高饱和度蓝色磷光有机发光器件_丁磊

高饱和度蓝色磷光有机发光器件_丁磊
高饱和度蓝色磷光有机发光器件_丁磊

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

有机电致发光显示器件基本原理与进展

有机电致发光显示器件基本原理与进展 副标题:有机电致发光显示器件基本原理与进展 发表日期: 2006-2-14 21:33:35 作者:佚名点击数5224 摘要: 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的He eger探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OL ED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

蓝色长余辉发光材料的合成及其发光性能(精)

蓝色长余辉发光材料的合成及其发光性能 稀土离子激活的铝酸盐和硅酸盐是两类化学性能稳定、发光强和色纯 度高的蓝色发光材料,并且其余辉呈慢衰减的特性。本文综述了稀土离子激活的铝酸盐和硅酸盐蓝色长余辉材料的常用制备方法,介绍了其发光基质及发光性能的影响因素,采用如下方法合成了性能良好的长余辉材料。以尿素和醋酸作为辅助剂,采用简易溶胶—凝胶燃烧法合成长余辉材料Sr2MgSi2O7: Eu2+,Dy3+。简 易溶胶—凝胶燃烧法综合了溶胶—凝胶法,燃烧法和超声波法。采用简易溶胶—凝胶燃烧法合成的产物具有发光性能好,颗粒小等特点。因此具有更广的应用价值。当Eu2+:Dy3+的摩尔百分比为3% : 6%,产物的发光性能最好。测试结果表明,当产物被激发峰λex=230nm激发时,有很宽的发射光谱(420—550nm)。因此长余辉材料Sr2MgSi2O7: Eu2+,Dy3+是具有广阔应用前景的蓝色发光材料。燃 烧法合成了长余辉发光材料CaAl2O4:Eu2+,Dy3+,Nd3+。文章讨论了Dy3+的掺入量、Nd3+的掺入量、分散方法(搅拌或超声波分散)和燃烧温度等影响材料发光 性能的因素。测试结果表明,我们可以看出加入一定量的Dy3+能够增强 CaAl2O4:Eu2+,Nd3+的发光强度,加入合适摩尔含量的H3BO3后,形成晶体所需的温度会降低。用超声波分散方法处理样品比用搅拌处理的样品的发光性能要 好。研究了燃烧温度、Eu2+和Dy3+的掺杂量、助熔剂硼酸的加入量、尿素加入 量及Al/Sr的比例对Sr4Al14O25:Eu2+,Dy3+长余辉发光材料发光性能的影响, 从而确定了长余辉发光材料Sr4Al14O25:Eu2+,Dy3+的最佳合成工艺.所得产物 分别进行了XRD、TEM、荧光测试和亮度测试,分析结果表明磷光体存在400nm 和482nm两个发射峰,分别对应于Eu2+在基质中两种不同的存在方式,与传统的 高温固相法相比发射主峰出现了蓝移;亮度测试找到了最佳的原料配比及合成条件. 同主题文章 【关键词相关文档搜索】:物理化学; 长余辉发光材料; 溶胶-凝胶燃烧法; 超声波分散; 光学性质 【作者相关信息搜索】:中南民族大学;物理化学;陈栋华;张博;

顶发射有机电致发光器件 3

顶发射有机电致发光器件 摘要 有机电致发光器件(OLED)由于其自身具有能耗低、自发光、视角宽、成本低、温度范围宽、响应速度快、发光颜色连续可调、可实现柔性显示、工艺比较简单等优点而吸引了全世界信息显示技术研究领域的专家学者们的目光,它成为了最有可能取代液晶显示器件的希望之星。有机电致发光器件的研究始于1963年,近年内,越来越多的研究人员从事到有机电致发光器件的研究中来,关于利用新材料、新结构制作有机电致发光器件的报道层出不穷,有机电致发光技术也得到了飞速的发展。 有机电致发光器件按照光从器件出射方向的不同,可以分为两种结构:一种是底发射型器件(BEOLED),另一种是顶发射型器件(OLED)。由于顶发射型器件所发出的光是从器件的顶部出射,这就不受器件底部驱动面板的影响从而能有效的提高开口率,有利于器件与底部驱动电路的集成。同时顶发射型器件还具有提高器件效率、窄化光谱和提高色纯度等诸多方面的优点,因此顶发射型器件具有非常良好的发展前景。而对于顶发射型器件来说,它的有机层结构与底发射型器件的结构基本一致,所以对于顶发射型器件电极的研究具有非常重要的意义。 关键词:电致发光顶发射 Abstract Organic light-emitting diode (OLED), due to its low energy consumption, self-luminous, wide viewing angle, low cost, wide temperature range, fast response, continuously adjustable, luminous colors, flexible display, the process is relatively simple, to attract the attention of experts and scholars in display researching field all over the world. It became the star of hope which most likely to replace liquid crystal display. Researching of the organic light-emitting diode began in 1963, and in recent years, more and more researchers come to research the organic light-emitting diode. New materials, new structures of organic light-emitting diode reported in an endless stream. OLED technology has been rapid development. According to the different directions of the light emitting from the device, we can divide the OLED into two kinds. The one is bottom-emitting type device (BEOLED) and the other is top-emitting device (TEOLED). As the light emitting from the top of the TEOLED, it can ignore the effect of the bottom driving panel, so that it can effectively improve the opening rate, conducive to the integration of the device with the driving circuit. Top-emitting device can also improve the efficiency of the device, narrowing the spectrum and improve the color purity, so it has a good prospect for development. For top-emitting device, the organic layer structure and is basically the same with the bottom-emitting type device, so it has very important significance to study the electrodes of the top-emitting device.

