高等数学上册知识点

高等数学上册知识点
高等数学上册知识点

高等数学上册知识点文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

高等数学上

第一章 函数与极限

(一) 函数

1、 函数定义及性质(有界性、单调性、奇偶性、周期性);

2、 反函数、复合函数、函数的运算;

3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲

函数、反双曲函数;

4、 函数的连续性与间断点;

函数

)(x f 在0x 连续)()(00

x f x f x

=→

第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点

5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值

定理及其推论。

(二) 极限 1、 定义 1) 数列极限 2) 函数极限

左极限:)(lim )(0

0x f x f x x -

→-= 右极限:)(lim )(0

0x f x f x

x +→+

= 2、 极限存在准则

1) 夹逼准则:

1)

)(0n n z x y n n n ≥≤≤

2)a z y n n n n ==→∞

→∞

lim lim

a x n n =∞

→lim

2) 单调有界准则:单调有界数列必有极限。 3、 无穷小(大)量

1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小

Th1 )(~ααββα

o +=?;

Th2 αβαβαβββαα'

'

=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;

3) 极限运算准则及函数连续性; 4) 两个重要极限:

a) 1sin lim 0=→x

x x b)e x x x

x x

x =+=++∞→→)11(lim )1(lim 1

0 5) 无穷小代换:(0→x )

a) x e x ~1- (

a x a x

ln ~1-) b) x x ~)1ln(+ (a x x a ln ~)1(log +)

第二章 导数与微分

(一) 导数

1、 定义:0

00)

()(lim )(0

x x x f x f x f x x --='→

左导数:0

00)()(lim )(0x x x f x f x f x x --='-

→- 右导数:0

00)

()(lim )(0

x x x f x f x f x x --='+

→+

函数

)(x f 在0x 点可导)()(00x f x f +-'='?

2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

3、 可导与连续的关系:

4、 求导的方法

1) 导数定义; 2) 基本公式; 3) 四则运算;

4) 复合函数求导(链式法则); 5) 隐函数求导数; 6) 参数方程求导; 7) 对数求导法。 5、 高阶导数

1) 定义:??

?

??=dx dy dx d dx y d 22

2)

Leibniz 公式:()

∑=-=n

k k n k k n n v u C uv 0)

()()

( (二) 微分

1) 定义:)()()(00x o x A x f x x f y ?+?=-?+=?,其中A 与x ?无

关。

2) 可微与可导的关系:可微?可导,且dx x f x x f dy )()(00'=?'=

第三章 微分中值定理与导数的应用

(一) 中值定理

1、 Rolle 定理:若函数

)(x f 满足:

1)

],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3)

)()(b f a f =;

则0)(),,(='∈?ξξf b a 使.

2、 Lagrange 中值定理:若函数

)(x f 满足:

1)

],[)(b a C x f ∈; 2)),()(b a D x f ∈;

则))(()()(),,(a b f a f b f

b a -'=-∈?ξξ使.

3、 Cauchy 中值定理:若函数

)(),(x F x f 满足:

1)

],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)

),(,0)(b a x x F ∈≠'

则)

()

()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈?使

(二) 洛必达法则 (三) T aylor 公式

n 阶Taylor 公式:

ξ在0x 与x 之间.

当00

=x 时,成为n 阶麦克劳林公式:

ξ在0与x 之间.

常见函数的麦克劳林公式:

1)1

2)!

1(!1!211+++++++=n n x x n e x n x x e ξ

ξ

在0与

x 之间,+∞<<∞-x ;

2)

12121

753)!

12(2)12(sin )!12()1(!7!5!3sin +--+??????

+++--++-+-=m m m x m m m x x x x x x πξ

ξ

在0与

x 之间,+∞<<∞-x ;

3)m m m x m m m x x x x x 2221

642)!

2(22cos )!22()1(!6!4!21cos ??????

?++--++-+-=--πξ

ξ

在0与

x 之间,+∞<<∞-x ;

4)1

1

1

432)1)(1()1()1(432)1ln(++-++-+-++-+-

=+n n n n n n x n x x x x x x ξ

ξ

在0与

x 之间,11<<-x

5)

n

x n n x x x x !

)1()1(!3)2)(1(!2)1(1)1(32+--++--+-++=+αααααααααα

11

)!

1()1)(()1(+--++--+

n n x n n αξααα ,

ξ

在0与

x 之间,11<<-x .

