正态分布置信区间Excel计算公式.

正态分布置信区间Excel计算公式.
正态分布置信区间Excel计算公式.

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

置信区间与置信水平样本量的关系

置信区间与置信水平、样本量的关系 置信区间与置信水平、样本量的关系(2008-10-28 08:39:39)标签:置信区间与置信水平教育分类:数学相关 置信水平Confidence level 置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 一、置信区间的概念 置信区间又称估计区间,是用来估计参数的取值范围的。常见的52%-64%,或8-12,就是置信区间(估计区间)。置信区间是按下列三步计算出来的: 第一步:求一个样本的均值 第二步:计算出抽样误差。 人们经过实践,通常认为调查: 100个样本的抽样误差为±10% 500个样本的抽样误差为±5% 1,200个样本时的抽样误差为±3% 第三步:用第一步求出的“样本均值”加、减第二步计算的“抽样误差”,得出置信区间的两个端点。 举例说明: 美国Gallup(盖洛普)公司就消费者对美国产品质量的看法,对美国、德国和日本三国共计3,500名消费者(每个国家约1,200名)分别进行了调查,调查结果:有55%的美国人认为美国产品质量好,而只有26%的德国人和17%的日本人持同样看法。抽样误差为±3%,置信水平为95%。则这三个国家消费者的置信区间分别为: 国别样本均值抽样误差置信区间 美国55% ±3% 52%-58% 德国26% ±3%23%-29% 日本17% ±3%14%-20% 二、关于置信区间的宽窄 窄的置信区间比宽的置信区间能提供更多的有关总体参数的信息。 假设全班考试的平均分数为65分,则 置信区间间隔宽窄度表达的意思 0-100分100 宽等于什么也没告诉你 30-80分50 较窄你能估出大概的平均分了(55分) 60-70分10 窄你几乎能判定全班的平均分了(65分)

正态分布图的制作方法

参考資料:QC 数学の話(大村 平著) 日科技連出版 翻訳完成日期:2009年6月6日 品质管理的基石统计初步(翻訳:李琰) 目录 ·从互换性到品质管理 ·QC 是迈向文明社会的技术突破 ·从互换性到品质管理 ·SQC 的成熟与TQC ·数据整理的基本 ·代表值的选出 ·平均值的计算 ·标准偏差的计算 ·正态分布概念引入 ·正态分布的加法与减法 ·正态分布应用举例 第1章 从统计学的互换性到品质管理 20世纪人类历史上发生了3大震撼世界技术的突破。1,原子能的利用;2,高分子化合物的合成;3, 信息技术的飞跃发展。关于原子能的利用,主要在民生和军事方面得到了广泛的发展。在人类历史上原子能的出现翻开了历史新的一页,震撼了世界这是众所周知的。二次世界大战期间在広島,長崎投下的原子弹的爆炸,造成了人类的大量伤亡。在民生应用方面,随着碳素系列能源的枯竭和CO 2排出的控制, 原子能发电已经得到广泛应用。 另外在高分子化合物合成技术方面,给人类生活带来了极大的影响。用塑料做成的各种各样建材类,器 具类遍布了我们的生活周围。如果把我们生活中存在的塑料制品全部拿走的话,我们生活就象没有了文字一样,土蹦瓦解。化肥使粮食增产。人工纤维的合成,给我们提供了丰富多样的衣着。合成橡胶,洗剂,粘结剂,调味品等不胜枚举。 还有,信息技术的飞跃发展。首先让我们只看一下和我们切身利益相关的民生用品,各种各样的业务预 约,存款储蓄,通信网和铁道网的管理,天气预报,犯罪搜查等虽然眼睛直接看不到,却支撑着我们的近代生活。而且各种技术计算,生命科学,人工智能等先端事物已变成了我们生活中的神圣组织。如果说没有高分子化合物我们的生活会瓦解的话,那么没有信息我们的生活会瘫痪。 基于以上,我们可以说,原子能是能源方面的突破,高分子合成是硬件方面的突破,信息技术是软件方 面的突破,3个方面对我们的生活带来了震撼性的影响。 那么为什么以上3个方面可以在20世纪能够获得极大的技术突破呢? 我认为是以下两个方面的原因: 1, 抗身抗生物质的发现。 2, 品质管理的普及。 为什么这么说呢?下面阐述理由。 最初的科学文明,把人类从严酷的劳动和疾病中解放出来。人类为了确保衣食住的安定,做出了很大的 QC 数学的 話题