高分子发光字制作介绍

高分子发光字 原材料:树脂,300目——450目的氢氧化铝,色浆(LR),固化剂,LED光源,铝纤字边条。 辅料:橡胶条,转移膜,双面胶,铝箔纸,4-5mmPVC板。 制作工具设备:玻璃台数张(要确保摆放水平),1000克的磕码秤(称色浆及固化剂等),50公斤的台秤(称树脂等),搅拌材料用的手电钻,搅拌材料用的容器若干,美工刀若干,直尺若干,裁边条用的长方管,热熔胶枪数把,修边机,角磨机,橡皮榔头数把,刻字机。 制作边程: 1.将要做的字型通过刻字机绘出或通过喷出字的轮廓(建议用刻绘的方法,一、价格 便宜,二、准确度高)。 2.将绘好的字型用美工刀或剪刀沿线条的外沿划下或剪下,要注意准确。 3.将剪好的字型正面超下平整地放在干净的玻璃台面上,用幕墙装饰条沿字型巾上, 注意点一、要准确,二、玻璃幕墙装饰条最好用1。0*1。0的。 4.做边条: ●用一根1米长的线量出做的字的周长,根据量下来的周长和要做字的厚度可以 算出做边条板的大小,正常生产当中不需要量字的周长,一般是大概估计一下。 ●用橡胶条在玻璃台上围成框(根据边条板的大小)。 ●根据框算出用料量。1米长乘以1厘米宽乘以30-40克树脂(一般1米以内的 字边条做的厚度0。3CM左右就按28-35克算,超过1米的大字厚度超过0。3 就按35-50克算) ●配料:树脂加10%的氢氧化铝,加0。2——0。45%色浆(红,黄色0。2—— 0。3%,白色0。3——0。35%,蓝,绿色0。25——0。35%)。加固化剂0。3 ——1。5%(根据温度夏天少冬天多)。固化时间掌握在30分种——60分钟左 右。 ●固化后,用美工刀和直尺或方管将板划成4——13厘米(根据边的高度而定) 宽的长条,将边条翻过来光面朝上,正面巾上转移膜,裁去多条的转移膜(注 意:转移模要选择粘性低,粘性高的不行)。 ●用裁好的树脂边条围出字的边(是角的地方要切断,切断后两个边的接头用透 明胶带贴住),边条和橡胶条用热熔胶固定。在做到一些大字时围好的边有的 可能倾斜就用KT板(提前在KT板上帖上薄的双面胶)贴住。 这个过程要注意的几点: 1.要根据字的大小决定边条的高度,边条在15CM高度以内做的越高发光越均 匀,越节约LED光源,正常字笔画在2-5厘米宽,边条的宽度一般5-6 CM高,正常字笔画在5-10厘米宽选择边条宽度7-10CM高,正常字笔画在10厘米以上边条宽度在10 CM以上,正常字笔画在30厘米以上边条宽度不要低于12 CM。也就是说用样的字边条做的越高发光效果越高越台节约LED光源,成本越低。 2.色浆不能随便估计,要按比例称。 3.固化剂不能随便估计,要按比例称,温度不同固化快慢不一样,固化时间掌握 在30-60分钟,固化太快的话边条硬的快做行书草不方便,划断也不方便,另 外固化太快会有气泡排队不了,固化太慢的话也不行,影响制作时间,边条会 太软做直的笔画不行,最大的问题是边条粘手操作不方便。因此在做字调料前 要做个试验,大约做一个10CM乘以10 CM的板,厚度和将要做的字边的厚 度一样严格用磕码秤出固化剂看固话时间,然后根据固话时间快慢高速比例。

