多元函数微分学及其应用归纳总结

多元函数微分学及其应用归纳总结
多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用

一、多元函数的基本概念

1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念

2、多元函数的极限

?

00(,)(,)

lim (,)x y x y f x y A →=(或0

lim (,)P P f x y A →=)的εδ-定义

? 掌握判定多元函数极限不存在的方法:

(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言

函数极限不存在;

(2)找两种不同趋近方式,若

00(,)(,)

lim (,)x y x y f x y →存在,但两者不相等,

此时也可断言极限不存在。

? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,

等价无穷小替换,夹逼法则等)与一元类似:

例1.用εδ-定义证明

2222

(,)(0,0)

1

lim ()sin

0x y x y x y →+=+

例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22

2

222

()+++-x y x y x y 的极限是否存在?证明你的结论。

例3 设22

2222,0

(,)0,0xy x y x y f x y x y ?+≠?+=??+=?

,讨论(,)(0,0)

lim (,)x y f x y →是否存在?

例4(07年期末考试 一、2,3分)设222

24

22,0(,)0,0?+≠?+=??+=?

xy x y x y f x y x y ,讨论

(,)(0,0)

lim (,)→x y f x y 是否存在?

例5.求222

(,)(0,0)sin()

lim x y x y x y →+

3、多元函数的连续性0000(,)(,)

lim

(,)(,)x y x y f x y f x y →?

=

? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含

在定义域内的区域或闭区域。

? 在定义区域内的连续点求极限可用“代入法”

例1. 讨论函数3322

22

22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。

例2. (06年期末考试 十一,4分)试证222

24

22,0(,)0,0?+≠?+=??+=?

xy x y x y f x y x y 在

点(0,0)不连续,但存在一阶偏导数。 例3.求

(,)(1,2)lim

x y x y

xy →+ 例4

.(,)(0,0)lim x y →

4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理

二、多元函数的偏导数

1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义)

如果极限00000

(,)(,)

lim

x f x x y f x y x

?→+?-?存在,则有

00

000

0000000

(,)(,)

(,)lim

x x x

x x y y x x x x y y y y f x x y f x y z f z f x y x

x

x

=?→=====+?-??=

===???

(相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

如果极限00000

(,)(,)

lim

y f x y y f x y y

?→+?-?存在,则有

00

000

0000000

(,)(,)

(,)lim

x x y

y y y y x x x x y y y y f x y y f x y z f z f x y y

y

y

=?→=====+?-??=

===???

对于分段函数,在分界点的偏导数要用定义求。

例1(08年期末考试 一、3,4分)已知222

222

22(),0(,)0,0?-+≠?+=??+=?

x y xy x y x y f x y x y ,

则(0,)=x f y

例2 (06年期末考试 十一,4分)试证222

24

22,0(,)0,0?+≠?+=??+=?

xy x y x y f x y x y 在点(0,0)

不连续,但存在一阶偏导数。

例3 设22

2222

221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?

,求(,),(,)x y f x y f x y 。

例4 设y x z =,求y x z z ,。

例5(03年期末考试,一、2,3分) 设(1)arcsin x

u x y y

=+-,则u x ??在(1,2)

的值为( )。

2、 二元函数(,)z f x y =关于,x y 的高阶偏导数(二元以上类似定义)

, 22(,)xx z z f x y x x x ?????== ?????? 2(,)xy z z

f x y y x x y

?????=

= ??????? 22(,)yy z z f x y y y y ?????== ?????? 2(,)yx z z f x y x y y x

?????=

= ???????

定理:若两个混合二阶偏导数22,z z x y y x ??????在区域D 内连续,则有22z z

x y y x ??=

????。 例1.设,1

r

u =

222)()()(c z b y a x r -+-+-=,其中c b a ,,为常数,求:222222z

u

y u x u ??+????+。 例2.设x

y

arctg

e y x z -+=)(2

2

,求y

x z ???2。

3、(,)z f x y =在点(,)P x y

偏导数存在?(,)z f x y =在点(,)P x y 连续(07年,04年,02年等)

4、偏导数的几何意义:00(,)x f x y 表示曲线0(,)

z f x y y y =??=?在点000(,,)P x y z 处的

切线与x 轴正向的夹角。

三、全微分

1、(,)z f x y =在点00(,)P x y 可微分的判定方法 若

(,)(,)(,)lim

0x y z f x y x f x y y

??→?-?-?=,则可判定(,)z f x y =在点

00(,)P x y 可微分。其中00(,)(,)z f x x y y f x y ?=+?+?- 例

1.(08

年期末考试 十二、6

分)证明函数

22

2222

(0(,)0,0

?++≠?

