机械毕业设计1566液压机主机结构设计与计算说明书

机械毕业设计1566液压机主机结构设计与计算说明书
机械毕业设计1566液压机主机结构设计与计算说明书

编号:毕业设计说明书

题目:液压机主机结构设计与计算院(系):机电工程学院

专业:机械设计制造及自动化

学生姓名:

学号:

指导教师单位:机电工程学院

姓名:

职称:

2014年6月4日

根据任务书的要求,在设计前查阅了相关资料,了解了四柱式通用液压机的工作原理、设计过程,设计了一台四柱式通用液压机的主机部分。通过工作要求计算出液压机的主要技术规格,进行多种四柱式液压机的方案论证比较,选出了最优设计方案。根据最优方案,依次设计完成了液压系统、主机结构和泵站的设计计算。

液压机主缸是液压机的主要工作部件,液压机主缸的性能直接影响着液压机整体工艺水平。通过细致的分析及理论研究解决易损部分设计结构中存在的问题,可以使液压缸整体上达到工艺强度要求,提高液压缸应用的工艺水准及使用寿命。所以对液压机主缸进行细致严谨的设计计算对对液压机的设计生产有着至关重要的作用。

本论文从总体上对液压机本体结构,主要结构部件进行设计及必要的校核,对液压机主缸主要参数进行计算,并对所得结果进行分析、验算,从而力争使液压机主缸能够满足生产工艺要求,并从整体上提高液压机的工艺水准,使液压机设计水平更上一个新的台阶。

关键词:液压机;结构设计;液压缸

According to the mission statement of requirements before designing the access to relevant information, to understand the working principle of universal four-column hydraulic machine, the design process, the design of a common host part of a four-post hydraulic press. Through the work required to calculate the main technical specifications of hydraulic machines, for a variety of four-column hydraulic machine demonstration program compares to elect the optimal design. According to the optimal solution, in order to complete the design of the hydraulic system, the host structure and pumping station design calculations.

Hydraulic master cylinder is the main working parts of hydraulic press, hydraulic press master cylinder direct impact on the performance of the overall technological level of hydrauli c machines. Through careful analysis and theory to solve the structure vulnerable part of the d esign problems in it , and the hydraulic cylinder can be reached technological strength of the o verall requirements of the application of technology to improve the standard of the hydraulic c ylinder and life. So the cylinder for hydraulic design of meticulous

calculation of the design and production of hydraulic machines has a vital role.

This paper generally focus on the body structure of the hydraulic press, and design the m ajor structural components and its necessary check , calculation of the main parameters of the hydraulic master cylinder, and analysis and checking the results. To strive to make the hydraul ic master cylinder to meet the requirements of production press and raise the overall technolo gical level of the hydraulic press, and hydraulic press design level to advance to a new level. Keywords: Hydraulic press;Structural Design;Hydraulic cylinder

目录

引言 (1)

1 液压机的基本知识 (2)

1.1 概述................................................. 错误!未定义书签。

1.2 液压机的型号和主要技术规格 (3)

1.2.1液压机的型号 (3)

1.2.2液压机的主要技术规格 (3)

1.3 液压机的分类 (5)

1.4 液压机的发展概况 (5)

2 四柱式通用液压机总体方案设计 (6)

2.1 四柱式通用液压机的工作原理和动作循环分析 (6)

2.1.1四柱式液压机的工作原理分析 (6)

2.1.2四柱式液压机的动作顺序分析 (6)

2.1.3四柱式液压机的工作循环分析 (7)

2.2 主要技术规格的确定 (7)

2.3 四柱式通用液压机的总体设计 (9)

2.3.1四柱式液压机各部分的方案选择 (9)

2.3.2总体布局设计 (9)

3 四柱式液压机液压系统与电气系统设计 (10)

3.1 液压系统设计 (10)

3.1.1液压传动概述 (10)

3.1.2液压系统设计参数 (10)

3.1.3液压系统原理图的拟定 (10)

3.1.4液压系统控制过程分析 (12)

3.1.5液压元件的选择 (13)

3.2 电气系统设计 (13)

4 液压机主机结构设计与校核 (14)

4.1 液压缸部件的设计与校核 (14)

4.1.1液压缸的结构形式及方案论证比较 (14)

4.1.2液压缸的支承形式及方案论证比较 (15)

4.1.3柱塞与活动横粱的连接形式与方案论证比较 (16)

4.1.4 液压缸基本尺寸计算 (16)

4.1.5缸体强度计算 (17)

4.2 顶出缸部件的设计与校核 (20)

4.2.1顶出缸的尺寸计算 (20)

4.2.2活塞杆稳定性的校核 (21)

4.3 上横梁的设计与校核 (21)

4.3.1上横梁结构形式及方案论证比较 (21)

4.3.2上横梁的尺寸计算 (222)

4.3.3上横梁的强度计算 (23)

4.3.4上横梁的刚度计算 (23)

4.4 工作台的设计与校核 (24)

4.4.1工作台的结构形式与方案论证比较 (24)

4.4.2工作台的尺寸计算 (24)

4.4.3工作台的强度计算 (25)

4.4.4工作台的刚度计算 (25)

4.5 立柱组件的设计与校核 (26)

4.5.1立柱的连接形式与方案论证比较 (26)

4.5.2立柱的尺寸设计 (26)

4.5.3立柱的强度校核 (27)

4.5.4立柱螺母及预紧 (27)

4.5.5立柱螺母的强度校核 (28)

4.6 活动横梁的设计 (29)

4.6.1活动横梁的结构设计 (29)

4.6.2活动横梁尺寸设计 (29)

4.7 主机其他部件设计 (30)

4.7.1立柱导套 (30)

4.7.2限程套 (30)

4.8 主机总体结构设计 (31)

5 液压机动力系统的设计与计算 (32)

5.1 液压泵的计算与选择 (32)

5.1.1液压泵最高工作压力的计算 (32)

5.1.2液压泵最大流量计算 (322)

5.1.3选择液压泵的规格 (33)

5.2 电动机的选择 (333)

5.3 油箱的设计与计算 (333)

5.3.1油箱有效容积的确定 (333)

5.3.2油箱的结构设计 (334)

5.4 油管的设计与计算 (34)

5.4.1主油缸油管内径计算 (35)

