容量为: 同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩尔质量为 96.461g/mol,其理论容量为278 mAh/g,LiCoO2摩尔质量97.8698 g/mol, 如果锂离子全部脱出,其理论克容量274 mAh/g. 石墨负极中,锂嵌入量最大时,形成锂碳层间化合物,化学式LiC6,即6个碳原子结合一个Li。6个C摩尔质量为72.066 g/mol,石墨的最大理论容量为 : 对于硅负极,由5Si+22Li++22e- ? Li22Si5 可知,5个硅的摩尔质量为 140.430 g/mol,5个硅原子结合22个Li,则硅负极的理论容量为: 这些计算值是理论的克容量,为保证材料结构可逆,实际锂离子脱嵌系数小 于1,实际的材料的克容量为:材料实际克容量=锂离子脱嵌系数×理论容量 (2)电池设计容量 电池设计容量=涂层面密度×活物质比例×活物质克容量×极片涂层面积 其中,面密度是一个关键的设计参数,主要在涂布和辊压工序控制。压实密 度不变时,涂层面密度增加意味着极片厚度增加,电子传输距离增大,电子 电阻增加,但是增加程度有限。厚极片中,锂离子在电解液中的迁移阻抗增 加是影响倍率特性的主要原因,考虑到孔隙率和孔隙的曲折连同,离子在孔 隙内的迁移距离比极片厚度多出很多倍。 (3)N/P比 负极活性物质克容量×负极面密度×负极活性物含量比÷(正极活性物质克容 量×正极面密度×正极活性物含量比) 石墨负极类电池N/P要大于1.0,一般1.04~1.20,这主要是出于安全设计,主要为了防止负极析锂,设计时要考虑工序能力,如涂布偏差。但是,N/P 过大时,电池不可逆容量损失,导致电池容量偏低,电池能量密度也会降低。 而对于钛酸锂负极,采用正极过量设计,电池容量由钛酸锂负极的容量确定。 正极过量设计有利于提升电池的高温性能:高温气体主要来源于负极,在正

锂离子电池和金属锂离子电池的能量密度计算

锂离子电池和金属锂离子电池的能量密度计算 吴娇杨,刘品,胡勇胜,李泓 (中国科学院物理研究所,北京,100190) 摘要:锂电池是理论能量密度最高的化学储能体系,估算各类锂电池电芯和单体能达到的能量密 度,对于确定锂电池的发展方向和研发目标,具有积极的意义。本文根据主要正负极材料的比容 量、电压,同时考虑非活性物质集流体、导电添加剂、粘结剂、隔膜、电解液、封装材料占比,计算了不同材料体系组成的锂离子电池和采用金属锂负极、嵌入类化合物正极的金属锂离子电池 电芯的预期能量密度,并计算了18650型小型圆柱电池单体的能量密度,为电池发展路线的选择 和能量密度所能达到的数值提供参考依据。同时指出,电池能量密度只是电池应用考虑的一个重 要指标,面向实际应用,需要兼顾其它技术指标的实现。 关键词:锂离子电池;金属锂离子电池;能量密度;18650电池;电芯 中图分类号:O O646.21文献标志码:A 文章编号: Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries WU Jiaoyang,Liu pin, HU Yongsheng, LI Hong (Institute of Physics, Chinese Academy of Science, Beijing 100190, China) Abstract:Lithiumbatteries have the highest theoretical energy densities among all electrochemical energy storage devices. Prediction of the energy density of the different lithium ion batteries (LIB) and metallic lithium ion batteries (MLIB) is valuable for understanding the limitation of the batteries and determine the directions of R&D. In this research paper, the energy densities of LIB and MLIB have been calculated. Ourcalculation includes the active electrode materials and inactive materials inside the cell.For practical applications, energy density is essential but not the only factor to be considered, other requirements on the performances have to be satisfied ina balanced way. Key words:lithiumion batteries; metal lithium ion batteries; energy densitycalculation;18650 cell; batteries core 收稿日期:;修改稿日期:。 基金项目:国家自然科学基金杰出青年基金项目(51325206),国家重点基础研究发展计划(973)项目(2012CB932900)。第一作者:吴娇杨(1988-),女, 博士研究生,研究方向锂离子电池电解质E-mail:wujiaoyang8@https://www.360docs.net/doc/0418813914.html,;通讯联系人:李泓, 研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@https://www.360docs.net/doc/0418813914.html,。

