新型水处理剂聚天冬氨酸的研究

新型水处理剂聚天冬氨酸的研究
新型水处理剂聚天冬氨酸的研究

聚四氢呋喃简介

聚四氢呋喃(PTMEG)简介 【性质】 分子式:HO-[-CH2CH2CH2CH2O-]n-H 聚四氢呋喃按照分子量的不同分为:250 650 1000 1400 1800 2000 3000七种。中文别称:聚四氢呋喃二醇、聚四亚甲基醚二醇、聚丁二醚。 聚四氢呋喃是分子两端具有羟基的直链聚醚二醇,分子呈直链结构,骨架上连接着醚键,两端为一级羟基,具有整齐排列的分子结构。聚四氢呋喃的形态随相对分子质量的增加从粘稠的无色油状液体到蜡状固体,它的物理性质主要由相对分子质量决定。在常温下,低分子量的聚四氢呋喃为无色液体,分子量较高的聚四氢呋喃为白色蜡状物。 聚四氢呋喃的脂肪醚主链骨架容易进行氧化反应生成过氧化物,产品中过氧化物的存在将对氨纶和聚氨酯弹性体的生产过程及其产品质量带来严重影响。 目前,聚四氢呋喃产品没有统一的规格标准,由企业规定产品的质量指标,但不同企业生产的产品区别不大,其中美国DuPont公司生产的聚四氢呋喃商品名为“Terathane”,其规格具有代表性。 【主要用途】 国内聚四氢呋喃消费中氨纶的生产用原料占到90%以上,而其他领域的消费应用只占不到10%。而在发达国家市场,聚四氢呋喃产品应用消费比例中,约50%左右用于氨纶生产,40%用于合成橡胶弹性体,10%用于其他领域。。 【生产工艺】 聚四氢呋喃只能由四氢呋喃进行正离子聚合得到。反应如下:

nC4H8O+H2O====(引发剂)====HO-[-C4H8O-]n-H 工业上是用乙酸酐-高氯酸、氟磺酸或发烟硫酸为引发剂,使四氢呋喃聚合成分子量为600~3000、双端基为羟基的产物。 【生产技术及专利商】 有四种生产方法:高氯酸一醋酐法(专利商不明),氟磺酸催化剂法(专利商:杜邦公司),固体酸催化剂法(专利商:韩国PTG公司),杂多酸催化剂法(专利商:日本旭化成公司) 【国外主要生产企业及产能】 2005年全球聚四氢呋喃的总生产能力约56.1万吨。美国、日本、西欧地区是主要的生产国家和地区,其中巴斯夫公司是目前世界上最大的聚四氢呋喃生产公司,总生产能力达到l8.8万吨/年,约占世界聚四氢呋喃总生产能力的33.5l%,分别在美国、德国、日本、韩国和中国大陆建有生产装置。其次是杜邦化学公司,生产能力为l6.4万吨/年,约占世界总生产能力的29.23%,分别在美国、荷兰、新加坡等地建有生产装置。 【国内主要生产企业及产能】

BDO(有一个很不错的PTMEG_聚四氢呋喃__流程)

甲醇公司学习报告 一,项目简介 甲醇项目以煤为原料,采用德士古技术。共一套设备,单套设备规模为60万吨,由于生产了10万吨CO(≥98.5%wt,送醋酸)和1.3万吨氢气(≥99.5%wt,送BDO),所以只能产出50万吨甲醇,其中36万吨供园区自用,14万吨用于外销。 储罐情况,10000立方×2个=20000立方,约储存26天。 二,甲醇预计单耗 注:生产甲醇原料可以是天然气、煤炭、焦炭、渣油、石脑油、乙炔尾气等。 三,甲醇国标

四,甲醇理化特性 五,甲醇危险特性

六,包装和储运 七,甲醇用途 甲醇主要用于制造甲醛、醋酸、二甲醚、甲基叔丁基醚(MTBE)、甲胺、丙烯、烯烃、氯甲烷、甲酸甲酯、碳酸二甲酯、对苯二甲酸二甲酯(DMT)、二甲基甲酰胺、甲基丙烯酸甲酯(MMA)等一系列有机产品。另外,上述产品又可生成各自的衍生物,由甲醇生产的化工产品可达数百种。可以用作民用燃料、汽车燃料等。还可用甲醇制微生物蛋白(SCP)作为饲料乃至食品添加剂。国内主要消耗领域是甲醛、

醋酸、二甲醚、甲醇燃料。 八,我公司甲醇装置组成及工艺简述

注:在国际上煤气化技术有两种:一种是以荷兰壳牌为代表的煤粉技术;另一种是以美国德士古为代表的煤浆技术,我公司甲醇项目采用该公司该技术。 九,工艺流程简述

BDO公司学习报告 一,项目简介 本项目原料大多由园区自备,采用英威达的reppe技术生产纯度大于99.5%的BDO以及型号为1800、1800B 、2000分子量的PTMEG。 储罐情况,BDO:4000立方×2个=8000立方,约储存25天。 PTMEG:400立方×6个=2400立方, 2000立方×6个=12000立方,约储存50天。二,预计单耗 1、甲醛预计单耗 2、BDO预计单耗 注:BDO的工艺路线有17种以上,但是已经实现工业化的主要是以