蓝色磷光及荧光-磷光杂化白光聚合物主体材料的合成及性能研究

目录 摘要 .......................................................................................................................... V Abstract ................................................................................................................ IX 主要符号对照表 ................................................................................................ XVII 第1章绪论 (1) 1.1 引言 (1) 1.2 有机电致发光理论基础 (2) 1.2.1 荧光与磷光 (2) 1.2.2 有机电致发光的机理 (3) 1.2.3 能量转移过程及机理 (4) 1.2.4 有机电致发光器件的结构 (4) 1.2.5 有机电致发光器件的表征参数 (5) 1.3 有机电致磷光客体材料 (6) 1.4 主体材料概述 (8) 1.4.1 小分子主体材料 (8) 1.4.2 聚合物主体材料 (9) 1.5 本文的设计思路与主要内容 (12) 1.5.1 论文的选题 (12) 1.5.2 本论文的构成 (13) 第2章实验试剂和仪器测试 (15) 2.1 实验试剂 (15) 2.2 分析测试所涉及到的仪器 (16) 2.2.1 核磁共振(NMR) 与元素分析 (16) 2.2.2 液体、薄膜紫外-可见吸收光谱与液体、薄膜荧光发射光谱 (17) 2.2.3 热重分析(TGA)与玻璃化转变温度分析(DSC) (17) 2.2.4 电化学性质的循环伏安(CV) (17) XIII

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

有机电致发光材料及器件导论

1.电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的 一种发光过程(非热转换即不是通过热辐射实现的)。 2.FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。OLED特点: 材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快; 器件可弯曲,不受尺寸限制,分辨率高等。 3.基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。激发态分子内的物 理失活:辐射跃迁和非辐射跃迁。而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。 4.有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。而掺杂半导体中的载流子浓 度大于本征半导体(电子和空穴浓度相同),所以导电性更好 5.直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的 现象。过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。 6.单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有 机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。 7.单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。但是单层器件的载流 子的注入不平衡,器件发光效率低。三层器件是目前OLED中最常用的一种。在实际的器件中,在发光层往往采用掺杂的方式提高器件性能 8.器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄 膜和阴极—取出器件并封装—测试表征 9.有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于 10^-4Pa)。共聚物发光器件主要是通过涂璇的方法制备的,涂璇过程中要精确的控制加速,转速。但涂璇浪费材料且不能全彩显示,而喷墨打印则弥补此缺点。 10.在OLED贮存和工作器件受到化学反应的影响,所以要选择阻隔性好的封装材料。有刚性封装材料(玻璃和聚合 物,玻璃可形成密闭空腔,聚合物可满足显示器大屏化);柔性封装材料(玻璃和聚合物);边缘缝隙封装材料(紫外固化得聚合物黏结剂) 11.有机电致发光器件封装材料的高阻隔性可通过在聚合物薄膜上沉积小分子图层形成复合薄膜获得,多层复合薄膜 可使粗糙的器件表面光滑化,保证无机层的完整,以致渗透分子的传导受阻更好,也可在封装中加捕捉剂来提高阻隔性。 12.器件发光效率:量子效率(器件向外发射的光子数与注入电子空穴对数之比。内量子数ηint指器件产生的所有光 子数与注入电子空穴对数之比;外量子数ηext指器件在全空间发射的光子数Np与注入的电子空穴对数量Nc之比);流明效率(ηl=AL/Ioled,A为器件有效面积,L为器件发光亮度,Ioled为有机发光器件发光亮度为L时的工作电流);功率效率(ηp=Lp/IoledV,ηp为光功率效率,Lp为器件前方发射出来的光功率,IoledV是驱动电压V驱动下的器件总电功率) 13.有机电致发光器件效率可以用积分球光度计测量。但这是一个理想模型,要对测量结果进行修正;发光效率用积 分球光度计加光谱仪的方法测量。 14.亮度,Lv为发光亮度,Km为光功当量,Le. λ为辐射亮度,V(λ)为明视觉光 谱光视效率。Lθ=Iθ/d a cosθ,Lθ为某方向发光功率,Iθ为改方向上的光强,da为一个发光表面。发光亮度一般用各种亮度计测量,测量被测光源表面的像在光电器件表面所产生的光照度,则该像表面的照度正比于光源的亮度,不随光度计与光体之间的距离而变化。 15.色度测量通常用光谱辐射计,如PR-705;有机电致发光器件的电流-电压曲线则可用普通的伏安法测量。亮度-电 压曲线表现器件光电性质;发射光谱测量:使荧光或者磷光通过单色器后照射于检测器上,扫描发射单色器并检

