苏州大学近代物理实验报告纸

苏州大学近代物理实验报告纸
苏州大学近代物理实验报告纸

第一部分(实验目的与原理)

学部(院)姓名学号专业实验日期成绩【实验名称】

【实验目的】

【实验原理】

【实验仪器】

第二部分(实验记录)

学部(院)姓名学号专业实验日期成绩【原始实验数据及实验现象记录】

第三部分(实验方法与结果讨论)

学部(院)姓名学号专业实验日期成绩【实验方法及步骤】

【实验数据处理及实验结果】【问题讨论】

附:实验绘图用坐标纸

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

苏州大学实验报告

实验名称实验四利用Wireshark分析协议TCP 实验后,请大家上传至实验教学平台,文件名为你的学号,加上你的姓名,加上“实验1.doc”,比如学生学号是1417401001,姓名为张三,则文件名为141740101张三实验1.doc,中间无需加上任何空格等符号。 一.实验目的 1.掌握TCP协议报文类型和格式 2.理解TCP三次握手工作流程。 二.实验内容 1、利用Wireshark俘获TCP分组 2、观察TCP建立连接的过程 3、观察分析TCP数据包 三.实验步骤和结果 1、观察TCP建立连接的过程 打开wireshark, 打开浏览器输入 https://www.360docs.net/doc/047034238.html, 在wireshark中输入http过滤,然后选中GET /tankxiao HTTP/1.1的那条记录,右键然后点击"Follow TCP Stream", 这样做的目的是为了得到与浏览器打开网站相关的数据包,将得到如下图(请用自己的截图替换下面四个图片并填写表格)

第二次握手的数据包 服务器发回确认包, 标志位为SYN,ACK. 将确认序号(Acknowledgement Number)设置为客户的S N加1以.即0+1=1, 如下图 第三次握手的数据包

就这样通过了TCP三次握手,建立了连接

3)包含HTTP POST的TCP段的序列号是多少?请注意,为了找到POST命令,我们要在位于Wireshark 的分组内容区的DATA域中挖掘和寻找带“POST”的内容。 4)考察在TCP连接作为第一段包含HTTP POST的TCP段,TCP连接中的前6个段的序列号是多少?(包括含 HTTP POST的段),每个段何时发送?何时收到每个段的相应(ACK)?给出每个TCP段间发送的时间差,及何时收到段的相应,前6个段的通信来回时间(RTT)是多少?收到每个确认(ACK)后,估算

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??< 3.3获得真空的意义 获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的 整个社会文明的进步、财富创造以及科技创新都具有重大的意义。 3.4真空技术的应用 随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程 呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原

物理实验

1 苏州大学大学物理实验课程试卷(A)卷共 4页 一.填空题 1.凡可用仪器或量具直接测出某物理量值的测量,称测量,例如;凡需通过测量并通过数学运算后方能得到某物理量的测量,称测量,例如。 2.游标卡尺的零读数不为零,此零位误差属于误差;测量中估读时的视差多属误差;被测量随温度的变化而变化,而测量时未考虑温度影响产生的误差属于误差;某间接量在计算过程中采用近似计算,其误差属于误差;量具的分度线不准属误差。 3.单次测量的误差可用误差来估算,也可用量具的或来估算,多次测量时常用误差或误差来估算其偶然误差的大小。 4.某测量列的算术平均值为 N,算术平均误差为△N,事实上△N 是误差限,它的概率含义是:在测量列中任何一次测量值Ni落在到之间的可能性为57.5%;标准误差σ的概率含义为:测量列中任何一次测量值 落在到之间的可能性为68.3%;而任一次测量值落在到之间的可能性为99.7%。 5.已知米尺、20分度卡尺、50分度卡尺、千分尺的仪器示值误差分别为0.5mm、0.05mm、0.02mm、0.004mm。测量某一长约200mm,宽约8mm,厚约1.5mm的长方体体积时,若要求测量结果的相对误差小于1%,则测量长、宽、厚时应分别选择、、。 6.有效数字的位数,说明测量的精度;数字前的“0”在确定有效位数时,而数字后的“0”在确定有效位数时;换算单位时,有效数字的保持不变。 7.“RLC串联谐振”实验中,当电路处于谐振状态时,(即 L-1/ C =0 时),其电路的谐振频率f0 = 。若C=0.5μF、L=0.1H时, f0= Hz。 8.“霍尔效应”实验中,霍尔电压或霍尔系数的测量就可以决定半导体的,类型是型或型。 9.牛顿环实验中,测量叉丝交点不通过环心,则实际测得的是环的弦长而不是环的,但对本实验的测量结果。 10.迈克尔逊干涉仪实验中,在测量过程中,读数轮只能旋转,不能,这是为了避免。 11. 介电系数测量实验中,C串 = C 2– C1 + C0式中 C2是; C1是; C0是。 二、选择题(多项选择) 1、选出消除系统误差的测量方法 A. 交换法; B.补偿法; C. 模拟法; D.替代法. ( ) 2、某量具的示值误差为 0.02mm,选出下列测量结果中可能是正确的答案: A. 38.755±0.02mm; B.38.78±0.02mm; C. 338.8±0.4mm; D.388.79±0.02mm; ( ) 3、偶然误差的抵偿性是指偶然误差的算术平均值随测量次数的增加而趋向 A. 无穷大; B. 某非零定值; C. 零. ( ) 4、某螺旋测微计的示值误差为±0.004mm,选出下列说法中正确者: A. 它的精度为±0.004mm; B. 用它进行一次测量,其偶然误差为0.004mm; C. 用它作一次测量,可用±0.004mm估算其误差; D. 用它测量时的相对误差为±