聚天冬氨酸的生产及应用分析2

聚天冬氨酸的生产及应用分析 李峰1,李更辰2,邢振平1 (1、石家庄开发区德赛化工有限公司;2、石家庄铁道大学材料科学与工程学院)摘要:论文综述了以L-天门冬氨酸为原料或以马来酸酐及其衍生物为原料生产聚天冬氨酸工艺,分析了聚天冬氨酸应用领域及市场需求,概括了国内外工业化生产规模及研究现状,比较了国内外产品差距,分析了国内聚天冬氨酸生产现状,指出国内提高聚天冬氨酸品质需要研究的方向。 关键词:聚天冬氨酸、水处理、阻垢、缓蚀 1、聚天冬氨酸的产品意义 聚天冬氨酸(Polyaspartic acid)是一种氨基酸的聚合物,天然存在于软体动物和蜗牛类的壳内[1]。天门冬氨酸分子中的胺基和羧基缩合后形成酰胺键,构成大分子主链,另一个羧基则分布在主链的两侧。 在聚天冬氨酸大分子中含有丰富的酰胺键、羧基等活性基团。酰胺键的化学稳定性较高,高温不易分解;另一方面酰胺键也是肽键,具有生物活性。羧基在水中电离形成羧基负离子,它能与多种离子发生络合反应,使聚天冬氨酸在水溶液中具有很高的化学活性。在聚天冬氨酸每个结构单元中,有4个氧原子和1个氮原子,氧和氮原子极易与水分子形成氢键,使其具有很好的亲水性和水溶性[2]。 聚天冬氨酸特殊的分子结构决定了它具有以下特征: ⑴分散性低分子量的聚天冬氨酸具有很好的分散能力,能够分散水溶液中各种颗粒物质,如CaCO3、CaSO4、BaSO4、Fe2O3、粘土、Ca3(PO4)2等[2]。 ⑵缓蚀性低分子量的聚天冬氨酸具有阻止碳钢、铜等腐蚀的能力,是一种良好的缓蚀剂,特别适用于防止采油管线中二氧化碳引起的腐蚀[2]。 ⑶吸湿性聚天冬氨酸很容易潮解,有很强的吸水性,并能保持水份,大分子量的聚天冬氨酸可用作吸水树脂[2]。 ⑷生物降解性聚天冬氨酸的类蛋白质结构决定了它有很好的生物可降解性。根据OECD301B 标准,对聚天冬氨酸的生物降解性进行了研究。结果证明,聚天冬氨酸10d内的降解率超过18.8%,28d内生物降解率达到73%,是易生物降解物质[2]。 ⑸环境友好性聚天冬氨酸对环境及其环境微生物无毒害性,其分解的小分子产物天冬氨酸是生物营养物质,可被环境微生物直接吸收[2]。 因此,聚天冬氨酸是一类多功能的环境友好的水溶性高分子材料。 2、聚天冬氨酸的国内外发展和现状 随着化学品应用的普及,人们在享受它带来的极大方便的同时,它的环境污染问题越来越引起人们的关注,于是绿色化学品成为学术界研究的重点。 自1850年,聚天冬氨酸首次人工合成以来[3],逐渐受到世界上各大化学公司的关注,其中以美国、德国和日本等国对聚天冬氨酸的研究最为活跃,美国的Donlar公司和德国的Bayer公司等都已经实现了工业化生产[1]。1996年,美国Donlar公司还因在聚天冬氨酸合成研究方面的突出贡献,被

聚天冬氨酸

聚天冬氨酸 聚天冬氨酸(PASP)属于聚氨基酸中的一类。聚天冬氨酸因其结构主链上的肽键易受微生物、真菌等作用而断裂,最终降解产物是对环境无害的氨、二氧化碳和水。因此,聚天冬氨酸是生物降解性好的、环境友好型化学品。 聚天冬氨酸用途广泛。在水处理、医药、农业、日化等领域都能找到它的用途。作为水处理剂,它的主要作用是阻垢和/或分散,兼有缓蚀作用。作为阻垢剂,特别适合于抑制冷却水、锅炉水及反渗透处理中的碳酸钙垢、硫酸钙垢、硫酸钡垢和磷酸钙垢的形成。对碳酸钙的阻垢率可达100%。聚天冬氨酸同时具有分散作用并可有效防止金属设备的腐蚀。聚天冬氨酸与有机磷系缓蚀阻垢剂存在协同作用,常与乙烯基聚合物分散剂(如聚丙烯酸、水解聚马来酸酐、丙烯酸-丙烯酸乙酯-衣康酸共聚物等)、膦系化合物缓蚀阻垢剂(如HEDP、ATMP、PBTCA等)等复配成高效的、多功能的缓蚀阻垢剂。 一、聚天冬氨酸的特性 【CAS】 181828-06-8 分子式:C4H6NO3(C4H5NO3)C4H6NO4 相对分子质量:1000~5000 结构式 生物降解性:聚天冬氨酸是一种带有羧酸侧链的聚合氨基酸,是天冬氨酸单体的氨基和羧基缩水而成的聚合物,有α,β 2种构型。天然的聚氨基酸中聚天冬氨酸片段都是以α型形式存在的,而合成的聚天冬氨酸中大部分是α,β 2种构型的混合物。热缩聚得到的聚天冬氨酸,因其结构主链上的肽键易受微生物、真菌等作用而断裂,最终降解产物是对环境无害的水和二氧化碳。聚天冬氨酸水凝胶在活性污泥中的生物降解速度为28d 达到76%。 毒性:利用昆明种小鼠急性毒性实验、Ames实验、小鼠骨髓嗜多染红细胞微核实验研究聚天冬氨酸的一般毒性与致突变性,结果显示:聚天冬氨酸既无毒性也无致突变作用。这为安全使用聚天冬氨酸提供了依据。 二、产品标准 项目指标 外观琥珀色透明液体 固体含量%≥ 40.0 密度(20℃)g/cm3 ≥ 1.20 pH值(1%水溶液) 9.0~11.0 三、生产方法

聚天冬氨酸的应用研究进展

聚天冬氨酸的应用研究进展福建师范大学福清分校 生物与化学工程系 09环境科学 118672009024 赖丽鹏 【摘 要】聚天冬氨酸最终降解产物是对环境无害的氨、二氧化碳和水。因此,聚天冬氨酸是生物降解性好、环境友好型化学品。聚天冬氨酸的用途广泛。它广泛应用于肥料增效、工业水处理、金属切削液、日用化学品、油田二次采油的注水助剂等领域。此外,聚天冬氨酸在洗涤剂、高吸水树脂、水煤浆添加剂、光化学品等方面也具有广阔的应用前景。所以,聚天冬氨酸的应用研究是具有极大的意义。本文论述了聚天冬氨酸的在水处理、农业、工业等方面的应用研究进展已经市场前景和发展建议。 【关键词】聚天冬氨酸,应用,水处理,农业,工业 1.引 言 聚天冬氨酸(PASP)属于聚氨基酸中的一类。聚天冬氨酸因其结构主链上的肽键容易受微生物、真菌等作用而断裂,最终降解产物是对环境无害的氨、二氧化碳和水。因此,聚天冬氨酸是生物降解性好、环境友好型化学品。 聚天冬氨酸的用途广泛。它广泛应用于肥料增效、工业水处理、金属切削液、日用化学品、油田二次采油的注水助剂等领域。此外,聚天冬氨酸在洗涤剂、高吸水树脂、水煤浆添加剂、光化学品等方面也具有广阔的应用前景。所以,聚天冬氨酸的应用研究是具有极大的意义。 2.聚天冬氨酸的特性 2.1.分子性质 分子式:C4H6NO3(C4H5NO3)C4H6NO4 相对分子质量:1000-5000 它是一种带有羧基侧链的聚氨基酸,具有螯合和分散作用。由于聚天冬氨酸分子中含 有大量的-COOH、-NHCO-等极性基团,具有很好的亲水性和水溶性,此外,侧链上的-COOH 在水溶液中很容易电离,形成羧基负离子(-COO-),能与多种离子发生络合反应,使聚天 冬氨酸在水溶液中具有很好的化学活性。 2.2.生物降解性 聚天冬氨酸是一种带有羧酸侧链的聚合氨基酸,是天冬氨酸单体