5.4.2顶出缸油管内径计算 (35)

5.5 泵站设备的布置 (36)

5.5.1泵站设计应考虑的问题 (36)

5.5.2泵站的结构形式设计 (36)

6 四柱液压机安装调试和维护 (37)

6.1 四柱液压机的安装 (37)

6.2 四柱液压机的调试 (37)

6.3 四柱液压机的保养维护 (38)

7 结论 (38)

谢辞 (39)

参考文献 (40)

附录 (41)

引言

作为机械制造行业中一种重要的生产设备,锻压设备己广泛地应用于工业生产的各个领域。液压机作为一种通用的锻压设备,主要是利用液压传动技术实现各种压力加工工艺,具有功率大、精度高、规格多的特点。因此在锻压(塑性加工)领域中,液压机被广泛应用于自由锻造、模锻、冲压(板料成形)、挤压、剪切、拉拔成形及超塑性成形等工艺中。

本设计着重叙述了液压机的泵站、液压机的本体结构及设计计算以及液压机液压系统的设计三个方面,里面详细的说明了液压机的基本工作原理、特点、分类、基本参数、液压机的本体结构及其设计计算以及液压机的液压系统的设计,尤其主液压缸的设计与校核阐述了大量内容。

设计液压机的意义在于其不但具有较大的通用性,适用于塑性材料的成形如簿板件的落料、拉伸、压印等;轴类件的校正;零部件的压装;粉末制品的压制。还具有点动、手动和半自动等操作方式,可按工艺需要任选定时或定位控制,压力和行程可调,操作灵便、工作可靠。

1 液压机的基本知识

1.1 概论

液压机是根据帕斯卡原理制成,是一种利用液体压力能来传递能量的机器。在国民经济的各个领域都得到广泛的应用,如锻造液压机,模锻液压机、冲压液压机、万能液压机等。它们具有许多优点:如结构简单,结构布局灵活;可以根据工艺要求来灵活改变其压力与行程;可以根据工艺要求十分方便的在各种部位布置所需的液压缸;与机械压力机相比,具有压力和速度可在广泛的范围内无级调速;可在任意位置输出全部功率和保持所需压力;各执行机构动作可很方便地达到所希望的配合关系;振动小、易于实现计算机控制及自动控制等等。所以液压机在国民经济各部门得到了日益广泛的应用。

液压机一般由本体(主机)、液压系统及泵站三大部分组成,如图1-1液压机实例。

图 1-1液压机实例

1.2 液压机的型号和主要技术规格

1.2.1液压机的型号

目前液压机设计制造的品种、规格日益增多,为了不致与其他机械型号混淆和在同一标准下表达该机的性能特征,便利生产管理和用户选用,液压机型号编制[1]必须遵循上级有关规定。

例如,YA32-315型四柱式万能液压机型号表示为:

Y A 3 2——315

液压机主参数(此处表示本液压机公称压力为315吨)

组别(2表示四柱式万能液压机)

列别(3表示一般用途液压机)

变形序号(按A B C……顺序,基型则不注)

类别(Y表示液压机类)

锻压机械类别代号见表1-1[1]。

表1-1 锻压机械类别代号

序号1 2 3 4 5 6 7 8

类别名称机械压

力机液压机自动锻

压机

锤锻机剪切机弯曲校

正机

其他

汉语简称机液自锤锻切弯他

拼音代号J Y Z C D Q W T

主要液压机的组型代号见表1-2[1]。

表1-2 主要液压机的组型代号

组型名称组型名称

Y12 下拉式锻造液压机Y28 双动薄板冲压液压机

Y13 正装式锻造液压机Y31 双柱液压机(一般用途)Y16 模锻液压机Y32 四柱液压机(一般用途)Y27 单动薄板冲压液压机Y61 金属挤压液压机

在生产过程中,由于工艺的改进要求有关零部件做相应改进。液压元件、电气元件等的发展和更替,需要对产品图纸进行整顿再版。为了区别这种变化便利生产管理和技术管理。因此,对于这类修改常在型号最后增加A B C等设计修改序号。

1.2.2液压机的主要技术规格

基本参数是液压机的基本技术数据,是根据液压机的工艺用途及结构类型来确定的,它们反映了液压机的工作能力及特点,也基本定下了液压机的轮廓和尺寸及本体总重。在基本参数中,最主要的是主参数。它代表了液压机的规格,因此成为液压机型号中的主要组成部分。

现介绍三梁四柱式液压机的主要技术规格[2]:

(1)公称压力(公称吨位)及其分级

公称压力是指液压机名义上能产生的最大力量,在数值上等于工作液体压力和工作柱塞总工作面积的乘积(取整数)。它反映了液压机的主要工作能力。

为了充分利用设备,节约高压液体并满足工艺要求,一般大中型油压机将公称压力分为两级或三级。泵直接传动的油压机不需要从机构上进行压力分级。

(2)最大净空距(开口高度)H

最大净空距H是指活动横梁停止在上限位置时,从工作台上表面到活动横梁下表面的距离,最大净空距反映了液压机高度方向上工作空间的大小,它应根据模具(工具)机相应垫板的高度、工作行程大小以及以及放入坯料、取出工件所需空间大小等工艺因素来确定。因此既要尽可能满足工艺要求,又要尽量减小压机高度,以降低其造价。(3)最大行程s

最大行程s指活动横梁位于上限位置时,活动横梁的立柱导套下平面到立柱限程套上平面的距离,也即活动横粱能移动的最大距离。

(4)工作台尺寸(长×宽)

工作台一般安装在下横梁上,其上安放模具或工具,工作台尺寸是指工作台面上可以利用的有效尺寸。大中型锻造或厚板冲压油压机,往往还设置移动工作台。移动工作台的行程则与更换模具及工艺操作有关。

(5)回程力

计算回程所需的力量时,要考虑活动部分的重量、回程时工艺上所需的力量(如拔模力、提升剁刀等)、工作缸排液阻力、各缸密封处的摩擦力以及动梁导套处的摩擦力等。回程力由活塞缸下腔工作面积或单独设置的回程缸来实现。

(6)活动横梁运动速度(滑块速度)