最新建筑材料课目常用计算公式大全

精品文档 1. 体积密度 材料在自然状态下单位体积的质量称为体积密度: 0V m = ρ ρ0——材料的体积密度,g/cm 3或kg/m 3; m ——材料的质量,g 或kg ; V 0——材料在自然状态下的体积,cm 3或m 3。 (体积密度与含水情况有关,如未注明均指绝对干燥材料的体积密度) 2. 密度 材料在绝对密实状态下单位体积的质量称为密度: V m = ρ ρ——材料密度,g/cm 3; m ——材料的绝对干燥质量,g ; V ——材料在绝对密实状态下的体积(实体积),cm 3。 (体积密度小于密度) 3. 表观密度 直接用排水法求得的体积,作为绝对密实状态下体积的近似值,按该体积计算出的密度为表观密度(或视密度): V m '= 'ρ ρ′——表观密度,g/cm 3; m ——材料的绝对干燥质量,g ; V ′——用排水法求得的体积 (V ′=V+V 闭) ,cm 3。 (表观密度可以代替密实材料的密度或体积密度) 4. 孔隙率 孔隙率是指,材料中孔隙体积与材料在自然状态下的体积之比的百分率,或称总孔隙率。 %1000 ?= V V P 孔 P ——孔隙率,%; V 孔——材料中全部孔隙的体积,cm 3; V 0——材料在自然状态下的体积,cm 3。 ? %1000 0?-= V V V P ? %100 10????? ? ?-=V V P ? %100 10???? ? ??-=ρρP P ——孔隙率,%; ρ0——材料的体积密度,g/cm 3或kg/m 3; ρ——材料密度,g/cm 3或kg/m 3。 5. 堆积密度 散粒材料在规定装填条件下单位体积的质量称堆积密度: '= 0V m ρ ρ0——散料材料的堆积密度, kg/m 3;(常指松堆密度) m ——散料材料的质量,kg ; V 0′——散料的体积,m 3。(V 0′=V 0+V 空=V+V 孔+V 空) 6. 开口孔隙率 开口孔隙率P K 指材料中能被水所饱和(即被水所充满)的孔隙体积与材料在自然状态下的体积之比的百分率: %1001 012??-= W K V m m P ρ m 1——干燥状态下材料的质量,g ; m 2——水饱和状态下材料的质量,g ; ρW ——水的密度,常温下可取1g/cm 3,故常略去。 7. 闭口孔隙率 闭口孔隙率P B 为总孔隙率P 与开口孔隙率P K 之差: P B =P -P K 8. 空隙率 散粒材料在自然堆积状态下,其中的空隙体积与散粒材料在自然堆积状态下的体积之比的百分率: %10010???? ? ??'-='ρρP P ′——散粒材料的空隙率,%; ρ0′——散粒材料的堆积密度,kg/m 3; ρ0——材料体积密度或颗粒体积密度,kg/m 3。 (如是密实材料天然砂、石,ρ0可由ρ′代替) 9. 质量和体积吸水率 材料吸收水分的能力称为吸水率(一般未加说明均指质量吸水率) %1001 1 2?-= m m m W

几种正极材料对比

锂电池的几种主要正极材料 1、锂电池正极材料主要有钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物和三元材料等。锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正极材料、负极材料、电解液、隔膜和导电材料等。其中正、负极材料的选择和质量直接决定锂电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂电池性能进一步提高、价格进一步降低的重要因素。 在目前的商业化生产的锂电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂电池价格的降低。对锂动力电池尤其如此。比如一块手机用的小型锂电池大约只需要5克左右的正极材料,而驱动一辆电动汽车用的锂动力电池可能需要高达500千克的正极材料。衡量锂电池正极材料的好坏,大致可以从以下几个方面进行评估: (1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能; (4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电; (5)正极材料应有较高的电导率,能使电池大电流地充电和放电; (6)正极不与电解质等发生化学反应; (7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂电池正极材料一般都是锂的氧化物。研究得比较多的有钴酸锂,镍酸锂,锰酸锂,磷酸铁锂和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1.1、钴酸锂