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

第四节正态总体的置信区间

第四节 正态总体的置信区间 与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色. 本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间; 4. 双正态总体均值差(方差已知)的置信区间; 5. 双正态总体均值差(方差未知但相等)的置信区间; 6. 双正态总体方差比的置信区间. 注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的. 分布图示 ★ 引言 ★ 单正态总体均值(方差已知)的置信区间 ★ 例1 ★ 例2 ★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4 ★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间 ★ 例7 ★ 例8 ★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4 内容要点 一、单正态总体均值的置信区间(1) 设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间 ,,2/2/???? ? ??+?-n u X n u X σσαα 二、单正态总体均值的置信区间(2) 设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量 n S X T /μ-=, 从第五章第三节的定理知).1(~/--= n t n S X T μ 对给定的置信水平α-1, 由 αμαα-=? ?????-<-<--1)1(/)1(2/2/n t n S X n t P ,

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

Excel求置信区间的方法

应用Excel求置信区间 一、总体均值的区间估计 (一)总体方差未知 例:为研究某种汽车轮胎的磨损情况,随机选取16只轮胎,每只轮胎行驶到磨坏为止。记录所行驶的里程(以公里计)如下: 假设汽车轮胎的行驶里程服从正态分布,均值、方差未知。试求总体均值μ的置信度为的置信区间。 步骤:

1.在单元格A1中输入“样本数据”,在单元格B4中输入“指标名称”,在单元格C4中输入“指标数值”,并在单元格A2:A17中输入样本数据。 2.在单元格B5中输入“样本容量”,在单元格C5中输入“16”。 3.计算样本平均行驶里程。在单元格B6中输入“样本均值”,在单元格C6中输入公式:“=AVERAGE(A2,A17)”,回车后得到的结果为。

4.计算样本标准差。在单元格B7中输入“样本标准差”,在单元格C7中输入公式:“=STDEV(A2,A17)”,回车后得到的结果为。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式:“=C7/SQRT(C5)” ,回车后得到的结果为。 6.在单元格B9中输入“置信度”,在单元格C9中输入“”。 7.在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8.在单元格B11中输入“t分布的双侧分位数”,在单元格C11中输入公式:“ =TINV(1-C9,C10)”,回车后得到α=的t分布的双侧分位数t=。 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式:“=C11*C8”,回车后得到的结果为。

10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“=C6-C12”,回车后得到的结果为。 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“=C6+C12”,回车后得到的结果为。 (二)总体方差已知 仍以上例为例,假设汽车轮胎的行驶里程服从正态总体,方差为10002,试求总体均值μ的置信度为的置信区间。

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

正态分布可信区间

3. 某地200例正常成人血铅含量的频数分布如下表。 (1)简述该资料的分布特征。 (2)若资料近似呈对数正态分布,试分别用百分位数法和正态分布法估计该地正常成人血铅值的95%参考值范围。 表某地200例正常成人血铅含量(μmol/L)的频数分布 血铅含量频数累积频数 0.00~7 7 0.24~49 56 0.48~45 101 0.72~32 133 0.96~28 161 1.20~13 174 1.44~14 188 1.68~ 4 192 1.92~ 4 196 2.16~ 1 197 2.40~ 2 199 2.64~ 1 200 [参考答案] (1)从表可以看出,血铅含量较低组段的频数明显高于较高组段,分布不对称。同正态分布相比,其分布高峰向血铅含量较低方向偏移,长尾向血铅含量较高组段延伸,数据为正偏态分布。 某地200例正常成人血铅含量(μmol/L)的频数分布 血铅含量组中值频数累积频数累积频率 0.00~0.12 7 7 3.5 0.24~0.36 49 56 28.0 0.48~0.60 45 101 50.5 0.72~0.84 32 133 66.5 0.96~ 1.08 28 161 80.5