活动横梁运动速度分为工作行程速度、空程(充液行程)速度及回程速度。

应根据不同的工艺要求来确定工作行程速度,它的变化范围很大,并直接影响工件质量和对泵的功率需求。

(7)允许最大偏心距e

在液压机工作时,不可避免地要承受偏心载荷。偏心载荷在液压机的宽边与窄边都会发生。最大允许偏心距是指工件变形阻力接近公称压力时所能允许的最大偏心值。在结构设计计算时,必需考虑此偏心值。

(8)顶出器公称压力及行程

有些液压机(如模锻和冲压液压机)往往在下横梁底部装有顶出器,以顶出工件或拉延时使用。顶出器的力量及行程完全由工艺要求来确定。

以上所述为三梁四柱结构型式液压机的最常见的基本参数,对于各种不同工艺用途及不同结构型式的液压机,均有各自不同的基本参数。

1.3 液压机的分类

锻压机械共分为八类,类别代号用汉语拼音的首字母表示。液压机下面又按其用途分为十个组别:

(1)手动液压机:用于一般压制、压装等工艺。

(2)锻造液压机:用于自由锻、钢锭开坯及金属模锻。

(3)冲压液压机:用于各种薄板、厚板的冲压。

(4)一般用途液压机:用于各种工艺,通常称为万能液压机。

(5)校正压装液压机:用于零件的校正及装配。

(6)层压液压机:用于胶合板、刨花板、纤维板及绝缘材料板的压制。

(7)挤压液压机:用于挤压各种有色及黑色金属材料。

(8)压制液压机:用于各种粉末制品的压制成形,如粉末冶金、人造金刚石、耐火材料的压制。

(9)打包、压块液压机:用于将金属碎屑及废料压成块。

(10)其他液压机:包括轮轴压装、冲孔等专门用途的液压机。

1.4 液压机的发展概况

在生产能力及市场方面,国内液压机的产量每年都有很大的增长率。国内液压机从产值和销售收入上和国外发达国家比较,还不具有优势,但从生产的台数和总吨位上比较,在国际上,我国的液压机生产产量处于领先地位。国内进口的液压机多为一些专用液压机,大部分为日本产品,欧美的产品较少;在产品的技术水平上,国内液压机单机的技术水平达到了国际中等或较先进水平。一些液压机生产企业通过技术引进或与国内外同行业的合作,技术发展很快。但在一些技术含量较高的液压机中,某些关键技术,如液压和电控部分,还要通过与国内外的企业或研究单位合作,高档的液压元件和电控元件还主要依靠进口。从产品分布上看,低档的液压机主要集中在小吨位上,一般为小吨位的四柱或单柱液压机。在质量水平上,随着用户对产品质量要求的不断提高,国内各液压机生产企业越来越重视产品的质量问题。由于国内液压机的技术最早是从前苏联引进和吸收的,国内生产的液压机在刚度和强度上远远优于日本及韩国的产品,与欧美的产品相当。

和国外产品比较,我国的产品在质量方面还存在以下不足:在可靠性方面,故障率还比较大,主要集中在液压系统方面,多是因为液压和电器元件的可靠性低引起的;漏油问题在国产液压机中较为普遍;关键件的加工质量还需提高。

总体上讲,国产液压机在质量上和国外一些较知名公司的产品还有一定的差距,但随着国内制造商对质量的不断重视和管理水平的提高,国产液压机的质量会接近和赶上国际水平。

2 四柱式通用液压机总体方案设计

2.1 四柱式通用液压机的工作原理和动作循环分析 2.1.1四柱式液压机的工作原理分析

图2-1 四柱液压机工作原理示意图

液压机的工作原理如图2-1所示。两个充满工作液体的具有柱塞或活塞的容腔由管道相连接,当小柱塞1上的作用力为1F 时,作用在液体上的压强为1

1

A F p =

,1A 为柱塞1的工作面积。根据帕斯卡原理:在密闭的容器中,液体压力在各个方向都是相等的,则压力p 将会容腔的每一点,因此,在大柱塞2上将会产生向上的作用力2F ,迫使工件3变形,且11

2

2F A A F ?=,2A 为大柱塞2的工作面积。由于2A 大于1A ,所以2F 也大于1F ,力被放大了。

2.1.2四柱式液压机的动作顺序分析

四柱液压机的动作顺序通过电气系统、液压系统控制,控制顺序框图如图2-2。 从控制顺序框图可以看出,液压机的工作原理由电气控制系统控制液压系统,液压控制系统再控制主机工作,主机动作触及行程开关,将信号反馈给电气控制系统,实现循环控制。

启动

电气系统液压系统液压机主机

行程开关

手 动

图2-2 四柱液压机控制顺序图

2.1.3四柱式液压机的工作循环分析

滑块快速下行工进、加压保压快速回程停止

顶出

图2-3四柱液压机工作循环图

四柱液压机工作循环如图2-3(a),滑块在自重的作用下快速下行,碰到行程开关后由快进变为工进,随后进行加压、保压。保压时间完成后,滑块快速回程,直到回到原来的位置,停止运动;图2-3(b)表示顶出缸的工作循环过程,主缸快进、工进、保压、退回停止后,顶出缸才运动,将工件顶出。

2.2 主要技术规格的确定

任务书中本液压机设计的基本要求为公称压力:630吨,工作行程:700毫米,工作空间高度:1120毫米。查阅有关标准规定,可知对于6.3~20000吨的各种液压机,其公称压力应按JB611-64标准[1]规定,应选择公称压力为630吨。再查JB/T9965-1999标准[1]规定,可确定所设计的四柱式通用液压机的型号为Y32-630。

液压机的设计也和其他任何机械设计一样,是由加工对象——工件的工艺要求决定的。而四柱式通用液压机的主要用途为压制零件,则规定所压制零件的最大长度为

450mm,可以设计出相应的模具结构。这样就可得到模具外形尺寸、安装面积和闭合高度。相应地决定了工作台面积,上滑块下平面的有效面积和闭合高度。综上所述,根据工艺分析和统计的分析情况,即可决定主要技术规格中的一些主要参数。其余参数可查阅四柱式通用液压机的基本参数(JB/T 9957.2-1999)[2]。

Y32-630四柱式通用液压机的主要技术规格如下:

序号项目单位规格

1 公称压力kN 6300

2 液体最大工作压力MPa 32

3 回程压力kN 1500

4 顶出压力kN 1000

5 退回压力kN 700

6 拉伸时压边压力kN 800

7 工作台距地面高度mm 800

8 活动横梁下平面距工作台面最大距离H mm 1120

9 活动横梁最大行程S mm 700

10 顶出活塞上平面距工作台最大距离mm 200

11 顶出活塞最大行程mm 100

12 工作台有效尺寸(前后x左右)mm 1200

980

13 活动横梁行程速度

空载下行最大工作最大

回程最大mm/s

mm/s

mm/s

120

15

100

14 顶出活塞行程速度

顶出最大退回最大mm/s

mm/s

60

90

15 主机轮廓尺寸左右

前后

地面上高

地面下深mm

mm

mm

mm

1500

1200

4500

550

16 机器占地面积左右

前后mm

mm

4000

1500

17 总功率kW 45

18 全机重量t 20

2.3四柱式通用液压机的总体设计

2.3.1四柱式液压机各部分的方案选择

(1)控制方式的选择:

采用液压系统与电气系统相结合的控制方式。具有调整、手动、半自动三种工作方式,可实现定压、定程两种加工工艺。

(2)液压系统:

液压油路采用封闭式回路,供油方式选用变量泵供油,液压控制元件采用插装阀形式。针对液压机快进时供油不足以及工进时的高压特性,系统应设有补油和卸压装置。(3)电气控制:

采用继电器、行程开关、接触器、手动按钮等元件进行手动、半自动控制。

(4)主机形式:

主机结构形式采用“三梁四柱”的形式,主缸和顶出缸为执行元件。

(5)控制台设计:

材料选择:控制台主要用于安装控制按钮,不承受动载荷,强度要求不是很高,满足使用要求即可,材料选用Q235A。

2.3.2总体布局设计

图2-4四柱液压机总体布局简图

1-主机 2-液压油管 3-控制台 4-插装阀 5-液压泵装置 6-液压油箱

7-电气控制柜

3 四柱式液压机液压系统与电气系统设计

3.1 液压系统设计

3.1.1液压传动概述

科学技术迅猛发展的今天,液压传动技术随之有了比较完善、成熟的理论基础。目前液压传动技术正向着高压、高速、大功率、高效、低噪音、经久耐用、高度集成化的方向发展。

(1)液压传动优越性:

①液压元件布局灵活;

②液压传动操作控制方便,可实现无级调速;

③液压传动容易实现直线传动,可以进行自动过载保护;

④液压传动采用电液控制相结合的控制方式,可实现自动化控制,还可实现远程控制;

⑤液压系统中液压元件的磨损比机械传动小很多,液压油除了作为传动介质外还起到了润滑的作用,延长了液压系统中液压元件的使用寿命。

(2)液压传动不足:

①液压传动沿程、局部阻力损失比较大;

②液压传动压力高时泄漏较大,效率降低,处理不好油液还会对环境构成污染;

③液压系统工作环境受温度影响较大,不宜在很高和很低的温度条件下工作;

④液压传动存在的液压冲击、气蚀、困油现象影响了设备的安全工作和使用寿命;

⑤液压系统工作环境受温度影响较大,不宜在很高和很低的温度条件下工作。

3.1.2液压系统设计参数

液压系统设计参数可参考前文所确定的主要技术规格:

最大负载:6300kN;工进时系统最大压力:32MPa;

主缸回程力:1500kN;顶出缸顶出力:1000kN;

主缸滑块快进速度:80mm/s;主缸最大工进速度:6mm/s;

主缸回程速度:30mm/s;顶出缸顶出速度:60mm/s;

顶出缸回程速度:90mm/s

3.1.3液压系统原理图的拟定

液压机工进时负载大,运动速度慢,快进、快退时的负载相对于工进时要小很多,

但是速度却比工进时要快。为了提高液压机的工作效率,可以采用双泵或变量泵供油的方式。综合考虑,液压机采用变量泵供油,基本油路如图3-1所示。

图3-1 液压机基本回路图

1-液压缸 2-油箱 3-过滤器 4-变量泵 5-三位四通电磁换向阀由于液压机工况时的负载压力会逐步增大,为了使液压机处于安全的工作状态,调速回路采用恒功率变量泵调速回路。当负载压力增大时,泵的排量会自动跟着减小,保持压力与流量的乘积恒为常数,即:功率恒定,如图3-2所示。

图3-2 恒功率曲线图

液压系统采用插装集成控制系统,该控制系统具有密封性好、流通能力大、压力损失小、易于集成等优点。液压机系统控制原理如图3-3所示。

图3-3 液压机插装阀控制系统原理图

1、2、6、18、15、10、11-先导溢流阀 1S、2S、3S-行程开关 3、7-缓冲阀

14单向阀 4、5、8、9、12、13、16、17、19、20-电磁换向阀

21-补油邮箱 22-充液阀 23、24-液压缸 25压力表

F1、F2、F3、F4、F5、F6、F7、F8、F9、F10-插装阀

26-变量泵 27-过滤器 28、29、30、31梭阀

3.1.4液压系统控制过程分析

整个液压控制系统包括五个插装阀集成块,插装阀工作原理分析如下:

F1、F2组成进油调压回路,其中F1为单向阀,用于防止系统中液压油倒流回泵,F2的先导溢流阀2用于调整系统的压力,先导溢流阀1用于限制系统的最高压力,缓冲阀3与电磁换向4用于液压泵卸载和升压缓冲;

F3、F4组成主缸23油液三通回路,先导溢流阀6是用于保证主缸的安全阀,缓冲阀7与电磁换向阀8用于主缸上腔卸压缓冲;

F5、F6组成主缸下腔油液三通回路,先导溢流阀11用于调整主缸下腔的平衡压力,先导溢流阀10为主缸下腔安全阀;

F7、F8组成顶出缸上腔油液三通回路,先导溢流阀15为顶出缸上腔安全阀,单向阀14用于顶出缸作液压垫,活塞浮动时上腔补油;