=??+=?x y x y f x y x y 在(0,0)处可微,但偏导数(,)

x f x y 在(0,0)处不连续。

例2 (07年期末考试 七、6

分)22

22

0(,)0,0

+≠=+=?x y f x y x y ,证明:(1)

函数在(0,0)处偏导数存在;(2)函数在(0,0)处不可微。

2、全微分的计算方法

若(,)z f x y =在00(,)P x y 可微,则有0000(,)(,)x y dz f x y dx f x y dy =+ 其中0000(,),(,)x y f x y f x y 的求法可以结合复合函数或者隐函数求导。 例1(08年期末考试,一,1,4分) 设432=+z x y x ,则(1,2)=dz 例2(07,04年期末考试,二,1,3分)设arctan

(0),=≠y

z x x

求dz 。 例3 (06年期末考试,二、2,3分)设2

=y u x ,则=du

例4 (03年期末考试,二、2,3分)函数22ln()=++u x y z 在点(1,0,1)处的全微分为

例5.设w uy z arcsin +=,x e u =,2

2

y

x x w +=,求函数:对变量y x ,的全

微分dz 。

3、多元函数的全微分与连续,可偏导之间的关系(07年,04年,02年等) ? 一阶偏导数,x y f f 在00(,)P x y 连续?(,)z f x y =在00(,)P x y 可微?

(,)z f x y =在00(,)P x y 连续?(,)z f x y =在00(,)P x y 有极限

? (,)z f x y =在00(,)P x y 可微?在00(,)P x y 的一阶偏导数,x y f f 存在 ? (,)z f x y =在00(,)P x y 可微?在00(,)P x y 的方向导数,x y f f 存在

四、多元复合函数求导法则

1

、链式求导法则:变量树状图

法则 (1)(,),(),()z f u v u t v t ?ψ=== dz z du z dv dt u dt v dt

??=+??

d z z d u z d v z d d t u d t v d t d t

ωω???=++??? (2)(,),(,),(,)z f u v u x y v x y ?ψ===

,z z u z v z z u z v

x u x v x y u y v y ??????????=+=+

??????????

(3) z f u x y u x y (,,),(,)?==

,z f u f z f u f

x u x x y u y f

????????=+=+

????????

例1. (08年期末考试,七,7分)设(,)x

z f x y

=,f 具有连续二阶偏导数,

求2,z z x x y

?????。 例2. (08年期末考试,十一,6分)设(,)z z x y =是由方程

22()x y z x y z ?+-=++所确定的函数,其中()x ?可导,求dz 。

z u x

y x y

例3. (07年期末考试,八,7分)设(,)y

z xf xy x

=,f 具有连续二阶偏导

数,求2,z z

y y x

?????。

例4. (06年期末考试,一、1,3分)设()y

z xyf x

=,()f u 可导,则

z z

x

y x y

??+=??( )

。 例5. (04年期末考试,三、1,8分)设(,)G u v 可微,方程(,)0G u v =,其中22,u x yz v y xz =+=+确定了z 是,x y 的二元可微隐函数,试证明

222(2)

(2)4.z z

y xz x yz z xy x y

??-+-=-??。 例6. (03年期末考试,三、2,5分)设(,)u v φ具有连续偏导数,证明方程

(,)0

x yz y xz φ--=所确定的函数(,)z f x y =满足

2()

()1.z z

y xz x yz z x y

??+++=-??。 例7 记2

2

(,)t u f x t x =+,f 具有连续二阶偏导数,求,u u x t ????,222,u u

x x t

?????。

例8 设y x z ln 2=,而v u x =

,v u y -=3,求u z ??和v

z

??。 例9 设2

2)

(b a z y e u ax ++=,而x a y sin =,x b z cos =,则du dx 。

例10. 设2

2

(,)xy

z f x y e =-,又f 具有连续的二阶偏导数,求2,,z z z

x y x y

???????。

2.一阶全微分形式不变性:

设(,)z f u v =,则不管,u v 是自变量还是中间变量,都有''u v dz f du f dv =+

? 通过全微分求所有的一阶偏导数,有时比链式求导法则显得灵活。 ? 当复合函数中复合的层次较多,结构较为复杂时,用一阶全微分形式不变

性求出一阶偏导数或者全导数比较方便。

例1.设(,,),(,),(),u F x y z z f x y y x ?===其中,,F f ?都可微,求

du dx

五、隐函数的求导法则

1、(,)0()F x y y f x =→=,求dy

dx

方法1(直接代公式):

x y

F dy

dx F =-,其中:(,)x x F F x y =,相当于把F 看成自变量x ,y 的函数而对x 求偏导数。

方法2:直接对方程两边同时关于x 求偏导(记住()y f x =):