四氢呋喃的原料与上下游产业链分析

四氢呋喃的原料与上下游产业链分析 7.1 四氢呋喃的原料供应与市场概况 四氢呋喃(THF)生产主要来自于由Reppe法,环氧丙烷/烯丙醇法合成的1,4-丁二醇(BDO)脱水环化路线,迄今该路线仍占总THF产能的50%左右。以正丁烷为原料的杜邦工艺等是近年来开发的技术,杜邦以正丁烷为原料经顺酐生产THF路线已在西班牙建成工业装置。其他主要生产路线有丁二烯/醋酸法和糠醛法等。 目前国内主要采用1,4-丁二醇法和顺酐法制四氢呋喃,因此四氢呋喃的主要原料是1,4-丁二醇和顺酐。 7.1.1 1,4-丁二醇供应现状与市场概况 1,4-丁二醇(简称BDO),是一种重要的有机化工产品,主要用于生产四氢呋喃(THF) 、γ-丁内酯( GBL )、N-甲基吡咯烷酮(NMP)、聚氨酯(PU)、工程塑料聚对苯二甲酸丁二醇酯( PBT)及增塑剂等。近年来,因为PBT暖塑性工程塑料、聚四亚甲基乙二醇醚( PTMEG)中间体等1,4-丁二醇下游产品的需求敏捷增加,1,4-丁二醇的需求呈现较大幅度增加。我国因为1,4-丁二醇产不足需,欲扩建和新建1,4-丁二醇装置的企业较多。 生产1,4-丁二醇有多种方式,已实现工业化的重要有Reppe法、顺酐酯化加氢法、烯丙醇氢甲酰化法、顺酐直接加氢法、丁二烯乙酰氧化法和二氯丁烯水解加氢法等。从原料起源、技术经济性和产品构成等方面综合斟酌,顺酐酯化加氢工艺是生产1,4-丁二醇的最新工艺,具有较广发铺远景。顺酐酯化加氢工艺的主要原料顺丁烯二酸酐(简称顺酐)是主要的有机化工原料,而且跟着正丁烷氧化制备顺酐工艺技术上的突破,顺酐成为世界上仅次于醋酐和苯酐的第三大酸酐原料,其下游产品具有普遍的开发和利用远景,仅加氢衍生物就有琥珀酸酐、1,4- 丁二醇、γ-丁内酯和四氢呋喃等。

聚天冬氨酸及其衍生物

聚天冬氨酸及其衍生物 012009165 李杰 (一)聚天冬氨酸 聚天冬氨酸(PASP)是一类研究较多的合成聚氨基酸,具有很好的生物相容性和可生物降解性。水溶性聚天冬氨酸是一种有效的阻垢剂和分散剂,易生物降解。活性实验表明,在应用上其性能与聚丙烯酸一致,是聚丙烯酸的良好取代品。 1.结构与制备方法 PASP具有两种构型,即α和β构型,结构如下: 天然聚氨基酸中的PASP片段是以α构型存在的,合成的PASP通常是两种构型的混合物。制备PASP的方法主要有两种:一种方法是NCA (N-carboxyan-hydride)法;另一种方法是琥珀酰亚胺中间体破解,这是目前合成PASP的主要方法。聚天冬氨酸的合成途径主要分三个步骤:先由天冬氨酸或马来酸酐、马来酸铵盐等热缩合合成中间体聚琥珀酰亚胺(polysuccinimide,PSI);然后,聚琥珀酰亚胺水解制取天冬氨酸盐;最后,聚天冬氨酸盐进行分离与纯化。中间体聚琥珀酰亚胺的合成是关键的步骤,不同的合成方法和反应不仅影响聚琥珀酰亚胺的产率和纯度,而且影响产物的结构和摩尔质量,从而影响聚天冬氨酸的性质、性能和用途。目前,研究比较多的聚琥珀酰亚胺的合成方法有以下4种;①L-天冬氨酸的热缩合;②L-天冬氨酸的催化聚合;③马来酸酐与氨水先进行化学反应,然后进行缩合聚合;④马来酸酐与铵盐或胺类物质反应并直接进行聚合。天冬氨酸的热缩合的制备反应式如下:

制取高分子量的聚天冬氨酸的方法:将天冬氨酸溶于浓H3PO4中,180℃减压缩合得高分子量的琥珀酰亚胺,再用中性、弱酸性、碱性等基团开环。所用的溶剂有二异丁酮、环碳酸酯等。若将天冬氨酸与少量磷酸溶于1,3,5—三甲基苯与环丁砜混合溶剂中制备中间体,不需要分离就可以进一步缩合得琥珀酰亚胺。 不同制备方法得到的PASP的性能有一定的差别,如磷酸催化天冬氨酸热缩合得到聚天冬氨酸比从马来酸酐出发缩聚制备聚天冬氨酸的生物降解性要好,28天后几乎全部降解,而天冬氨酸本体热缩聚得到聚天冬氨酸生物降解性能最差, 2+ 28天后仅50%被降解。但是对Ca 的整合性能正好相反,从马来酸酐出发制备的聚天冬氨酸最好,磷酸催化得到的聚天冬氨酸最差。 2.应用 聚天冬氨酸具有很高的应用价值,他可以改变钙盐的晶体结构,作为一种优良的阻垢分散剂用于循环冷却系统、锅炉及油气田水处理,防止结垢阻塞管道和地层。还可以和洗涤剂复配使用提高洗涤效果。聚天冬氨酸能与钙、镁、铜、铁等多重离子形成螯合物,附着在金属容器表面阻止金属腐蚀,是一种良好的缓蚀剂。聚天冬氨酸作为肥料添加剂能促进植物生长,相对摩尔质量较大的聚天冬氨酸具有优良保湿性能,可用于制造日用化妆品和保健用品等,还作为血浆膨胀剂使用。其良好的生物降解性和生物相容性,使其在药物控制释放领域受到关注,人们制备了多种PASP共聚物,利用其侧链羧基的功能性,获得前提药物或通过静电、氢键等复合作用控制药物释放。 (二)聚天冬酰胺 在药物控制释放领域研究较多的聚天冬氨酸衍生物是聚天冬酰胺,其活性的侧基易于键合药物分子。聚天冬酰胺可通过氨基开环聚丁二酰亚胺(PSI)制备。用乙醇胺使PSI开环可制得(α,β-N-羟乙基-D-天冬酰胺)(PHEA),因其具有良好的生物相容性而将它用作血浆膨胀剂。用水合肼与PSI反应则制得聚天冬酰