建筑工程材料预算价格计算公式如下

建筑工程材料预算价格计算公式如下: 建筑工程材料费=∑(材料消耗量*材料基价)+检验试验费。 建筑工程材料预算价格=(材料原价+运杂费+运输损耗费)*(1+采购及保管费率)+材料原价*检验试验费率。其中,∑ 这个表示求和的计算符号,是指所有的材料消耗量*材料基价的和在加检验试验费。建筑工程所有材料的总费用=∑[(单个材料消耗量*材料基价)+单个检验试验费]。 1 工程量计算、汇总 (1) 计算工程量的资料 施工图纸及设计说明书、相关图集、设计变更资料、图纸答疑、会审记录等。 经审定的施工组织设计或施工方案。 工程施工合同、招标文件的商务条款。 工程量计算规则。 (2) 工程量计算的顺序 单位工程计算顺序。 1)按施工顺序计算法。按施工顺序计算法是按照工程施工顺序的先后次序来计算工程量。 2)按定额顺序计算法。按定额顺序计算工程量法就是按照计量规则中规定的分章或分部分项工程顺序来计算工程量。 单个分项工程计算顺序。 按照顺时针方向计算法。 按“先横后竖、先上后下、先左后右”计算法。 按图纸分项编号顺序计算法。 (3) 工程量计算的步骤 根据工程内容和计量规则中规定的项目列出须计算工程量的分部分项工程。 根据一定的计算顺序和计算规则列出计算式。 根据施工图纸的要求确定有关数据代入计算式进行数值计算。 对计算结果的计量单位进行调整,使之与计量规则中规定的相应分部分项工程的计量单位保持一致。 (4) 工程量计算的注意事项 1)口径一致。计算工程量必须熟悉计量规则中每个工程项目所包括的内容和范围。2 )按工程量计算规则计算。 3)列出计算式。在列计算式时,必须部位清楚,详细列项标出计算式,注明计算结构构件的所处部位和轴线,并保留工程量计算书,作为复查依据。工程量计算式,应力求简单明了,醒目易懂,并要按一定的次序排列,以便于审核和校对。 4)计算准确。工程量计算的精度将直接影响着造价确定的精度,因此,数量计算要准确。一般规定工程量的精确度应按计量规则中的有关规定执行。 5)计量单位一致。必须与计量规则中规定的计量单位相一致。 2 套用预算单价,计算工程直接费 3 根据费用定额规定,计取各种其他费用和工程造价。 土建工程费用计算程序 序号费用名称计算式备注 (一)定额项目费按预算定额计算的项目基价之和 A 人工费按预算定额计算的项目人工费之和

材料力学的基本计算公式

材料力学的基本计算公 式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

材料力学的基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a 从x轴正方向逆时针转至外法线的方位角为正) 4. 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试 样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算 公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性 材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关 系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆

21.圆轴扭转时横截面上任一点切应力计算公式(扭 矩T,所求点到圆心距离r) 22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 24.(b)空心圆 25.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均 半径)扭转切应力计算公式 26.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的 关系式 27.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 28.等直圆轴强度条件 29.塑性材料;脆性材料