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

苏州大学电子信息学院图像处理实验报告

图像处理实验报告 实验一:图像增强 实验目的:掌握用空间滤波进行图像增强的基本方法,掌握图像分割的基本方法。 实验要求:测试图像1中同时含有均值为零的均匀分布噪声和椒盐噪声。用大小为5×5的算术均值滤波器和中值滤波器对图像进行处理,在不同窗口中显示原图像及各处理结果图像,并分析哪一种滤波器去噪效果好? 算法流程:

程序代码: clear all;clc; %读入图像 I1=imread('Fig5.12(b).jpg'); %均值滤波模板 h1=ones(5,'uint8'); %获取分辨率 [a,b]=size(I1); %创建变量 I2=zeros(a+4,b+4,'uint8'); I3=zeros(a+4,b+4,'uint8'); %复制原始图像 for n=3:a+2 for m=3:b+2 I2(n,m)=I1(n-2,m-2); I3(n,m)=I1(n-2,m-2); end end %边界值设定 for n=1:a+4 for m=1:b+4 %左上角设定 if n<3&&m<3 I2(n,m)=I2(6-n,6-m); I3(n,m)=I3(6-n,6-m); %右下角设定 else if n>a+2&&m>b+2 I2(n,m)=I2(2*a+4-n,2*b+4-m); I3(n,m)=I3(2*a+4-n,2*b+4-m); %右上角设定 else if n<3&&m>b+2 I2(n,m)=I2(6-n,2*b+4-m); I3(n,m)=I3(6-n,2*b+4-m); %左下角设定 else if m<3&&n>a+2

I2(n,m)=I2(2*a+4-n,6-m); I3(n,m)=I3(2*a+4-n,6-m); %上两行设定 else if n<3 I2(n,m)=I2(6-n,m); I3(n,m)=I3(6-n,m); %下两行设定 else if n>a+2 I2(n,m)=I2(2*a+4-n,m); I3(n,m)=I3(2*a+4-n,m); %左两列设定 else if m<3 I2(n,m)=I2(n,6-m); I3(n,m)=I3(n,6-m); %右两列设定 else if m>b+2 I2(n,m)=I2(n,2*b+4-m); I3(n,m)=I3(n,2*b+4-m); end end end end end end end end end end %图像处理 for n=3:a+2 for m=3:b+2 %均值滤波 temp0=I2(n-2:n+2,m-2:m+2); temp0=temp0.*h1; temp1=mean(temp0(:)); temp1=uint8(floor(temp1)); I2(n,m)=temp1; %中值滤波 temp2=I3(n-2:n+2,m-2:m+2); temp3=median(double(temp2(:))); temp3=uint8(floor(temp3));

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??< 2.1.2真空技术的发展及应用 十九世纪初,利用低真空产生压力差的原理发明了真空提升、真空输送、吸尘、过滤、成形等技术。1879年爱迪生发明白炽灯,抽出灯泡中化学成份活泼的气体(氧、水蒸汽等),防止灯丝在高温下氧化.同年,克鲁克斯发明阴极射线管,第一次利用真空下气体分子平均自由程增大的物理特性.后来,在电子管、电视管、加速器、电子显微镜、镀膜、蒸馏等方面也都应用了这一特性.1893年发明杜瓦瓶,这是真空绝热的首次应用. 真空技术在二十世纪得到迅速发展,并有广泛的应用。二十世纪初,在真空获得和测量的设备方面取得进展,如旋转式机械泵,皮氏真空计,扩散泵,热阴极电离真空计的发明,为工业上应用高真空技术创造了条件.接着,油扩散泵,冷阴极电离真空计的出现使高真空