浅析尼龙6生产工艺技术分析

浅析尼龙6生产工艺技术分析 摘要:尼龙(polyamide fibre)指的是聚酰胺纤维,又叫做锦纶,尼龙包括多种类型的产品,不同产品之间的性质和用途有较大的差别。作为我国最早开发的合成纤维产品,尼龙6有着悠久的生产历史,但在尼龙6生产技术方面还有非常大的发展空间,需要不断进行研究和探索。本文通过对尼龙6纤维性能的描述,对尼龙6的生产过程中的聚合方法进行了分析,分别是常压连续法、二段法、间歇式高压釜法等,并且对以上几种聚合方法的工艺比较分析,以期为我国尼龙6生产技术和产品的发展方向提供参考。 关键词:尼龙6 生产技术发展趋势 锦纶6即为尼龙6,是我国玻璃纤维增强聚酰胺-6的商品名称,也叫做PA6或耐纶6。聚己内酰胺最早于1938年由E-氨基己酸和己内酰胺制成的,经过不断发展,展开了对聚酰胺6纤维的试验和大量生产,进入了工业化生产时期[1]。自1950年后,我国积极的学习国外技术和经验,引进了大量先进的设备,使尼龙6生产技术得到了飞速的发展,逐渐向着国际化的方向发展,最终成为我国锦纶纤维产业产量最大的一种聚酰胺纤维,生产能力超过尼龙66。 一、尼龙6纤维的性能 与传统纤维相同的是尼龙6依然延续了抗溶解性强、工艺温度范围大、熔点低、抗冲击力高、耐霉烂、腐蚀性强及防虫防蛀性好等特征,还具有较高的断裂强度,在所有纤维中强力仅次于芳纶。尼龙6在结节强度、耐磨性、重复弯曲强度、伸长及弹性回复率等方面,均优于其他合成纤维,具有显著的优势,比重也相对较轻。但是尼龙纤维6也存在吸湿性强的问题,其不足之处在于耐光、耐热性差,很容易出现变形的现象,抵抗形变能力较弱,如果长时间受紫外线或日光的照射会导致产品变黄。 二、尼龙6的聚合方法 尼龙6的生产过程中随着新技术的发展已经迈向了大型化的高新技术行列中。根据用处的不一样聚合工艺可以分成以下几种不一样的方法:[2] 第一,二段聚合方法 此种方法是由前聚合和后聚合两种聚合管组合而成的,通常使用在生产高粘度的工业帘子布丝,两种聚合法分成了前聚合高压以及后聚合常压两种;前聚合增加压,后聚合减少压;前、后聚合均为常压三种方法。在以上三种方法的生产过程中都是从聚合时间以及生产物中的个体以及低聚体量等之间的比较进行加压处理,减压聚合法。[3]通常情况下,减压聚合的方法比较好,但是由于投资比较大,费用高;高压以及常压次之,前、后聚合均为常压最差,不过此种方法也是投资最省钱,操作费用较低的。采用前聚合加压,后聚合减压生产方法时,

华东理工大学科技成果——环保型水处理剂聚天冬氨酸(PASP)的研制

华东理工大学科技成果——环保型水处理剂聚天冬 氨酸(PASP)的研制 项目简介 目前国内外工业用水处理中对金属材料设备结垢和腐蚀的缓蚀剂和阻垢剂,大部分系含磷(或膦)的药剂,由于排放后对周围水体易引起富营养化。国内外排放水总磷要求小于1mg/L,在这一背景下急需研发不含磷(或膦)的水处理剂。而聚天冬氨酸PASP就是近年来国内外公认的符合环保要求的绿色水处理剂。 本项目合成制备采用的原料全部为国产的环保型原料,和国内外其他制备方法不同,采用了单体本体热聚合的一步反应工艺技术,具有创新性,该工艺具有反应时间短,不涉及投加其他化学品等优点,产品不仅可应用于工业水如工业冷却水的阻垢和防腐蚀,由于抑制水垢和腐蚀可提高传热效率并防止跑冒滴漏而取得显著的节能减排效果,经拓展研究后发现应用于农作物,先后对蔬菜类,如青菜、花菜,瓜果类,如西瓜、甜瓜,以及粮油作物等均可取得以下三方面的增效作用: (1)促进农作物营养的吸收而提高农作物的产量,不同作物品种可提高5%-15%左右。 (2)改善了作物的品质,如西瓜的甜度可由原先的10-12%提高到15-16%。 (3)对肥料起到增效作用,可减少化肥的用量,有利于改善土壤和环境。

所属领域环境 项目成熟度中试 应用前景可在工业水尤其是在工厂企业中占用水量最大的工业循环冷却水系统使用,经过国家授权医学卫生单位检测对动物和鱼类无毒性,对环境无危害。在新农村建设中则可推广应用到各类农作物取得增加产量和改善品质的效果。 知识产权及项目获奖情况 已具有自主知识产权的核心技术,申报和批准两项国家发明专利,授权专利号分别是ZL01113457.7《一种以聚天冬氨酸为主剂的符合水处理剂》和ZL200410025415.0《一种促进叶菜作物营养吸收的方法》等,并获得上海市科技进步二等奖。 合作方式技术后续开发或技术转让,提供产品或技术支持。