0x x y

y

F dy dy F F dx dx F +=→=- 2

2

2

()()()xx xy

y x yx yy y dy dy

F F F F F F d y

dx dx dx

F +-+=-

2.(,,)0(,)F x y z z f x y =→=,求

,z z

x y

???? 方法1(直接代公式):

,y x z z

F F z

z x F y F ??=-=-

?? 方法2:直接对方程两边同时关于x (y )求偏导(记住(,)z f x y =):

0x x z z F z z F F dx dx F ??+=→=-,0y y z z

F z z

F F dy dy F ??+=→=-

3.(,,,)0(,),,,(,,,)0(,)

F x y u v u u x y u u v v

G x y u v v v x y x y x y ==??????→??==??????求,

建议采用直接推导法:即方程两边同时关于x 求偏导,通过解关于未知数

u v x x ????,的二元方程组,得到u v x x ????,。同理可求得,u v

y y

????。 例1.设2),,(yz e z y x f x =,其中),(y x z z =是由0=+++xyz z y x 确定的隐函

数,求)1,1,0(-'

x f 。

例2.设有隐函数(,)0x y F z z =,其中F 的偏导数连续,求,z z

x y

????。

例3.(04年期末考试,三、1,8分)设(,)G u v 可微,方程(,)0G u v =,其中

22,u x yz v y xz =+=+确定了z 是,x y 的二元可微隐函数,试证明

222(2)

(2)4.z z

y xz x yz z xy x y

??-+-=-??

六、多元函数微分学的几何应用

1、空间曲线的切线与法平面方程(三种形式)——参数形式,两柱面交线,两曲面交线

000

000'''000'

''000()

()()()()()()()0()()()()

x x t x x y y z z y y t x t x x y t y y z t z z x t y t z t z z t =?---?

=?==?-+-+-=??=?

切线向量'''000{(),(),()}x t y t z t

000000''00''00()()()()()()()0()1()()()

x x

x x y y z z y y x y y x x x y t y y z t z z z z x y t z t z z x =?---=??

?=?==?-+-+-=??

=??=?

切线向量''00{1,(),()}y x z x

(,,)0()()(,,)0()()

x x

F x y z y y x y y x

G x y z z z x z z x =?==?????=?

??==???=?

切线向量''

00{1,(),()}y x z x 0

00000''00'

'

00()()()()()01

()

()

x x y y z z x x y t y y z t z z y t z t ---?=

=

?-+-+-=

3、 曲面的切平面与法线方程(两种形式)——隐函数,显示函数

000000

000

000000()()()0(,,)0(,,)(,,)(,,)

x y z x y z F x x F y y F z z F x y z x x y y z z F x y z F x y z F x y z -+-+-=??=?---?==?? 法线向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z

00000000

00()()()0

(,)(,)(,)1

x y x y f x x f y y z z z f x y x x y y z z f x y f x y -+---=??=?---?==?-? 法线向量0000{(,),(,),1}x y f x y f x y -,规定法向量的方向是向上的,即使得它与z 轴的正向所成的角是锐角,在法向量的方向余弦为:

cos f αβγ-=

=

=

例1(08年期末考试,一、2,4分)曲线x a t

y a t z ct cos sin =??=??=?

在点(a,0,0)的切线方程

例2(08年期末考试,十、7分)在曲面z x y 22

122

=+上求出切平面,使得切平面与平面x y z 42210.---=平行。

例3(07年期末考试,二、5,3分)曲面z z e xy 23-+=在点(1,2,0)处的法线

方程。

例4(07年期末考试,十、8分)在第一卦限内作椭圆x y z a b c

222

2221++=的切平

面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标。 例5(06年期末考试,二、3,3分)曲面xyz z a 333-=在点(0,a,-a)处的切平面方程。

例6(04年期末考试,三、3,7分)在球面x y z 2229++=上求一点,使得过该点的切平面与已知平面x y z 220+-=平行。

例7. 在曲线t x =,22t y =,33t z =上求点,使该点处曲线的切线平行平面

1478=-+z y x 。

例8设),(y x f 具有一阶连续偏导数,且02

2≠+y x f f ,对任意实数t 有

),(),(y x tf ty tx f =,试证明曲面),(y x f z =上任意一点),,(000z y x 处的法线与直

线

00z z

y y x x ==相垂直。

例9 由曲线223212

x y z ?+=?=?绕y 轴旋转一周得到的旋转面在点(0处

指向外侧的单位法向量,

七、方向导数与梯度

1、方向导数的概念和计算公式

(,)z f x y =在(,)P x y 沿l 方向的方向导数为:

① 设'(,)P x x y y +?+?为l 上一点,则

'00()()(,)(,)

lim lim

f f P f P f x x y y f x y l ρρρρ

→→?-+?+?-==? ② 设l 的方向余弦为:{cos ,cos }l αβ=,则

cos cos f f f l x y

αβ???=+??? 可微?方向导数存在,但方向导数存在与偏导数存在之间没有确定的关系

2、梯度的概念和计算公式

(,)z f x y =在(,)P x y 沿什么方向的方向导数最大? 沿梯度方向{,}

P

f f G x y

??=??的方向导数最大,最大值为梯度的

||G =

例1.求函数2

2

2

),,(z y x z y x f -+=在点)5,4,3(0P 沿曲线???=+=-+2

2222225

22z

y x z y x 在点0P 处的切线方向的方向导数。

例2.求函数3

2

),(y x y x f =在点(2,1)沿方向j i l

+=的方向导数

例3.设函数(,)y z f x y xe ==,(1)求出f 在点P (2,0)处沿P 到Q (1/2,2)方向的变化率;(2)f 在P (2,0)沿什么方向具有最大的增长率,最大增长率为多少?

例4 (08年期末考试,一、4,4分)函数z x y 22=+在点P 0(1,2)处沿从P 0(1,2)

到点P 1(2,2方向的方向导数。

例5(07年期末考试,二、4,3分)函数z x xy y 22=-+在点(1,1)-处沿方向

l {2,1}=的方向导数。

例6(06年期末考试,四、7分)函数u x y z z 2223=++-在点M 0(1,1,2)-处的梯度及沿梯度方向的方向导数。

八、多元函数的极值及其求法

1、掌握极值的必要条件、充分条件

2、掌握求极值的一般步骤

3、掌握求条件极值的一般方法——拉格朗日乘数法 例1.求函数3322(,)339f x y x y x y x =-++-的极值。

例2(04年期末考试,三、3,6分).设长方体过同一顶点的三条棱长之和为3a ,问这三条棱长各取什么值时,长方体的表面积最大?

例3. 求旋转抛物面22z x y =+与平面22x y z +-=之间的最短距离。 例4 (08年期末考试,六、7分)求u x y z 22=-+在约束x y z 2221++=下的最大值和最小值。

例5(07年期末考试,十、8分)在第一卦限内作椭球x y z a b c

222

2221++=的切平

面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标。 例6(06年期末考试,五、8分)做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?

例7(03年期末考试,八、10分)求曲线x xy y x y 2222120+++--=上距原点最近和最远的点。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

高等数学习题详解第7章多元函数微分学(精品文档)

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1235y x z + +=-。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

多元函数微分学总结

`第八章 多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理 解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必 要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1. 二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈o I 时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这一点 致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时, ()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

多元函数微分学复习题及答案

多元函数微分学复习题及 答案 Last revision on 21 December 2020

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????11000,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = ,2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数微分学及其应用

《高等数学》课程学习指导与讨论题 第五章多元函数微分学及其应用 在理论研究和实际应用中,经常遇到具有两个或两个以上自变量取值为数量或向量的函数,就是多元数量值函数与多元向量值函数,统称为多元函数,本章研究多元函数微分学的基本概念、理论和方法以及它们的应用,包括多元函数的极限与连续性。导数(方向导数,偏导数与梯度)与全微分等基本概念,多元函数微分法、极值问题以及多元函数微分学的一些几何应用。多元函数微分学中的基本概念、理论和方法是一元函数相应概念、理论和方法的推广和发展,因此它们之间既有相同之处,又有许多本质上的不同,同学们在学习这部分内容的时候,既要注意它们的相同点和互相联系,更要注意它们之间的不同点,善于将它们进行比较,研究推广到多元函数之后出现的新情况和新问题以及为什么会出现这些差异,有能力的同学还应注意推广的方法,以提高自己分析和解决问题的能力。 本章教学实施方案(总计30学时) 讲课:24学时分 1.n维Enclid空间中点集的初步知识(2学时)2.多元函数的极限与连续性(2学时) 3.多元数量值函数的导数与微分(7学时) 4.多元函数的Taylor公式与极值问题(4学时);5.多元向量值函数的导数与微分(3学时);6.多元函数微分学的几何应用(3学时) 7.空间曲线的曲率与挠率(3学时)。 习题课:4学时 1.多元函数极限、连续、偏导数与全微分(2学时);2.多元函数的极值与多元微分在几何中的应用(2学时)。 讨论课:2学时多元函数极限、连续、偏导数、方向导数、梯度、全微分的概念及联系;;多元函数在极值问题中与几何方面的应用。 第一节 n维Enclid空间中点集的初步知识 一、教学内容与重点 n R中点列的极限与点集的初步知识。 二、教学要求 1. 理解n维欧氏空间n R中点列极限的概念及性质,了解它们与一维空间中