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

参考_JAVA实验报告

实验报告 实验名称工资管理程序第 2 次实验实验日期 2009- - 指导教师 班级 04软件工程学号姓名成绩 一、实验目的 1、掌握类的定义、域的定义及方法的定义。 2、掌握对象的定义与使用 3、掌握抽象类的用法 二、实验内容 1、建立一个抽象类Employee类 至少包括成员变量: 名、姓、年龄、性别 至少包括构造函数: 名和姓作为参数 至少包括方法: 取名称 至少包括抽象方法: 取收入earnings() 重写Object的toString()方法,返回Employee类的描述信息如名称信息 2、建立老板类Boss类继承Employee类 至少构造函数以名和姓及周工资作为参数 老板的工资是周工资 3、建立销售人员类 销售人员的收入= 销售量* 单价 要求:每个销售人员对象都能知道当前共有多少个销售人员 ... ... 4、在main函数中,分别创建老板对象、销售人员对象 三、实验步骤 3.1 进入eclips,创建一个名为employ的工程,新建一个抽象类Employee类 类中的成员变量有private String firstname; private String lastname; private String sex; private String age; 构造函数为employee(){} //无参数的构造函数 employee(String fn,String ln) //以名和姓为参数的构造函数 { this.firstname=fn; https://www.360docs.net/doc/047034238.html,stname=ln; } employee(String fn,String ln,String s,String a)//参数完整的构造函数 { this(fn,ln);

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

数码管实验报告

篇一:实验八数码管led实验报告 苏州大学实验报告 院、系年级专业姓名学号课程名称成绩指导教师同组实验者实验日期 实验名称:数码管led实验 一.实验目的 理解8段数码管的基本原理,理解8段数码管的显示和编程方法,理解4连排共阴极8段数码管lg5641ah与mcu的接线图。二.实验内容 理解8段数码管原理,运行与理解各子程序,编制一个4连排8段数码管程序,mcu的排8段数码管显示mcu复位后的开始到现在的运行时间。由于只有四个数码管,所以只显示mcu 运行到目前为止的分钟和秒,当计时达到一个小时,就重新从00:00开始计时。另外,也可以通过pc方的串口通信程序,指定计时的开始值。三.实验过程(一)原理图 图8-2数码管外形 dp a b c e f g dp 图8-1 数码管(二)接线图 图8-3 mcu与4连排8段数码管的连接第1页 (三)基本原理 8段数码管一般由8个发光二极管(llight-emitting diode,led)组成,每一个位段就是一个发光二极管。一个8段数码管分别由a、b、c、d、e、f、g位段,外加上一个小数点的位段h(或记为dp)组成。根据公共端所接电平的高低,可分为共阳极和共阴极两种。有时数码管不需要小数点,只有7个位段,称7段数码管。共阴极8段数码管的信号端高电平有效,只要在各个位段上加上相应的信号即可使相应的位段发光,比如:要使a段发光,则在发光。 四.编程 (一)流程图 图8-4 数码管led显示流程图(及其中断子程序) (二)所用寄存器名称及其各个位 程序中没有使用与led显示相关的控制和状态寄存器,仅仅使用了通用i/o口a口和b口。(三)主要代码段 1第2页第3页 2.c 第4页 第5页 篇二:数码管实验报告 单片机实验报告 一、实验名称 数码管动态扫描显示01234567(实验五) 二、实验目的 (1)掌握数码管显示数字的原理。 (2)通过不同的编程实现灵活运用数码管。 三、实验原理 四、相关原理图 五、实验内容

近代物理实验步骤、内容(2)