【开题报告】聚天冬氨酸的合成及表征

开题报告 应用化学 聚天冬氨酸的合成及表征 一、选题的背景和意义 随着经济社会的发展,水溶性高分子材料的应用量逐年增加,比如在工业冷却水循环系统中,一般要加入水处理剂以控制结垢、腐蚀等问题,而聚丙烯酸和聚丙烯酰胺类水处理剂的阻垢效果虽好,却不能生物降解,造成严重的环境问题。因此,可生物降解的水溶性高分子材料成为近年来的研究热点。 国外成功开发的水处理剂聚天冬氨酸( Polyaspartic acid ,简称PASP)就是这样一类“绿色”产品。聚天冬氨酸天然存在于软体动物和蜗牛类的壳中,是由天冬氨酸(Aspartic acid ,简称ASP) 单体的氨基和羧基缩水而成的聚合物,具有类似蛋白质的酰胺键结构,可完全生物降解成对环境无害的终产物,无毒无污染,是一类对环境友好的绿色聚合物。是受海洋动物代谢过程启发而开发成功的一种绿色阻垢剂,特别适用于抑制冷却水、锅炉水及反渗透膜处理中的碳酸钙等的成垢。使用聚天冬氨酸可高效、稳定地被微生物降解为对环境无害的终产物,具有很好的生物降解性,无毒无污染,是公认的绿色聚合物和水处理剂的更新换代产品。 研究证明,水溶性聚天冬氨酸具有阻垢、缓蚀、分散、螯合、保湿等多种功能,市场前景很好,经济效益和社会效益非常可观。20世纪90年代初自美国Donlar 公司开发成功以来,聚天冬氨酸的合成及应用已经成为各发达国家竞相研究的热点,美国、德国已相继建成了较大规模的生产装置并成功运转。国内对聚天冬氨酸的研究还处于起步阶段。 二、研究目标与主要内容(含论文提纲) 本课题通过实验熟练掌握制备聚琥珀酰亚胺(PSI)和聚天冬氨酸(PASP)的基本方法,熟悉在实验过程中的各项操作,并了解其化学性质和应用情况,熟悉各种表征 手段,并掌握红外光谱仪(IR)和差示扫描量热仪(DSC)的操作方法和工作原理主要内容包括: 1.聚琥珀酰亚胺(PSI)的合成

聚四氢呋喃的生产工艺及发展建议

第46卷第19期 2018年10月广 州 化 工 Guangzhou Chemical Industry Vol.46No.19 Oct. 2018聚四氢呋喃的生产工艺及发展建议 程 亮,李健达,马 骏,苏军平,卫世锋,刘 旭 (山西三维集团股份有限公司丁二醇分厂,山西 临汾 041603) 摘 要:详细介绍了聚四氢呋喃的4种生产工艺,并分析各种工艺的优点及不足,包括氟磺酸工艺二高氯酸-醋酐工艺二黏土法工艺二杂多酸工艺,其生产工艺都是以四氢呋喃为原料,然后在不同的催化剂作用下,阳离子开环聚合反应生成,经过一系列分离等操作得到产品;并进一步探讨分析了国内外聚四氢呋喃的生产现状,对未来国内聚四氢呋喃企业的发展提出了几点建议三关键词:聚四氢呋喃;生产工艺;发展建议  中图分类号:TQ324.1 文献标志码:A 文章编号:1001-9677(2018)19-0114-03 第一作者:程亮(1984-),男,工程师,主要从事生产技术及管理工作三 Production Process and Development Advice of PTMEG CHENG Liang,LI Jian-da,MA Jun,SU Jun-ping,WEI Shi-feng,LIU Xu (Shanxi Sanwei Grop Butanedoil Factory,Shanxi Linfen041603,China) Abstract:The4production processes of polytetrahydrofuran were introduced in detail,and the advantages and disadvantages of various processes were analyzed,including the fluorine sulfonic acid process,perchloric acid acetic anhydride process,clay process and heteropoly acid process.The production process was based on tetrahydrofuran.Under the action of different catalysts,the cationic ring opening polymerization was produced,and the products were obtained through a series of separation and other operations.The production status of polytetrahydrofuran at home and abroad was further analyzed.Several suggestions for the development of domestic polytetrahydrofuran enterprises in the future were put forward. Key words:PTMEG;production process;advice 聚四氢呋喃(PolyTHF,简称PTMEG,分子式HO[(CH2)4O]n H) 是制取嵌段聚氨酯和聚醚弹性体材料的重要原料,与其他弹性 体材料相比,具有优异的物理及机械性能[1]三其制品具有优异 的水解稳定性二透气性二和耐磨性,低温下也能表现出良好的 弹性二柔韧性和抗冲击性,在纺织二管材二化工二医疗器械等 方面,具有独特而广阔的应用前景三 PolyTHF(PTMEG)分子呈直链结构[2],整齐排列,骨架上 连接着醚键,两端为一级羟基三其形态随相对分子质量的增 加,粘稠逐渐增大直到蜡状固体,它的物理性质主要由分子量 决定三在常温下,低分子量的PTMEG为无色油状液体,分子 量较高的PTMEG为白色蜡状物三 阳离子开环聚合目前是由四氢呋喃生产聚四氢呋喃的唯一 方法三在引发剂存在下,四氢呋喃的聚合反应是一个平衡过 程,高温反应速率快二平衡转化率低,当高于一定温度是,只 存在解聚反应;低温平衡转化率高二反应速率慢,当低于一定 温度反应几乎不进行三这就需要选用低温高效催化剂来提高反 应速率,是聚合反应能在适宜的温度下,短时间能达到较高的 平衡转化率,反应过程见下式 : 1 生产工艺 石油法合成聚四氢呋喃是传统的生产工艺,在催化剂存在 下,以四氢呋喃为原料,通过开环聚合反应生成三主要有 4种[3-6],分别为氟磺酸工艺二高氯酸-醋酐工艺二黏土法工 艺二杂多酸工艺,各工艺对比见表1所示三 表1 聚四氢呋喃生产工艺对比 Table1 Comparison of polyTHF production process 方法过程原料副产物优点缺点 氟磺酸法 引发 水解 精制 四氢呋喃 氟磺酸 碳酸钾 甲苯 水 氟化钾 硫酸钾 过程连续 转化率高67% 稀强酸对设备材质要求高 大量甲苯循环导致能耗大