建筑材料计算公式

1、密度:材料在绝对密实状态下,单位体积的质量,称为材料的密度。 ρ——材料的密度(g/cm3或kg/m3)m——材料的质量(g或kg) V——材料在绝对密实状态下的体积(cm3或m3)计算式:ρ=m/V 2、表观密度:工程中常用的散粒状材料,如混凝土用砂、石子等,因孔隙很少,可不比磨 成细粉,直接用排水法测得颗粒体积(包括材料的密实体积和闭口孔隙体积,但不包括开口孔隙体积),称为绝对密实体积的近似值。 ρ’——材料的表观密度(g/cm3或kg/m3) m——材料在干燥状态下的质量(g或kg) V’——材料在自然状态下不含开口孔隙的体积(cm3或m3) 计算式:p’=m/V’ 3、体积密度:材料在自然状态下,单位体积的质量,称为材料的体积密度。 ρ0——材料的体积密度(g/cm3或kg/m3)m——材料在干燥状态下的质量(g或kg)V0——材料在自然状态下的体积(包括材料内部封闭孔隙和开口孔隙的体积)(cm3或m3)计算式:ρ0=m/V0 4、堆积密度:散粒材料或粉末状、颗粒状材料在堆积状态下,单位体积的质量。 ρ’0——材料的堆积密度(g/cm3或kg/m3) m——材料在干燥状态下的质量(g或kg)计算式:ρ’0=m/ V’0 V’0——材料的堆积体积(cm3或m3) 5、密实度:密实度是只材料体积内被固体物质所充实的程度。(用D表示) 计算式:D=V/V0*100%=ρ0/ρ*100% 6、空隙率:空隙率是指材料体积内,孔隙体积占材料在自然状态下总体积的百分率。(用P 表示) 计算式:P={(V0-V)/V}*100%=(1-ρ0/ρ)*100% 密实度于空隙率的关系为:P+D=1 7、填充率:填充率是只散粒材料的堆积体积中,被其颗粒所填充的程度。(用D’表示) 计算式:D’=V’/V’0*100%=ρ’0/ρ’*100% 8、空隙率:空隙率是只散粒材料的堆积体积中,颗粒之间的空隙体积占材料堆积体积的百 分率(用P’表示) 计算式:P’={(V’0-V’)/V’0}*100%=(1-ρ’0/ρ’)*100% 9、吸水性:材料在水中吸收水分的性质,称为吸水性。溪水性的大小用吸水率表示,吸水 率分为质量吸水率W质和体积吸水率W吸两种。(下为质量吸水率) W质——材料的质量吸水率(%)m湿——材料吸水饱和后的质量(g) m干——材料干燥状态下的质量(g)计算式:W质= (m湿-m干)/m干*100% 体积吸水率:W体——材料的体积吸水率(%)m湿——材料吸水饱和后的质量(g)m干——材料在干燥状态下的质量V0——干燥材料自然状态下的体积(cm3) ρh2o——水的密度(g/cm3)计算式:W体=(m湿-m干)/V0*(1/ρh2o)*100%质量吸水率和体积吸水率的关系为:W体=W质*ρh2o 10、吸湿性:材料在空气中吸收水分的性质,称为吸湿性。(用含水率W含表示) W含——材料的含水率(%)m含——材料汗水时的质量(g) m干——材料干燥时的质量(g)计算式:W含=(m含-m干)/m干*100% 11、耐水性:材料长期在饱和水的作用下不破坏、其强度也不显著降低的性质,称为材料的 耐水性。 K软——材料的软化系数f饱——材料在吸水饱和状态下的抗压强度,Mpa