1.20~ 1.32 13 174 87.0 1.44~ 1.56 14 188 94.0 1.68~ 1.80 4 192 96.0 1.92~ 2.04 4 196 98.0 2.16~ 2.28 1 197 98.5 2.40~ 2.52 2 199 99.5 2.64~ 2.76 1 200 100 (2)因为正常人血铅含量越低越好,所以应计算单侧95%参考值范围。 百分位数法:第95%百分位数位于1.68~组段,组距为0.24,频数为4,该组段以前的累积频数为188,故 95 (2000.95188) 1.680.24 1.80(μmol/L) 4 P ?- =+?= 即该地正常成人血铅值的95%参考值范围为小于1.80μmol/L。 正态分布法:将组中值进行log变换,根据题中表格,得到均值和标准差计算表。 某地200例正常成人血铅含量(μmol/L)均值和标准差计算表 血铅含量组中值lg组中值(x) 频数(f) fx2fx 0.00~0.12 -0.92 7 -6.44 5.9248 0.24~0.36 -0.44 49 -21.56 9.4864 0.48~0.60 -0.22 45 -9.9 2.178 0.72~0.84 -0.08 32 -2.56 0.2048 0.96~ 1.08 0.03 28 0.84 0.0252 1.20~ 1.32 0.12 13 1.56 0.1872 1.44~ 1.56 0.19 14 2.66 0.5054 1.68~ 1.80 0.26 4 1.04 0.2704 1.92~ 2.04 0.31 4 1.24 0.3844 2.16~ 2.28 0.36 1 0.36 0.1296 2.40~ 2.52 0.40 2 0.80 0.3200 2.64~ 2.76 0.44 1 0.44 0.1936 合计——200 -31.52 19.8098

3二项分布、泊松分布与泊松逼近

二项分布、泊松分布与泊松逼近 雅各布·伯努利与二项分布公式 雅各布·伯努利(Jacob Bernoulli,1654—1705)来自数学史上的传奇家族—瑞士巴塞尔的伯努利家族,该家族的三代成员中产生了8位数学家,在17世纪和18世纪微积分理论及应用的发展中占有领先地位,雅各布·伯努利是其家族第一代数学家中的第一位,他与弟弟约翰·伯努利(Johann Bernoulli,1667—1748)、侄子丹尼尔·伯努利(Daniel Bernoulli,1700—1782)在数学史上享有声誉。 家族简介 在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利(也译作贝努力、伯努利)家族最为突出。 伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一 代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。 老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。他有3个有成就的儿子。其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。 雅各布·伯努利

完整版标准正态分布表.doc

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

概率统计论 浅谈泊松分布

浅谈泊松分布 班级:XXX 姓名:XXX 学号:XXX

浅谈泊松分布当一个随机事件,以固定的平均瞬时速率λ

二项概率的泊松逼近 如果∞→n ,0→p 使得λ=np 保持为正常数,则 λλ--→-e k p p C k k n k k n !)1( 对k = 0,1,2,…一致地成立。

2.1泊松分布使用范围 泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数. 即需满足以下四个条件: 1. 给定区域内的特定事件产生的次数,可以是根据时间,长度,面积来定义; 2. 各段相等区域内的特定事件产生的概率是一样的; 3. 各区域内,事件发生的概率是相互独立的;

4. 当给定区域变得非常小时,两次以上事件发生的概率趋向于0。 2.2泊松分布的性质 1. 泊松分布的均数与方差相等,即m =2σ 2.泊松分布的可加性 如果1x ,2x ,3x …k x 相互独立,且它们分别服从以1λ,2λ,3λ…k λ为参数的泊松分布,则k X X X X T ++++= 321也服从泊松分布,其参数为k λλλλ++++ 321。 3.泊松分布的应用 )0(P 是未产生二体的菌的存在概率,实际上其值的5%与采用2/05.0m J 照射时的大肠杆菌uvrA -株,recA -株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因