聚天冬氨酸及其衍生物研究进展汇总

聚天冬氨酸及其衍生物研究进展 MG0224110 高分子系高云0引言 随着近代医学、生物学的发展,生物医用高分子材料作为生物工程内的一支边缘科学,近年来受到了广泛的重视。生物可降解吸收型应用高分子材料和生物医用高分子材料的一种,它在体内一段时间可以充分发挥其功能,并且能够水解和酶解,且降解产物无毒副作用,能够被人体吸收或经新陈代谢后被排出体外,目前已被用于临床如骨板、组织修复器件、手术缝合线。器官移植的粘合剂,以及作为活体内药物缓释的载体。 聚氨基酸如聚谷氨酸,聚天冬氨酸,聚赖氨酸等具有类似蛋白质的酰胺结构,是一种性能优异的生物可降解材料,降解产物为氨基酸小分子,最终可降解为水和二氧化碳, 具有良好的生物相容性, 可以在体内降解被吸收,具有较为广阔的应用前景。 在这些氨基酸中对聚天冬氨酸及其衍生物的研究是目前该领域研究的热点。聚天冬氨酸及聚天冬酰胺类高分子材料具有良好的生物相容性、生物体内可降解性以及无毒副作用等优点。研究表明【1】,聚天冬酰胺在体内可以逐渐被吸收,不会成为异物长期存留在局部组织,对肝肾组织、血红蛋白、白细胞等无明显毒副作用。翁立红等【2】采用组织切片合高效液相凝胶色谱法,观察聚天冬酰胺衍生物在动物体内的形态变化和降解过程。发现材料在埋植部分均出现了从棕黑色固体到黄色胶状、再到棕色或黑色细小颗粒的形态变化,且其均能降解成大小不同的分子片断。此外,聚天冬氨酸制作方便产率高,可大规模生产,近年来,被广泛应用于药物控制释放领域,这是目前药剂领域的一个重要的研究课题。天冬氨酸是一种具有α-手性中心且有多种官能团的化合物,将功能性侧链基键入主链,通过天冬氨酸均聚或与不同氨基酸共聚,再把药物分子键合到材料上,或用储存或骨架方式与药物结合,改变材料的亲脂亲水性、荷电性合酸碱等方法来调节药物的扩散速度与材料的降解速度。这样一种高分子-药物控释体系具有在治疗允许范围内维持药物水平、靶向性好、所需药物种类少、药物副作用小以及促进半衰期较短药剂的给药等优点。 参考文献: 【1】翁立红,汤谷平,王斌,周涛,周俊。中国药学杂志,1999,15(3):161 【2】翁立红,汤谷平,王斌,周涛,程启琪,程永樟。中国药学杂志,1999,10 1 聚天冬氨酸的制备及其用途 水溶性高分子,例如聚乙烯醇(poly(vinyl alcohol)),聚乙二醇(poly(ethylene glycol)),聚丙烯酸(poly(acrylic acid))以及聚丙稀酰胺(poly(acrylamide))被广泛应用于化妆品(cosmetics),纸浆添加剂(paper additives),分散剂(dispersant)以及清洁剂(detergent builders),但是由于它们没有一定的生物可降解性,使用后不能回收再利用,严重污染自然世界,带来环境的恶劣循环。【1-2】 含有自由的羧基基团的聚氨基酸,如聚天冬氨酸、聚谷氨酸,是一种很好的可降解的水溶性高分子材料。Honda N., Ito Y., 以及Dessipri E.等人在不存在微生物(microorganism)的情况下,利用NCA方法聚合出聚谷氨酸。但是,通过这种方法合成出的聚谷氨酸,成本很高,不符合工业大规模生产要求【2】。因此近年来,天冬氨酸的聚合成为研究的热点。人们

聚四氢呋喃生产技术的研究

聚四氢呋喃生产技术的研究 摘要:对于当今的社会来说,聚四氢呋喃是一种十分重要的精细化工以及有机化工原料,它的用途是十分的广泛的。随着科技的不断发展,我国聚四氢呋喃的生产的能力得到了很大的提升,但是,聚四氢呋喃的主要生产来源还是以美国和欧洲的一些发达国家为主,尤其是巴斯夫的公司生产量最大,可以达到全世界总产量的三分之一。因此,本文就我国的聚四氢呋喃的生产技术进行分析,以期可以使我国的聚四氢呋喃生产技术得到有效的提升,提高我国聚四氢呋喃的生产效率。 关键词:聚四氢呋喃生产技术研究 在1960年,原有的工业技术已经无法满足聚氨酯弹性替氨纶纤维工业的发展,聚四氢呋喃便被研发出来并投入到了使用之中。随着时代不断的进步,科技水平的不断提高,发现了聚四氢呋喃越来越多的优点,从而使得聚四氢呋喃在各个领域之中都得到了广泛的应用。对于当今的聚四氢呋喃的生产技术来说,各个国家的竞争都是非常的激烈的,同时所有的生产技术都是处于一个保密的状态的。因此,如果我国的聚四氢呋喃的生产技术想要得到有效的提高,就应该对能够参考的技术进行深度的研究,从而提高我国聚四氢呋喃的生产技术。 一、什么是聚四氢呋喃 聚四氢呋喃的学名叫做聚四亚甲基咪二醇,同时还可以叫做四氢呋喃均聚醚,英文是polytetramethyleneetherglycol,英文缩写是PTMEG。聚四氢呋喃的链体主要是由碳链和醚链组成,据四氢呋喃的组成部分并没有酯键的存在,所以它具备着十分卓越的耐水解的能力,同时也不含不饱和键,所以在抗老化和力学方面的性能也是十分的出色的,并且具有了十分出色的柔顺性。 聚四氢呋喃是具有无色可燃的性质,因此在进行工业化生产的过程中一般都是使用经过干氮密封的罐子进行包装,用于包装的罐子最好带有保温和加热盘管,同时在对其进行储存的时候要远离火种和热源,以免发生一些不必要的事故。此外,在对聚四氢呋喃进行运输时,通常都是按照易燃有毒物品的规格来进行操作。 二、聚四氢呋喃主要的生产技术 四氢呋喃是聚四氢呋喃生产的主要原料,在制作的过程中,因为所使用的催化剂是不同的,所以制作工艺也是不同的,大致可以分为三个种类,分别是氟磺酸技术、杂多酸技术以及醋酐酯化—醇解技术。 1、氟磺酸工艺 氟磺酸技术是一种比较常见的生产工艺,它的基本流程是:四氢呋喃在氟磺