有机小分子电致磷光材料研究进展

*江苏省高技术项目资助(编号BG2005034) 王小亮:男,硕士 E -mail:chem )xiaoliang.student@sina.co m 有机小分子电致磷光材料研究进展* 王小亮,孙岳明,蒋 伟,王 启,宋坤忠 (东南大学化学化工学院,南京210096) 摘要 在过去20年对小分子电致发光器件的研究中,由于没有充分利用三线态激子能量,器件的内量子效率存在25%的理论极限。由于有机磷光染料可以同时利用其单线态和三线态激子,理论上可以使器件的内量子效率达到100%,突破了25%的理论极限,因而近几年在小分子主体材料中掺杂磷光染料制成器件的研究备受关注。综述了近几年金属有机电致磷光材料的研究进展,重点评述了金属铱配合物在分子设计上的研究进展,同时论述了其发光机理和掺杂剂材料以及器件制作的研究进展,展望了金属有机配合物电致磷光材料的发展前景,并提出了今后磷光材料的发展方向。 关键词 金属铱配合物 电致发光 磷光材料 发光机理 Progress in Research on Organic Small Molecule Electrophosphorescent Materials WANG Xiaoliang,SU N Yueming,JIAN G Wei,WANG Qi,SONG Kunzhong (Scho ol of Chemist ry and Chemical Eng ineering,Southeast U niversit y,Nanjing 210096) Abstract D ur ing the past tw o decades,the tr iplet excito n states of electr opho sphor escent mater ials are no t fully utilized.L ater,electr oluminescences based o n o rg anic pho sphor escent complex es hav e draw n par ticular attent ion in r ecent year s.T he notable adv antag e of phospho rescences is that they can simultaneo usly utilize both sing let and trip -let ex cito n states w hich can reach to 100%internal quantum efficiency theo retica lly.T his article r eview s the pro g ress in research on or ganometallic com plex es used as electro phosphorescent materia ls in o rg anic lig ht -emitting diodes(O LED)in recent years,focusing on the development of heav y metal iridium com plexes.It also discusses the g enuine elect ro -phospho rescent mechanism and some developments in using phosphor escent dopants.It includes the pr ospect of the de -v elo pment of o rg ano metallic electro pho sphor escent materials.A nd it also puts for war d the way s o f future dev elo pment for phosphorescent mat erials. Key words org anometallic ir idium com plex ,elect ro luminescence,phospho rescent mater ial,electr opho spho -r escent mechanism 0 引言 有机电致发光(Elect rolum inescence,以下简称EL )具有效率高、响应速度快、视角广、柔性显示、主动发光、色彩鲜艳等众多优点,使其在第三代平板显示中最具竞争力。1987年美国柯达公司的T ang 等[1]采用超薄膜技术,以8-羟基喹啉铝(A lq 3)作为发光层,并首次引入空穴传输层,获得了低压直流驱动高亮度有机电致发光器件。1990年英国剑桥大学Burro ughes 等[2]以聚乙烯为发光材料制成了高分子器件。1998年Junji K ido 等[3]利用A lmq 3作为发光材料,制成发光器件,最大亮度达到140000cd/m 2,外量子效率达到7.1%,在全世界学术界引起了极大的轰动。2001年Baldo 等[4]把(ppy)2Ir(acac)掺杂在T A Z 中,制备了最大外量子效率为19%和功效率为65lm/W 发绿光的高效磷光器件。该器件的内量子效率几乎达到100%[5,6],将电致发光的效率提高到了前所未有的高度。因此,对于重金属配合物,特别是铱配合物电致磷光材料和器件的研究已成为目前有机电致发光领域研究的热点[7~9]。 由于有机小分子蒸镀所需要的温度较高,对掺杂剂材料的稳定性要求比较高,目前这一领域的研究主要集中在如何提高器件的发光效率、增加器件的稳定性、延长器件的使用寿命、实现全色显示等方面。本文从以上几个方面重点评述了近几年重金属铱配合物材料的研究进展。 1 有机电致发光基本机理的研究进展 最初的有机电致发光二极管的结构为单层夹心式,主要由阳极、阴极、有机发光层组成。如图1所示[10],从一个电极注入的载流子可能不经过复合直接漂移或扩散到电极另一侧,从而导致复合效率和发光效率的降低。为了提高电荷传输效率,保持电子和空穴注入后复合的平衡,一些多层结构的器件相继被开发出来。实验证明寿命主要受空穴注入的影响[11],通过阳极缓冲层CuPc 的引入可以适当抑制空穴向空穴传输层(HT L )的注入[12],掺杂剂的引入又会产生空穴陷阱而降低空穴在HT L 中的移动。 #26#材料导报 2007年4月第21卷第4期

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

相关文档
最新文档