何计算锂离子电池的容量保持率

何计算锂离子电池的容量保持率 但是计算容量的原理是一样的,同时记录放电时间.0-4。 当然用设备也可以直接测试出来,因此你将电池充满电后.2V。 电池的充放电压区间是3电池的容量是很容易计算的,换成百分比就是了。 容量的保持率就是你将你使用N此后测试的容量除以第一次测试的容量或者标称容量,在以一个恒定的电流放电,将电流乘以时间(小时单位)就得到容量,就是电流乘以时间 锂离子电池在多次充放后容量仍然会下降,时间)可以抽样计算出电池的电量,其原因是复杂而多样的。主要电量统计芯片通过记录放电曲线(电压,电流但是 如何计算锂离子电池的容量保持率~~~电池的容量是很容易计算的。电池的充放电压区间是3.0-4.2V,因此你将电池充满电后,在以一个恒定... 锂离子电池负极克比容量怎样计算~~~电池的容量除以负极的纯粉容量除以过量负极的过量系数。 锂离子电池正负极容量配比怎么计算啊?有公式吗?~~~你讲的概率叫NP比,指的是单位面积容量比; NP=负极面密度*活性物质比率*活性物质克容量/(正极面... 锂离子电池容量的计算公式~~~公式应该没有,但是想知道容量就是放电电流乘放电时间,比如放电电流2安,放电时间2小时整,就是2A*2... 怎么计算电池容量啊?~~~假定充放电效率为100%,灯具恒定功率25W,那么后备5小时对电池容量要求: 用铅蓄电池时,放电电压... 锂离子电池知道正负极容量,怎么计算电池容量~~~正负极什么容量啊说的这么模糊是不是行业内人士啊?知道正极材料的克容量吗克容量×正极物质含量就是... 锂电池电压容量瓦时怎么计算的?~~~单一个锂电池应该以3.7v为标准电压,2个串联7.4v......如此类推。瓦时=安时x电压,如一... 电池容量(毫安时)是如何计算的?~~~电池容量(C)的计算方法: 容量C=放电电池(恒流)I×放电时间(小时)T 反过来: 放电时间T=容... ?如何计算锂离子电池的容量保持率答:电池的容量是很容易计算的。电池的充放电压区间是3.0-4.2V,因此你将电池充满电后,在以一个恒定的电流放电,同时记录放电时间,将... ?锂离子电池理论容量是如何计算的?答:路过,围观一下。看看早有理论容量的文章 ?锂离子电池发热功率如何计算?答:11 ?锂离子电池的隔膜孔隙率怎么计算.请阿里巴巴故意网答:孔隙率和通孔率孔隙率是材料中孔隙体积占总体积的比例。(材料中固体体积占总体积的比例,称为密实度)。... 表达式 P=[(M-m)... ?请问新买的锂离子电池应该如何使用才算正确啊?答:锂电池前3-5次充电应充14小时以上!nbsp;如果我们希望能够延长电池的有效使用时间,除了充电器的质量要... 那么前3-5次充电... ?请问新买的锂离子电池应该如何使用才算正确啊?答:锂电池前3-5次充电应充14小时以上! 如果我们希望能够延长电池的有效使用时间,除了充电器的质量要有保证... 那么前3-5次充电一...

各种材料重量计算公式

钢管重量计算公式,方钢重量计算公式,钢板重量计算公式园钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度 注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米 以上重量X材料单价为材料费. 加上表面处理+每个工艺流程的工时费+包装材料+出货费+税金+利率 = 报价(FOB) 关于丝网类计算的几个公式及参数 丝网的重量: 丝直径x丝直径x目数=1平方米的(市斤)重量

装修材料预算公式大全

主材计算方法: 涂料乳胶漆 涂料乳胶漆的包装基本分为5升和15升两种规格。 以家庭中常用的5升容量为例,5升的理论涂刷面积为两遍35㎡。 粗略计算方法:地面面积*2.5/35=使用桶数 精确计算方法:(长+宽)*2*房高=墙面面积 长*宽=顶面面积 (墙面面积+顶面面积-门窗面积)/35=使用桶数。以长5m、宽3m高2.9m的房间为例,室内的墙,顶涂刷面积计算如下: 墙面面积:(5m+3m)*2*2.9m=46.4㎡ 顶面面积:(5m*3m)=15㎡ 涂料量:(46.4+15)/35㎡=1.7桶

复合地板 粗略的计算方法: 地面面积/(1.2m*0.19)*105%(其中5%为损耗量)=地板块数精确的计算方法: (房间长度/板长)*(房间宽度/板宽)=地板块数 以长5m,宽4m的房间,选用900*90*0.18m规格地板为例:房间5m/1.2m=5块房间宽4m/0.19m=22块 长5块*宽22块=用板总量110块 tips: 复合木地板在铺装中会有3%-5%的损耗,如果以面积计算,千万不要忽视这部份用量。 实木地板 常见规格有900*90*18mm

750*90*18mm,600*90*18mm 粗略的计算方法: 房间面积/地板面积*1.08(其中8%为损耗量)=使用地板块数 精确的计算方法: (房间长/地板长)*(房间宽/地板宽)=使用地板块数 以长8CM,宽5M的房间,用900*90*0.18m规格地板为例,房间长8m/板长0.9m=9块。房间宽5m/板宽0.09m=56块。长9 块*宽56块=用板总量504块 tips: 实木地板铺装中通常要有5%-8%的损耗,在计算中要考虑进去。 地砖: 常见地砖规格有0.6*0.6m 0.5*0.5m,0.4*0.4m,0.3*0.3m 粗略的计算方法:

相关文档
最新文档