聚四氢呋喃

聚四氢呋喃,又名聚四亚甲基醚二醇,是生产热塑性弹性体如聚酯(HYTRELO)、聚氨酯(弹性纤维)的重要软化段。THF与阳离子引发剂反应后,生成聚四氢呋喃。 工业上运用一些有限的催化剂系统,如用FSO3H,H2SO4/SO3,HClO4/酸酐,CTSO3H来生产中等分子量的聚四氢呋喃,该分子量范围的四氢呋喃主要用于生产热塑性弹性体。分子量取决于催化剂的浓度、特性及链转移剂(如酸酐及三氧化硫)。但这些催化剂系统存在一定的局限性。首先,要生产所需分子量的聚合物,催化剂的浓度要高。其次,聚合反应后,需用碱或酸水解,方可在聚合物的端基上获得羟基并生成分子量分布较窄(低于2.0)的聚合物。再次,水解反应产生大量的强酸,如HF或硫酸。 为克服上述缺点,我们需尝试研究新的催化剂系统。最近PAPPAS和ENDO曾报道用于环氧树脂、苯乙烯、双环邻位酯、邻位螺环烃聚合的高效潜热催化剂。他们使用各种 盐作为引发剂,如锍、碘 、膦或季铵盐。 1 实验 从ALDRICH化学公司购买了六氟锑酸钾,α-溴-对二甲苯(98 %),邻-氰基吡啶(99 %),不经提纯直接合成新引发剂。聚合级的四氢呋喃未经提纯可直接用作单体。表氯醇用通用方法除去水分后,进行蒸馏,然后贮存在4A的分子筛中。吡啶用CaH2干燥24 h后,进行蒸馏。 1.1 合成对二甲苯基-邻氰基吡啶溴酸盐 在一个双颈圆底烧瓶中分别加入α-溴-对二甲苯(14.95 g,70.2 mmol),邻氰基吡啶(8.53 g,81.15 mmol),氰甲烷(45 mL),在室温下搅拌8 d。反应完成后,氰甲烷被蒸发掉,剩余固体在二乙醚中再搅拌12 h后进行过滤,除去未反应的物质。过滤出来的绿色沉淀物在30 ℃不减压干燥24 h,得到18 g(78 %)的产品。 1.2 合成对二甲苯基-邻氰基吡啶六氟锑酸盐新催化剂 把配置好的吡啶溴酸盐(1.0 g,3.35 mmol)溶解在20 mL的蒸馏水中,在通氮气的情况下搅拌2 h,把六氟锑酸钾溶解在20 mL蒸馏水中后,加入到溴酸盐溶液中,搅拌10 min,收集到白色沉淀,然后在50 ℃下真空干燥24 h,收率40 %。 1.3 THF的聚合 把THF(10 mL)、引发剂及助催化剂的均相混和物加入到配置有冷凝器的圆底烧瓶中,在硅油浴中进行聚合反应。加入1 N HCl(1 mL)后搅拌10 min,反应终止。用苯/蒸馏水(40 mL/120 mL)萃取反应混合物,在有机层中加入无水硫酸镁(2 g),搅拌3 h,除去残留水分。苯滤液用旋转蒸发仪进行蒸馏。残留的黏性聚合物在30 ℃下真空干燥24 h。我们还通过改变催化剂的浓度、反应时间、温度及助催化剂的浓度对聚合反应进行了研究。 1.4 黏度的测量 30 ℃下,用Ubbelohde型黏度计测量苯溶液中聚四氢呋喃的特性黏度。 1.5 聚四氢呋喃的水解 把准备好的聚四氢呋喃(0.61 g)和1 N HCl(60 mL)回流12 h,冷却至室温。用二氯甲烷/蒸馏水(50 mL/50 mL)萃取3次,直到pH值中性。有机层中加入无水硫酸镁干燥后过滤。蒸发滤液,除去二氯甲烷溶剂。生成的黏性聚合物在减压下干燥24 h,可得蜡状的聚四氢呋喃,端部羟基含量达80 %。 2 特性 用Varina Gemini—300摄谱仪做H—核磁共振,用Brucker IFS48光谱仪做红外试验。在Perkin-Elmer 7 seriesDSC上以10 ℃/min的速率加热;通氮气的情况下测量热变温度(Tg和Tm)。用ShimazuLC-4A GPC,STYRAGEL柱,THP作为溶剂,聚苯乙烯进行标定来测量分子量分布。 3 结果及讨论 3.1 合成催化剂 对二甲苯基-邻氰基吡啶六氟锑酸盐(MPH)为一种新型催化剂。通过邻-氰基吡啶与ɑ-溴-对二甲苯反应,然后与水溶液中的反离子SbF6-交换而成。 我们通过H-核磁共振及FT-IR红外光谱确认催化剂的分子结构。如图1所示,典型的几个峰分别为对于甲苯基中的甲基和亚甲基。苯基在质量分数为2.4×10-6,6.1×10-6和7.4×10-6时出峰,在9.2×10-6,8.8×10-6,8.7×10-6和8.4×10-6时分别观察吡啶基团中的4种质子,它们的结合比例与预期效果相同。