F9、F10组成顶出缸下腔油液三通回路,先导溢流阀18为顶出缸下腔安全阀。

液压系统电磁铁动作顺序见表3-1。

表3-1液压机液压系统电磁铁动作顺序表

执行部件工况1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y

主缸

快速下行+ + +

工进、加压+ + +

保压

泄压+

回程+ + + + 停止

顶出缸顶出+ + +

退回+ + + 停止

注:“+”表示电磁铁处于得电状态。

3.1.5液压元件的选择

通过液压系统的参数计算查阅液压手册[3],液压元件选择见附录。

3.2 电气系统设计

四柱液压机的电气控制系统[5]通常采用继电器控制、PLC控制、工业计算机控制等方式。继电器控制和PLC控制是目前用的最多的控制方式。继电器控制系统主要由继电器、接触器、按钮、形成开关等元件组成。继电器控制具有结构简单,维护方便,价格低廉,抗干扰能力强,但固定的接线方式,使继电器控制的通用性和灵活性差;PLC 控制系统主要由CPU、存储器、输入输出接口、编程器等元件组成。PLC控制具有编程简单,维护方便,通用性强,体积小,设计调试期短,性能稳定,抗干扰能力强,价格比继电器控制系统贵。

由于本设计任务主要是液压机主机结构设计与计算,故此处不再对电气系统进行详细的设计说明。

4 液压机主机结构设计与校核

4.1 液压缸部件的设计与校核

4.1.1液压缸的结构形式及方案论证比较

液压缸部件通常可以分为柱塞式、活塞式和复合式三种。

(1)柱塞式油缸

柱塞式油缸的结构见图4-1,其原理图见4-2。

图4-1 柱塞式油缸的结构

图4-2 柱塞式油缸原理图

有图可见,柱塞式油缸由缸体、柱塞、导向套、缸口密封装置等零件所组成。利用缸体的凸缘固定于液压机的梁上。

柱塞式油缸由于缸孔不需精加工,甚至不需加工,因而制造简单,维修方便,在水压机上应用很广,但只能单方向作用,反向运动需用回程缸实现。

(2)活塞式油缸

活塞式油缸结构见图4-3,其原理图见图4-4。

由图可见,油缸被活塞头分割为两腔,因此,可以获得正向和反向的运动,既能完

毕业设计机械类外文翻译

缸体机械加工工艺设计 发动机缸体是发动机零件中结构较为复杂的箱体零件,其精度要求高,加工工艺复杂,并且加工加工质量的好坏直接影响发动机整个机构的性能,因此,它成为各个发动机生产厂家所关注的重点零件之一。 1.发动机缸体的工艺特点 缸体为一整体铸造结构,其上部有4个缸套安装孔;缸体的水平隔板将缸体分成上下两部分;缸体的前端面从到后排列有三个同轴线的凸轮轴安装孔和惰轮轴孔。 缸体的工艺特点是:结构、形状复杂;加工的平面和孔比较多;壁厚不均,刚度低;加工精度要求高,属于典型的箱体类加工零件。缸体的主要加工表面有顶面、主轴承侧面、缸孔、主轴承孔及凸轮轴孔等,它们的加工精度将直接影响发动机的装配精度和工作性能,主要依靠设备进度、工夹具的可靠性和加工工艺的合理性来保证。 2. 发动机缸体工艺方案设计原则和依据 设计工艺方案应在保证产品质量的同时,充分考虑生产周期、成本和环境保护;根据本企业能力,积极采用国内外先进的工艺技术和装备,不断提高企业工艺水平。发动机缸体机械加工工艺设计应遵循以下基本原则: (1)加工设备选型原则加工设备选型采用刚柔结合的原则,加工设备以卧式加工中心为主,少量采用立式加工中心,关键工序—曲轴孔、缸孔、平衡轴孔加工采用高精度高速卧式加工中心,非关键工序—上下前后四个平面的粗铣采用高效并有一定调整范围的专用机床加工; (2)集中工序原则关键工序—曲轴孔、缸孔、平衡轴孔的精加工缸盖结合面的精铣,采用在集中在一道工序一次装夹完成全部加工内容方案,以确保产品精度满足缸体关键品质的工艺性能和有关技术要求。 根据汽车发动机缸体的工艺特点和生产任务要求,发动机缸体机械加工自动生产线由卧式加工中心CWK500和CWK500D加工中心、专用铣/镗床、立式加工中心matec-30L等设备组成。 (1)顶底面及瓦盖止口面粗铣组合机床本机床为双面卧式专用铣床,采用移动工作台带动工件,机床采用进口西门子S7-200PLC系统控制,机床设独立电控柜,切削过程自动化完成,有自动和调整两种状态; (2)高速卧式加工中心CWK500 该加工中心可实现最大流量的湿加工,但由于设备自动排屑处理系统是通过位于托盘下的内置宽式排屑器而完成,该加工中心可以进行干加工;机床主轴转速6000r/min,快速进给速度38m/min; (3)前后端面粗铣组合机床机床采用液压传动;控制系统采用进口西门子S7-200PLC系统控制,机床具有一定的柔性; (4)采用机床TXK1500 本机床有立式加工中心改造而成形,具备立式加工中心的特点及性能,该机床具有高精度、高强度、高耐磨度、高稳定性、高配置等优点; (5)高速立式加工中心matec-30L 该加工中心主轴最高转速9000 r/min。控制系统采用西门子公司SINUMERIK840D控制系统 (6)高速卧式加工中心CWK500D 主轴最高转速15000 r/min。 3. 发动机缸体机械加工工艺设计的主要内容 发动机缸体结构复杂,精度要求高,尺寸较大,是薄壁零件,有若干精度要

毕业设计论文-四自由度的工业机器人机械手设计说明书

摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。 关键词:机器人,示教编程,伺服,制动

ABSTRACT In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jops of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way. In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servo control, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback programming and modifying the program online, setting reference point and returning to reference point. KEY WORDS: robot, playback, servocontrol, brake

气动机械手的毕业设计说明

毕业设计(论文)题目:气动机械手的设计 系部:机电工程系 专业:数控技术 班级: : 学号:

目录 摘要 (3) 第一章前言 1.1机械手概述 (4) 1.2机械手的组成和分类 (4) 1.2.1机械手的组成.......................................4 1.2.2机械手的分类.......................................6 第二章机械手的设计方案 2.1机械手的坐标型式与自由度.............................. 8 2.2机械手的手部结构方案设计.............................. 8 2.3机械手的手腕结构方案设计.............................. 9 2.4机械手的手臂结构方案设计...............................9 2.5机械手的驱动方案设计...................................9 2.6机械手的控制方案设计...................................9 2.7机械手的主要参数.......................................9 2.8机械手的技术参数列表...................................9 第三章手部结构设计 3.1夹持式手部结构.........................................11 3.1.1手指的形状和分类.................................11 3.1.2设计时考虑的几个问题.............................14