组有一个二体就是致死量,因此)1(P ,)2(P ……就意味着全部死亡的概率。 3.2泊松分布在医学统计上的应用 在遗传学上,计算遗传图距的基本方法是建立在重组率基础上的,根据重组率的大小作出有关基因间的距离,绘制线性基因图;可是当研究的两个基因间的距离相对较远,在它们之间可能发生双交换、三交换、四交换甚至更高数目的交换,而形成的配子总有一半是非重组型的。若简单的把重组率看作交换率,显然交换率降低了,图距也随之缩小。这里可以用泊松分布原理来描述减数分裂过程中染色体上某区段交换的分布。在图距计算中,x 表示交换数,m 表示对总样本来说每进行一次减数分裂两基因 间的平均交换数,而基因间不发生交换的概率为m m e e m P --==! 0)0(0 ,基因间至少发生一次交换的概率为m e P P --=-=1)0(1。由此可计算两基因间的交换率和重组率。进而可更科学的作出遗传图。 3.3 泊松分布在交通运输上的应用 道路是行驶各种车辆的通道。为了给编制交通建设规划提供可靠的依据和保证道路上的车能安全而有效地通行, 道路工作者必须对道路上的车流进行实地调查和统计分析以便掌握车流的变化规律。数理统计方法是对交通流分布进行研究的有效而实际可行的方法。通常把在单位时间内通过道路上某一地点的车辆叫做交通流。对于时间间隔极短,并非是高密度的交通流的分布状态, 它常常是服从“概率论” 中的“ 泊松分布” 规律的。 如用简单例子表示,取通过某一地点车辆的时间作为时间数轴, 在数轴上划出给定时间间隔和该时间间隔内通过的车辆数目,譬如, 以20秒的时间间隔的数轴为例, 在20~0秒内,一辆车也没有通过, 在40~20秒间隔内,有二辆车通过, 在60~40秒间隔内, 有一辆车通过, 等等。这样在实地进行大量观测就可以的到某一时间间隔内的随机来车数目和该时间间隔内出现该车辆数的次数, 从而按泊松分布公式求算在给定时间间隔内在某一地点通过γ辆车的概率)(γP 。 参考文献 1. 戴维 M. 莱文等.《以EXCEL 为决策工具的商务统计》.机械工业出版社,2009 2.庄军、林奇英《泊松分布在生物学中的应用》.激光生物学报.2007年第16卷第5期. 3.薛珊荣 《“泊松分布”在交通工程中的应用》.湖南大学学报.1995年第8卷第2期.

置信区间的解释及求取

置信区间的解释及求取-学习了解 95%置信区间(Confidence Interval,CI):当给出某个估计值的95%置信区间为【a,b】时,可以理解为我们有95%的信心(Confidence)可以说样本的平均值介于a到b之间,而发生错误的概率为5%。 有时也会说90%,99%的置信区间,具体含义可参考95%置信区间。 置信区间具体计算方式为: (1) 知道样本均值(M)和标准差(ST)时: 置信区间下限:a=M - n*ST; 置信区间上限:a=M + n*ST; 当求取90% 置信区间时n=1.645 当求取95% 置信区间时n=1.96 当求取99% 置信区间时n=2.576 (2) 通过利用蒙特卡洛(Monte Carlo)方法获得估计值分布时: 先对所有估计值样本进行排序,置信区间下限:a为排序后第lower%百分位值; 置信区间上限:b为排序后第upper%百分位值. 当求取90% 置信区间时 lower=5 upper=95; 当求取95% 置信区间时lower=2.5 upper=97.5 当求取99% 置信区间时lower=0.5 upper=99.5 当样本足够大时,(1)和(2)获取的结果基本相等。 参考资料:http://140.116.72.80/~smallko/ns2/confidence_interval.htm Confidence Limits: The range of confidence interval 附MATLAB 求取置信区间源码: %%% 置信区间的定义90%,95%,99%-------Liumin 2010.04.28 clear clc sampledata=randn(10000,1); a=0.01; %0.01 对应99%置信区间,0.05 对应95%置信区间,0.1 对应90%置信区间 if a==0.01 n=2.576; % 2.576 对应99%置信区间,1.96 对应95%置信区间,1.645 对应90%置信区间 elseif a==0.05 n=1.96; elseif a==0.1 n=1.645; end %计算对应百分位值 meana=mean(sampledata); stda=std(sampledata); sorta=sort(sampledata); %对数据从小到大排序 leng=size(sampledata,1); CIa(1:2,1)=[sorta(leng*a/2);sorta(leng*(1-a/2))]; %利用公式计算置信区间 CIf(1:2,1)=[meana-n*stda;meana+n*stda];