多元函数微积分学

第六章 多元函数微积分学 §6.1空间解析几何 习题 6-1 1.在空间直角坐标系中,指出下列各点所在的卦限: (2,2,3);(6,2,4);(1,5,3);(3,2,4);A B C D ------ (4,3,2); (2,3,1); (3,3,5); (1,2,3).E F G H ------ 2.写出坐标面上和坐标轴上的点的坐标的特征,并指出下列各点的位置: (2,0,3);(0,2,4);(0,0,3);(0,2,0);A B C D --- 3.求点(,,)M a b c 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标. 4.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程. 5.求与原点和0(2,3,4)M 的距离之比为1:2的点的全体所构成的曲面的方程,它表示怎样的曲面? 6. 指出下列方程组所表示的曲面 222(1)4x y z ++=; 7.指出下列方程组所表示的曲线: 22225(1)3 x y z x ?++=?=?; 22(2)20x y z +-=; 22(3)0x y -=; 22(4)0x y +=; 2 2(5)1916x y +=; 2 2 (6)125 y x -=; (7)0y -=;

2 (8)430y y -+=; 2(9)4x y =; 222(10)0z x y --=. §6.2 多元函数的基本概念 习题 6-2 1.设22,y f x y x y x ? ?+=- ?? ?,求(,)f x y . 2.已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy -+. 3.求下列各函数的定义域: 2 (1)ln(21)z y x =-+ ; (2)z = 22(3)z = ; (4)z = ; (5)ln()z y x =- ; (6)u =4.求下列各极限 : 10 (1)y x y →→ (,)(0,0)(2) lim x y →; 22() (3)lim ()x y x y x y e -+→+∞→+∞ +; 222200 (4)lim x y x y x y →→+ ; 00(5)x y →→;22222200 1cos() (6)lim ()x y x y x y x y e →→-++. 5.证明下列极限不存在: 2222(,)(0,0)2(1)lim 32x y x y x y →-+; 1 00 (2)lim(1)x y x y xy +→→+ ; (,)(0,0)(3)lim x y →6.研究下列函数的连续性: 222(1)(,)2y x f x y y x +=-; 22(2)(,)ln()f x y xy x y =+.

第八章多元函数微分法及其应用.doc

第八章多元函数微分法及其应用 一、内容提要 多元函数微分法是一元两数微分法的推广,有许多相似之处,学习时应 注意对比,搞清界同. 1. 基本概念与定理 设函数U = f(P),点P 可以是1,2,3,…丿维的.当n>2时,称此函数为多 ① 二元函数z = /(X, y)在儿何上表示空间一张曲面. ② 二元函数z = /(x,y)在点心(巾,儿)处的极限、连续、偏导数、全 微分的定义及关系. 极限 lim f(x,y) = A : V^>0,3t> >0,当 X->X0 .v->yo ()< p = J(_r_x ())2 +(y _y ())2 < 6时,有 I f(x, y) - A \0 Ay 二阶偏导数. 类似,可定义三阶以上的偏导数. _ 可微 若全增量A< = f(x 0 + 心,y ()+ Ay) - f(x 0,y 0)町表示为 Az = AAx + BAy + o(p),其中 q 二 J (心尸 +(2\)护, 则称z = f (x, y)在点P 0(x 0,y 0)可微.而AAx + BAy 为函数z = f (x, y)在点 P ()(w ),y ())的全微分,记 作 dA. . =AAx + B^y 定理1若函数z = /(x,y)的二阶混合偏导数f xy (x,y)及 /vx (x,y)在区域D 内连续,贝I 」在该区域内(x, y) = /VA .(x,y) ? 偏导 高阶偏导 —阶偏导数f x (x, y), fy (x, y)的偏导数,称为函数f (x, y)的 a? = /.u-UoO=£ dydx 空、 dx )

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

相关文档
最新文档