机械专业--毕业设计说明书(轴校核部分)

A型齿轮泵设计 Graduation Project (Thesis) Harbin University of Commerce X6132milling machine feed system, lifting platform and platform design Student SunMingxing Supervisor Yan Zugen Specialty X6132 milling machine feed system, lifting platform and platform design School Harbin University of Commerce 2012年6月9日

A型齿轮泵设计 1 绪论 1.1机床的用途及性能 X6132、X6132A型万能升降台铣床属于通用机床。主要适用于机械工厂中加工车间、工具车间和维修车间的成批生产、单件、小批生产。 这种铣床可用圆柱铣刀、圆盘铣刀、角度铣刀、成型铣刀和端面铣刀加工各种 平面、斜面、沟槽等。如果配以万能铣头、圆工作台、分度头等铣床附件,还可以 扩大机床的加工范围。 X6132、X6132A型铣床的工作台可向左、右各回转45 o当工作台转动一定角度,采用分度头时,可以加工各种螺旋面。 X6132型机床三向进给丝杠为梯形丝杠,X6132A型机床三向进给丝杠为滚珠丝杠。 X6132/1、X6132A/1型数显万能升降台铣床是在X6132、X6132A型万能升降台铣 床的基础上,在纵向、横向增加两个坐标的数字显示装置的一种变型铣床,该铣床 具有普通万能升降台铣床的全部性能外,借助于数字显示装置还能作到加工和测量 同时进行,实现动态位移数字显示,既保证了工件加工质量,又减轻了工人劳动强 度和提高劳动生产率,配上万能铣头还可以进行镗孔加工。 图1-1 X6132卧式铣床整机外形图

多用途气动机器人结构设计说明书

第一章引言 1.1 工业机械手概述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人应用情况,是一个国家工业自动化水平的重要标志。生产中应用机械手可以提高生产的自动化水平,可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用。机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。 气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。 气动技术有以下优点: (1)介质提取和处理方便。气压传动工作压力较低,工作介质提取容易,而后排入大气,处理方便,一般不需设置回收管道和容器:介质清洁,管道不易堵存在介质变质及补充的问题. (2)阻力损失和泄漏较小,在压缩空气的输送过程中,阻力损失较小(一般不卜浇塞仅为油路的千分之 一),空气便于集中供应和远距离输送。外泄漏不会像液压传动那样,造成压力明显降低和严重污染。 (3)动作迅速,反应灵敏。气动系统一般只需要0.02s-0.3s即可建立起所需的压力和速度。气动系统也能实现过载保护,便于自动控制。 (4)能源可储存。压缩空气可存贮在储气罐中,因此,发生突然断电等情况时,机器及其工艺流程不致突然中断。 (5)工作环境适应性好。在易燃、易爆、多尘埃、强磁、强辐射、振动等恶劣环境中,气压传动与控制系统比机械、电器及液压系统优越,而且不会因温度变化影响传动及控制性能。 (6)成本低廉。由于气动系统工作压力较低,因此降低了气动元、辅件的材质和加工精度要求,制造容易,成本较低。传统观点认为:由于气体具有可压缩性,因此,在气动伺服系统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。此外气源工作压力较低,抓举力较小。虽然气动技术作为机器人中的驱动功能已有部分被工业界所接受,而且对于不太复杂的机械手,用气动元件组成的控制系统己被接受,但由于气动机器人这一体系己经取得的一系列重要进展过去介绍得不够,因此在工业自动化领域里,对气动机械手、气动机器人的实用性和前景存在不少疑虑。 1.2 气动机械手的设计要求 1.2.2 课题的设计要求 本课题将要完成的主要任务如下: (1)机械手为通用机械手,因此相对于专用机械手来说,它的适用面相对较广。 (2)选取机械手的座标型式和自由度。

机械类毕业设计外文翻译

机械类毕业设计外文翻译

外文原文 Options for micro-holemaking As in the macroscale-machining world, holemaking is one of the most— if not the most—frequently performed operations for micromachining. Many options exist for how those holes are created. Each has its advantages and limitations, depending on the required hole diameter and depth, workpiece material and equipment requirements. This article covers holemaking with through-coolant drills and those without coolant holes, plunge milling, microdrilling using sinker EDMs and laser drilling. Helpful Holes Getting coolant to the drill tip while the tool is cutting helps reduce the amount of heat at the tool/workpiece interface and evacuate chips regardless of hole diameter. But through-coolant capability is especially helpful when deep-hole microdrilling because the tools are delicate and prone to failure when experiencing recutting of chips, chip packing and too much exposure to carbide’s worst enemy—heat. When applying flood coolant, the drill itself blocks access to the cutting action. “Somewhere about 3 to 5 diam eters deep, the coolant has trouble getting down to the tip,” said Jeff Davis, vice president of engineering for Harvey Tool Co., Rowley, Mass. “It becomes wise to use a coolant-fed drill at that point.” In addition, flood coolant can cause more harm than good when microholemaking. “The pressure from the flood coolant can sometimes snap fragile drills as they enter the part,” Davis said. The toolmaker offers a line of through-coolant drills with diameters from 0.039" to 0.125" that are able to produce holes up to 12 diameters deep, as well as microdrills without coolant holes from 0.002" to 0.020". Having through-coolant capacity isn’t enough, though. Coolant needs to flow at a rate that enables it to clear the chips out of the hole. Davis recommends, at a minimum, 600 to 800 psi of coolant pressure. “It works much better if you have higher pressure than that,” he added. To prevent those tiny coolant holes from becoming clogged with debris, Davis also recommends a 5μm or finer coolant filter. Another recommendation is to machine a pilot, or guide, hole to prevent the tool from wandering on top of the workpiece and aid in producing a straight hole. When applying a pilot drill, it’s important to select one with an included angle on its point that’s equal t o or larger than the included angle on the through-coolant drill that follows.