水处理剂聚天冬氨酸静态阻垢

水处理剂聚天冬氨酸静态阻垢 苏尼尔 (内蒙古伊泰煤制油有限责任公司,内蒙古准格尔旗 010300) 摘 要:聚天冬氨酸的静态阻垢实验结果表明,聚天冬氨酸对碳酸钙、硫酸钙和磷酸钙有很好的阻垢效果。聚天冬氨酸分散氧化铁及稳定锌离子能力的研究结果表明,当聚天冬氨酸的加入量为25mg/L 时,分散氧化铁,稳定锌离子的能力分别为90%,91%。 关键词:聚天冬氨酸;阻垢;碳酸钙 中图分类号:T Q085+412 文献标识码:A 文章编号:1006—7981(2012)16—0062—01 1 概述 阻垢剂作为水处理剂的一种,在工业生产,尤其是在循环冷却水和锅炉冷却水处理中起着重要的作用。由于垢形成区的热传导率低,造成能源浪费,除此之外,坚实的垢层沉积也会阻碍体系中液相的流动,而阻垢剂的使用使这一情况得以改善。近年来,聚天冬氨酸是国内外化学工业、农业、水处理、医药和精细化工等领域研究的热点课题。 1.1 静态阻垢实验 实验用水:蒸馏水 1.1.1 主要仪器 多孔恒温水浴锅,恒温控制(80±1)℃; 自动显示酸度计; 250ml锥形瓶; 721分光光度计(带有厚度为1cm的吸收池); G4玻璃砂芯漏斗。 1.1.2 实验原理 本法对实际循环冷却水中的成垢主要影响因素温度、pH、Ca2+、M-碱度等模拟了现场碱性水运行指标,如温度控制在相当于一般工厂冷却器水侧最高壁温80℃、pH调节稳定在7-9的范围来进行阻垢剂性能评价。分析测定澄清液中的Ca2+浓度,以评定阻垢剂的阻垢性能。 1.2 静态阻碳酸钙垢实验 冷却水中的碳酸钙垢,通常是由于水中的碳酸氢钙在受热和曝气条件下分解而形成的。其反应式可以表示为: Ca(H CO3)2(aq)CaCO3(s)+CO2(g)+ H2O(1) 本方法以含Ca(HCO3)2的配制水和水处理药剂制备试液(模拟冷却水)。在含有一定量碳酸氢根和钙离子的配制水中加入一定浓度的水处理剂制备成试液,在加热的条件下,促使碳酸氢钙加速分解为碳酸钙,达到平衡后测定试液中的钙离子浓度。钙离子浓度愈大,则该水处理剂的阻垢性能愈好。 1.3 静态阻硫酸钙垢实验 用去离子水配制成含2000mg/L Ca2+、4800mg/L SO42-的溶液,加入不同浓度的阻垢剂,用NaOH调节pH至7.0,置于恒温水浴中,在80℃下保持10小时,冷却,中速定量滤纸过滤,EDT A 络合滴定法测定Ca2+的浓度,同时做空白实验对照。 1.4 静态阻磷酸钙垢实验 在工业循环冷却水处理中,由于采用了磷(膦)系配方而带来了磷酸钙垢的危害。随着水处理技术的不断发展,高浓缩倍数和碱性水处理技术的开发和应用,使得这种危害性更严重,为此需对合成的聚天冬氨酸阻磷酸钙的能力进行评定。 1.5 分散氧化铁实验 在任何冷却水系统中,或多或少都会有腐蚀产物氧化铁存在。氧化铁在金属表面不但会降低传热效率,而且会引起垢下腐蚀,导致铁细菌的繁殖。对于高标准的冷却水化学处理剂,抑制并分散铁氧化物的沉积,是一个十分现实的问题,所以需对合成的聚天冬氨酸进行分散氧化铁能力的评定。 1.6 稳定锌离子实验 锌是循环冷却水中常用的缓蚀剂,但当水的pH 较高时,锌离子便会以氢氧化锌的形式沉积出来,使冷却水中锌离子的有效浓度降低。这就要求阻垢剂具有稳定锌离子的能力,尽量使锌离子仅在金属表面高pH的阴极区沉积出来[63],为此需对合成的聚天冬氨酸稳定锌离子的能力进行评定。 1.7 生物降解性能的测定 生物降解是指土壤水体和废水生物处理系统中的需氧生物对天然和合成有机物的破坏或矿化作用。随着对有机污染物生物降解过程研究的深入,生物降解的内涵也在不断深化和扩展。目前在环境科学界,所谓的生物降解就是利用微生物分解有机物质,有机物质在微生物作用下转化为生物物质,作为能源而被利用,分解成O和O的一种现象。自然 62内蒙古石油化工 2012年第16期  收稿日期5C2H2 :2012-0-22

聚天冬氨酸的应用研究进展

聚天冬氨酸的应用研究进展 福建师范大学福清分校生物与化学工程系 09环境科学 118672009024 赖丽鹏 【摘要】聚天冬氨酸最终降解产物是对环境无害的氨、二氧化碳和水。因此,聚天冬氨酸是生物降解性好、环境友好型化学品。聚天冬氨酸的用途广泛。它广泛应用于肥料增效、工业水处理、金属切削液、日用化学品、油田二次采油的注水助剂等领域。此外,聚天冬氨酸在洗涤剂、高吸水树脂、水煤浆添加剂、光化学品等方面也具有广阔的应用前景。所以,聚天冬氨酸的应用研究是具有极大的意义。本文论述了聚天冬氨酸的在水处理、农业、工业等方面的应用研究进展已经市场前景和发展建议。 【关键词】聚天冬氨酸,应用,水处理,农业,工业 1.引言 聚天冬氨酸(PASP)属于聚氨基酸中的一类。聚天冬氨酸因其结构主链上的肽键容易受微生物、真菌等作用而断裂,最终降解产物是对环境无害的氨、二氧化碳和水。因此,聚天冬氨酸是生物降解性好、环境友好型化学品。 聚天冬氨酸的用途广泛。它广泛应用于肥料增效、工业水处理、金属切削液、日用化学品、油田二次采油的注水助剂等领域。此外,聚天冬氨酸在洗涤剂、高吸水树脂、水煤浆添加剂、光化学品等方面也具有广阔的应用前景。所以,聚天冬氨酸的应用研究是具有极大的意义。 2.聚天冬氨酸的特性 2.1.分子性质 分子式:C4H6NO3(C4H5NO3)C4H6NO4 相对分子质量:1000-5000 它是一种带有羧基侧链的聚氨基酸,具有螯合和分散作用。由于聚天冬氨酸分子中含有大量的-COOH、-NHCO-等极性基团,具有很好的亲水性和水溶性,此外,侧链上的-COOH 在水溶液中很容易电离,形成羧基负离子(-COO-),能与多种离子发生络合反应,使聚天冬氨酸在水溶液中具有很好的化学活性。 2.2.生物降解性 聚天冬氨酸是一种带有羧酸侧链的聚合氨基酸,是天冬氨酸单体的氨基和羧基缩水而成的聚合物,有α,β2种构型。天然的聚氨基酸中聚天冬氨酸片段都是以α 型形式存在的,而合成的聚天冬氨酸中大部分是α,β2种构型的混合物。热缩聚得到的聚天冬氨酸,因其结构主链上的肽键易受微生物、真菌等作用而断裂,最终降解产物是对环境无害的水和二氧化碳。聚天冬氨酸水凝胶在活性污泥中的生物降解速度为28d达到76%。 2.3.毒性 利用昆明种小鼠急性毒性实验、Ames实验、小鼠骨髓嗜多染红细胞微核实验研究

相关文档
最新文档