弗兰克-赫兹实验 一、实验内容 测量氩原子的第一激发电位,分析误差及其原因。 二、实验步骤 参阅实验课件 三、注意事项: 1、实验过程不允许离开仪器; 2、板极电压不允许超过85V 。 四、思考题 1、在夫兰克-赫兹实验中,为什么I A -U G2K 曲线的波峰和波谷有一定的宽度? 2、为什么I A -U G2K 曲线有的波谷电流不等于零,并且随着U G2K 的增大而升高? 3、试分析,当夫兰克—赫兹管的灯丝电压变化时,I A -U G2K 曲线应有何变化?为什么? 4、夫兰克—赫兹实验中,为什么说我们测到的是汞原子从10S 跃迁到31P 的第一激发电位,而不是10S 跃迁到30P 或32P 的第一激发电位。 5、测量氩原子的第一激发电位时,如果G 2-A 两极间没有反向拒斥电场,I A -U G2K 曲线会是什么样的一条曲线?这条曲线能求出激发电位吗? 6、I A -U G2K 曲线中,第一个波谷对应U G2K 不是汞原子的第一激发电位,为什么? 7、实验测出的氩原子I A -U G2K 曲线中,为什么峰-峰间距随U G2K 的增大而略有变大?

全息照相 一、实验内容 拍摄菲涅尔变换全息图 二、实验步骤 1、设计光路系统,光路系统应 满足下列条件: 1)、用透镜将物光束扩展到一定 程度以保证被摄物体能均匀照亮,参 考光也应扩展使感光板得到均匀光照。 2)、参考光应强于物光,在感光板的地方两光束的强度比约为4:1-10:1。 3)、物光与参考光束的夹角为30°-50°之间,两光束的光程大致相等(光程差小于1cm)。 (光学元件调整好后,关上照明灯,有条件的用照度计测量参考光与物光的强度(略),并调整符合要求。) 2、根据光强调好曝光器的曝光时间,(参考值:1-2秒),关上快门,在暗室下装上底片,底片的乳胶面向入射光(用手摸干片一角,有粘手感的一面为乳胶面),走到曝光器后静置2分钟后按曝光按钮曝光。取下曝光后的干片用黑纸包好放到纸盒中,再用黑布包好,拿到暗房显、定影。 3、显影及定影:先显影后定影,显影过程中应不断轻微摇动干片,显影完后放到清水中稍为洗一下,然后放入定影液中,并轻轻摇动干片,定影结束后取出再用清水洗2分钟。 显影时间:40 -100秒,由曝光时间、显影液浓度和温度决定。 定影时间:3-5分钟。 4、物像再现 1)、将全息片的乳胶面向着参考光,并尽可能使光照方向与原来参考光束的方向一致,从照片背面迎着参考光观察。 2)、试改变观察角度,看看物像有什么变化。 3)、移去扩束镜,使激光只照在全息片的一小部分,看看能否观察到整个物像。

大学实验报告

浙江大学实验报告 课程名称:嵌入式原理实验类型:计算机实验 实验项目名称:实验四熟悉交叉编译环境和开发工具 学生姓名:何斯琼、姚冠红专业:计算机学号:3043027075、3043027076 同组学生姓名:指导老师:陈文智 实验地点:东四五楼嵌入式实验室实验日期:2007 年 3 月 5 日 实验目的和要求(必填) 目的:熟悉交叉编译环境和开发工具 实验内容和原理(必填) 对交叉编译工具进行熟悉和运用。 主要仪器设备 PC机 操作方法与实验步骤 进入/home/student/XSBase/XSBase255_Linux_B/Toolchain; 解压缩hybus-arm-linux-R1.1.tar.gz; 将解压缩得到的文件夹复制到/usr/local/下; 进入/root, 执行ls –a, 可见隐藏文件.bash_profile; 用vim编辑器编辑此文件:将$PA TH=/bin: /usr/local/hybus-arm-linux-R1.1/bin; 再执行命令source .bash_profile已更新此文件; 此时arm-linux-gcc命令(即交叉编译指令)已经可以执行; 以下为我们进行此实验时的全部过程: [student@localhost student]$ su Password: [root@localhost student]# ls XSBase [root@localhost student]# cd XSBase/ [root@localhost XSBase]# ls XSBase255_Linux_B [root@localhost XSBase]# cd XSBase255_Linux_B/ [root@localhost XSBase255_Linux_B]# ls app Datasheet Filesystem Image Kernel Source Toolchain BootLoader Documents GDB Jflash-XSBase255 RPM Tiny-X [root@localhost XSBase255_Linux_B]# cd Toolchain [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# tar -zxf hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# pwd /home/student/XSBase/XSBase255_Linux_B/Toolchain ......cp -a /usr/local/hybus-arm-llinux-R1.1

相关文档
最新文档