机械手的设计毕业设计论文

天津机电职业技术学院毕业综合实践报告 专业电气自动化 班级电气自动化三班

目录 1 机械手的基本介绍 (1) 1.1 机械手的基本结构组成 (1) 1.1.1 气动手爪 (1) 1.1.2 伸缩气缸 (1) 1.1.3 回转气缸及垫板 (2) 1.1.4 提升气缸 (2) 1.2 直线运动传动组件 (2) 1.3 气动控制回路 (3) 2 传感器部分 (5) 2.1 传感器简介 (5) 2.2 磁性开关 (5) 2.3 光电传感器和光纤传感器 (5) 3 伺服电机应用 (7) 3.1 伺服系统 (7) 3.2 交流伺服系统的位置控制模式 (8) 3.3 接线 (10) 3.4 伺服驱动器的参数设置与调整 (10) 3.4.1 参数设置方式操作说明 (11) 3.4.2 面板操作说明: (11) 3.4.3 部分参数说明 (11) 3.5 最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED)12 3.6 移动包络 (13) 4 PLC程序编写 (15) 4.1 PLC的选型和I/O接线 (15) 4.2 伺服电机驱动器参数设置 (15) 4.3 编写和调试PLC控制程序 (16) 4.4 初态检查复位子程序和回原点子程序 (19) 4.5 急停处理子程序 (20) 个人收获 (23) 参考文献 (24) 附录 (25) 致谢 (28)

1 机械手的基本介绍 1.1 机械手的基本结构组成 1.1.1 气动手爪 用于在各个工作站物料台上抓取/放下工件。由一个二位五通双向电控阀控制。见图 1-1 图 1-1 气动手爪 1.1.2 伸缩气缸 用于驱动手臂伸出缩回。由一个二位五通单向电控阀控制。见图 1-2 图 1-2 伸缩气缸

机械设计专业毕业设计说明书(论文)

河北工业大学 毕业设计说明书作者:薛松学号:060387 学院:机械工程学院 系(专业):机械设计制造及其自动化 题目:发动机吊装、码盘系统设计 指导者:陈子顺高级工程师 评阅者: 2010年6月2日

目次 1引言 (1) 1.1 概述 (1) 1.2 本课题国内外研究现状和发展趋势 (1) 1.3 课题的主要研究内容 (1) 1.3.1 本课题的研究对象 (1) 1.3.2 本课题的研究范围 (1) 1.3.3 本课题的具体内容要求 (2) 1.3.4 工作要求 (2) 1.3.5 最终成果 (2) 2 设计工作流程 (2) 2.1 总体设计 (2) 2.1.1 最大起重量确定 (2) 2.1.2 起升高度的选择 (2) 2.1.3 电动葫芦的选型 (3) 2.1.4 起重机构跨距的确定 (3) 2.1.5 行走机构的传动 (3) 2.1.6 动力的输入 (3) 2.1.7 安全装置的设计 (3) 2.2 起重机构主梁的设计 (4) 2.2.1 主梁及架体钢结构的设计 (4) 2.2.2 力学性能的分析 (4) 2.2.3 载荷计算 (4) 2.3 控制电路的设计 (4) 2.4 设计的整体思路 (5) 3 构件的设计选型 (6) 3.1 已知构件尺寸的确定 (6) 3.2 电动葫芦选型 (6) 3.3 电动葫芦轨道梁设计 (7) 3.3.1 小车摆放方案的确定 (7) 3.3.2 电动葫芦轨道梁整体结构尺寸的初定 (9) 3.3.3 电动葫芦轨道梁的轨道材料选型 (10) 3.4 大车轨道梁设计 (10)

3.4.1 大车轨道梁整体结构尺寸的初定 (10) 3.4.2 大车轨道梁的立柱材料尺寸选型 (10) 4 构件的力学性能分析 (11) 4.1 电动葫芦轨道梁的强度、刚度、动载荷稳定性校核 (11) 4.1.1 电动葫芦轨道梁受力分析 (11) 4.1.2 电动葫芦轨道梁强度校核 (13) 4.1.3 电动葫芦轨道梁刚度校核 (13) 4.2 大车轨道梁的强度、刚度、动载荷稳定性校核 (14) 4.2.1 大车轨道梁受力分析 (14) 4.2.2 大车轨道梁强度校核 (16) 4.2.3 大车轨道梁刚度校核 (16) 4.3 立柱尺寸的确定与稳定性分析 (17) 4.3.1 立柱的选材与尺寸确定 (17) 4.3.2 立柱的压杆稳定性校核 (17) 4.3.3 立柱承受动载荷的稳定性校核 (18) 4.4 大车的行走机构设计 (19) 4.4.1 电动机的选型 (19) 4.4.2 大车轨道轮的选型 (20) 4.4.3 减速器的选型 (21) 4.4.4 传动齿轮的设计与校核 (21) 4.4.5 轴校核 (24) 4.4.6 轴承的选型 (24) 5 系统的电路控制设计 (24) 6 基于TRIZ 理论的电动葫芦轨道梁的优化方案设计 (25) 6.1 TRIZ理论简述 (26) 6.2 TRIZ理论的应用 (26) 6.3 由发明原理进行设计方案的确定 (27) 结论 (28) 参考文献 (30) 致谢 (31)

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

机械手设计说明书-毕业设计

Equation Chapter 1 Section 1(1.1) 本科毕业设计说明书 题目抓件液压机械手设计 姓名Design of hydraulic manipulator for grasping 谢百松学号20051103006 专业机械设计制造及其自动化 指导教师肖新棉职称副教授 中国·武汉 二○○九年五月

分类号密级华中农业大学本科毕业设计说明书 抓件液压机械手设计 Design of hydraulic manipulator for grasping 学生姓名:谢百松 学生学号:20051103006 学生专业:机械设计制造及其自动化 指导教师:肖新棉副教授 华中农业大学工程技术学院 二○○九年五月