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

二项分布、泊松分布和正态分布的区别及联系

二项分布、泊松分布和正态分布的区别及联系 二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个回答猴子微信公众号:猴子聊人物之前你已经了解概率的基础知识(如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的《投资赚钱与概率》)。 今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。我这个人是最讨厌数学公式的,但是这并不妨碍我用统计概率思维做很多事情。相比熟悉公式,我更想知道学的这个知识能用到什么地方。可惜,还没有人讲清楚。今天,就让我来当回雷锋吧。 首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布? 1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1)数据有哪些类型2)什么是分布数据类型(统计学里也叫随机变量)有两种。第1种是离散数据。离散数据根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值(也就是2种结果,要么是正面,要么是反面)。你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数

值,同时每个数值之间都有明确的间隔。 第2种是连续数据。连续数据正好相反,它能取任意的数值。例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。 什么是分布呢?数据在统计图中的形状,叫做它的分布。 其实我们生活中也会聊到各种分布。比如下面不同季节男人的目光分布.。 各位老铁,来一波美女,看看你的目光停在哪个分布的地方。美女也看了,现在该专注学习了吧。现在,我们已经知道了两件事情:1)数据类型(也叫随机变量)有2种:离散数据类型(例如抛硬币的结果),连续数据类型(例如时间)2)分布:数据在统计图中的形状现在我们来看看什么是概率。概率分布就是将上面两个东东(数据类型+分布)组合起来的一种表现手段:概率分布就是在统计图中表示概率,横轴是数据的值,纵轴是横轴上对应数据值的概率。很显然的,根据数据类型的不同,概率分布分为两种:离散概率分布,连续概率分布。那么,问题就来了。为什么你要关心数据类型呢?因为数据类型会影响求概率的方法。对于离散概率分布,我们关心的是取得一个特定数值的概率。例如抛硬币正面向上的概率为:p(x=正面)=1/2而对于连续概率分布来说,我们无法给出每一个数值的概率,因为我们不可能列举每一

泊松分布下的Erlang C公式

泊松分布下的Erlang C 公式

目录 1 泊松分布下的Erlang C 公式 (4) 1.1 Erlang C 公式 (4) 1.2 性能指标 (4) 1.3 Erlang C公式与Erlang B公式的比较 (6) 附录A 泊松分布下Erlang C 公式的推导 (7)

图目录 图A-1 系统状态转移图 (8)

表目录 表A-1 各种方式发生的概率 (7)

1 泊松分布下的Erlang C 公式 1.1 Erlang C 公式 排队等待模型有两个基本假设: 1 用户数远远大于提供的信道数,相对于信道数来说,可以认为用户数为无穷大。 2 没有被处理的用户呼叫进入排队队列中等待,直到被处理。 在满足以上两个基本假设的情况下,认为用户呼叫到达是泊松分布,用户呼叫离开也是泊松分布。排队等待模型分两种情况:其一是队列长度有限的情况,此时阻塞率就是队列全满时的概率,另一种情况是队列长度无限的情况,此时没有阻塞率,其性能指标代之以等待队列长,总队列长,等待时间,逗留时间等参数。 在队列长度有限的情况下,当提供C 个信道,队列长度为N 时,设用户呼叫平均到达率为λ,平均用户呼叫持续时长为T ,T /1=μ,)/(μλρC =。则在某一时刻队列中有n 个用户的概率为: ∑-=---+=1 01 -1C n 0]1C!C ! [P C n N C n n C ρρρρ 0n n P !P ρn C n = n=C 当队列长度无限时,其概率为: ∑-=-+=1 01 -C C n 0]1C!C ! [P C n n n C ρρρ 0n n P !P ρn C n = n=C 1.2 性能指标 在队列长度有限的情况下,其性能指标如下: 其阻塞率为: 0N N P ! P B ρC C c == 其平均等待队列长度为:

相关文档
最新文档