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 前言 (2) 1.总体方案设计 (2) 2.手部设计 (3) 2.1 确定手部结构 (4) 2.2 手部受力分析 (4) 2.3 手部夹紧力的计算 (5) 2.4 手抓夹持误差分析与计算 (6) 2.5 手部夹紧缸的设计计算 (6) 2.5.1 夹紧缸主要尺寸的计算 (6) 2.5.2 缸体结构及验算 (7) 2.5.3 缸筒两端部的计算 (8) 2.5.4 缸筒加工工艺要求 (10) 2.5.5 活塞与活塞杆的设计计算 (10) 3.臂部设计 (12) 3.1 臂部设计基本要求 (12) 3.2 臂部结构的确定 (12) 3.3 臂部设计计算 (12) 3.3.1 水平伸缩缸的设计计算 (12) 3.3.2 升降缸的设计计算 (14) 3.3.3 手臂回转液压缸的设计计算 (15) 4.液压系统设计 (16) 4.1 系统参数的计算 (16) 4.1.1 确定系统工作压力 (16) 4.1.2 各个液压缸流量的计算 (16) 4.2设计液压系统图 (17) 4.3 选择液压元件 (19) 4.3.1泵和电机的选择 (19) 4.3.2 选择液压控制阀和辅助元件 (19) 4.4根据动作要求编制电磁铁动作顺序表 (20) 5.控制系统设计 (21) 5.1 确定输入、输出点数,画出接口端子分配图 (21) 5.2 画出梯形图 (21) 5.3 按梯形图编写指令语句 (23) 6. 总结 (24) 参考文献 (25) 致谢 (26)

机械手毕业设计样本

目录 第一章绪论 1.1 项目的技术背景与研究意义 1.2 取苗装置的国内外研究现状 1.2.1 国外取苗装置的研究现状 1.2.2 国内取苗装置的研究现状 1.3 论文的研究目标与研究内容 1.4 论文研究的技术路线 第二章穴盘苗自动移栽机机械手整机方案设计 2.1 穴盘苗自动移栽机机械手工作原理和结构分析2.2利用UG建立样机模型 第三章穴盘苗自动移栽机取苗装置的结构设计 3.1 取苗机构的基本构成 基本结构 ( 1) 机械手 ( 2) 穴盘定位平台 ( 3) 驱动系统 ( 4) 控制系统 PLC程序 ( 5) 底座 3.2 取苗机构的工作原理 第四章穴盘苗自动移栽机送苗装置的设计要求分析 1 穴盘育苗及穴盘的选择 2 送苗装置的工作原理和结构组成 3 送苗机构的控制系统 第五章取苗装置的实验研究 1. 取苗装置影响因素分析

2 影响取苗成功率的因素 3 取苗装置手臂角度的实验分析第六章总结与展望 1 全文总结 2 研究展望结束语参考文献致谢

第一章绪论 1.1 项目的技术背景与研究意义 随着社会进步和人民生活水平的提高, 设施农业已成为国民经济中的支柱产业, 温室蔬菜、花卉及棉花生产对发展农村经济, 增加农民收入, 丰富人民的菜篮子, 改进人民生活具有举足轻重的作用。穴盘苗移栽是近年才兴起的种植新技术, 它具有缩短生育期, 提早成熟, 提高棉花单产, 具有广阔的推广前景。过去几年温室大棚育出成品苗向大田移栽, 全部是靠人工移栽。穴盘苗自动移栽技术是温室蔬菜或花卉生产实现工厂化和自动化而采用的一种重要的种植方式。当前, 国内穴盘苗移栽的取苗、喂苗环节主要靠手工完成, 劳动强度大, 作业效率低, 不能满足规模化生产的需要, 从而制约了蔬菜生产的发展。因此, 研制开发适合中国国情、结构简单、价格低廉、性能稳定可靠的中小型穴盘苗自动移栽机迫在眉睫, 而移栽机械手是温室穴盘苗移栽自动化的关键部分, 能够完成” 穴盘定位—自动送苗—钵苗抓取—钵苗投放” 这一系列连续动作, 其性能直接影响移栽机的移栽质量。穴盘苗移栽机械手的研究对实现实现温室穴盘苗移栽生产过程自动化、减轻穴盘苗移栽作业的劳动强度、提高作物移栽质量, 推进中国温室农业作物生产机械化和自动化进程, 特别是中国” 十二五”农业发展规划的顺利实施具有重大意义。 1.2 取苗装置的国内外研究现状 国外穴盘苗移栽机取苗装置的技术较成熟, 而且大部分机型开始投入使用, 特别是应用于花卉、蔬菜等经济价值高的作物的大面积移栽, 具有很好的经济价值。国内的研究主要集中在各大高校及科研院所, 且大部分的研究成果只是样机的试制, 尚没有成型的机型投入生产应用。 1.2.1 国外取苗装置研究现状

【精品毕设】简易机械手机械结构设计

机电工程学院 《专业综合课程设计》 说明书 课题名称:简易机械手机械机构设计 学生姓名:沈柳根学号:20110611119 专业:机械电子工程班级:11机电 成绩:指导教师签字: 2015年1月5日

摘要 简易机械手是工业机械手的简化,功能相似,而工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。工业机械手设计是机械制造、机械设计和机械电子工程等专业的一个重要教学环节,是学完技术基础课及有关专业课以后的一次专业课程内容得综合设计。通过设计提高学生的机械分析与综合能力、机械结构设计的能力、机电液一体化系统设计的能力,掌握实现生产过程自动化的设计方法。 通过对于气动机械手的设计,展现了各个相关学科知识在这里的整合,有利于理解专业知识。 关键词:简易机械手;结构设计;气动

目录 摘要....................................................... 错误!未定义书签。 1 设计任务介绍及意义 (1) 1.1设计任务意义: (1) 1.2设计任务要求介绍: (1) 2 总体方案设计 (3) 2.1 结构分析 (3) 2.3 设计简介 (3) 3 机械传动结构设计 (5) 3.1传动结构总体设计 (5) 3.2手指气缸的设计 (6) 3.3纵向气缸的设计 (12) 3.4横向气缸的设计 (13) 4最终图纸 (15) 4.1装配图 (15) 5 总结 (16) 参考文献 (17)

汽车制动系统(机械、车辆工程毕业论文英文文献及翻译)

Automobile Brake System汽车制动系统 The braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes. Two complete independent braking systems are used on the car. They are the service brake and the parking brake. The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set. The brake system is composed of the following basic components: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the c ar. The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure). Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.

机械手毕业论文.

毕业设计论文题目:气动机械手的设计 设计人: 指导教师: 所属院系: 专业班级: 2014年11月10日

第1章前言 1.1工业机械手概述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很

相关文档
最新文档