(四) 单调性及极值

1、 单调性判别法:

],[)(b a C x f ∈,),()(b a D x f ∈,则若

0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减

少。

2、 极值及其判定定理:

a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:

)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当

0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;

②若当0x x

<时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极

小值点;③若在0x 的两侧

)(x f '不变号,则0x 不是极值点。

c) 第二充分条件:

)(x f 在0x 处二阶可导,且0)(0='x f ,

0)(0≠''x f ,则

①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点。

3、 凹凸性及其判断,拐点

1))(x f 在区间I 上连续,若2

)

()()2(

,,212121x f x f x x f I x x +<+∈?,则称)(x f 在区间I 上的图形是凹的;若

2

)

()()2(

,,212121x f x f x x f I x x +>+∈?,则称)(x f 在区间I 上的图形是凸的。

2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈?x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈?x f b a x ,则)(x f 在],[b a 上的图形是凸的。

3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线

)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点

))(,(00x f x 为曲线的拐点。

(五) 不等式证明

1、 利用微分中值定理;

2、 利用函数单调性;

3、 利用极值(最值)。 (六) 方程根的讨论

1、 连续函数的介值定理;

2、 Rolle 定理;

3、 函数的单调性;

4、 极值、最值;

5、 凹凸性。 (七) 渐近线

1、 铅直渐近线:∞=→)(lim x f a

x ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞

→)(lim ,则b y =为一条水平渐近线; 3、 斜渐近线:k x

x f x =∞→)

(lim b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜

渐近线。

(八) 图形描绘

步骤 :

1. 确定函数)(x f y =的定义域,并考察其对称性及周期性;

2. 求)(),(x f x f '''并求出)(x f '及)(x f ''为零和不存在的点;

3. 列表判别函数的增减及曲线的凹向 , 求出极值和拐点;

4. 求渐近线;

5. 确定某些特殊点 , 描绘函数图形 .

第四章 不定积分

(一) 概念和性质

1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)

(x F 称为

)(x f 的一个原函数。

2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)

(x f 在区间I 上的不定积分。

3、 基本积分表(P188,13个公式);

4、 性质(线性性)。 (二) 换元积分法

1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ???=??='

2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=?????

(三) 分部积分法:

??-=vdu uv udv

(四) 有理函数积分

1、“拆”;

2、变量代换(三角代换、倒代换等)。 第五章 定积分

(一) 概念与性质:

1、 定义:

∑?

=→?=n

i i i b

a

x f dx x f 1

)(lim )(ξλ

2、 性质:(7条)

性质7 (积分中值定理) 函数

)(x f 在区间],[b a 上连续,则],[b a ∈?ξ,

使

))(()(a b f dx x f b

a

-=?

ξ (平均值:

a

b dx x f f b

a

-=

?)()(ξ)

(二) 微积分基本公式(N —L 公式) 1、 变上限积分:设?

=

Φx

a

dt t f x )()(,则)()(x f x =Φ'

推广:)()]([)()]([)()

()(x x f x x f dt t f dx

d x x ααβββα'-'=? 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则

)()()(a F b F dx x f b

a

-=?

(三) 换元法和分部积分 1、 换元法:

??

'=β

α

??t t t f dx x f b

a

d )()]([)(

2、 分部积分法:[]??

-=b

a

b

a

b a vdu uv udv (四) 反常积分 1、 无穷积分: 2、 瑕积分:

??+→=b

t

a

t b

a dx x f dx x f )(lim )((a 为瑕点)

??

-→=t

a

b

t b

a

dx x f dx x f )(lim )((b 为瑕点)

两个重要的反常积分:

1) ?

??

??>-≤∞+=-∞+?1 ,1

1

,d 1p p a p x x p a p 2) ?

????≥∞+<--=-=--??1

,1 ,1)()(d )(d 1q q q a b x b x

a x x q

b a q b a q

第六章 定积分的应用

(一) 平面图形的面积

1、 直角坐标:?-=

b

a

dx x f x f

A )]()([12

2、 极坐标:?-=βα

θθ?θ?d A )]()([212

122 (二) 体积

1、 旋转体体积:

a)曲边梯形

x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的

体积:?=b a

x dx x f V )(2π

b)曲边梯形

x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的

体积:?=b

a

y

dx x xf V )(2π (柱壳法)

2、 平行截面面积已知的立体:?

=b

a

dx x A V )(

(三) 弧长

1、 直角坐标:[]?

'+=

b

a

dx x f s 2

)(1

2、 参数方程:[][]?'+'=β

α

φ?dt t t s 2

2)()( 3、 极坐标:[][]?

'+=β

α

θθρθρd s 22)()(

第七章 微分方程

(一) 概念

1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程。

阶:微分方程中所出现的未知函数的最高阶导数的阶数。

2、 解:使微分方程成为恒等式的函数。

通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同。

特解:确定了通解中的任意常数后得到的解。

(二) 变量可分离的方程

dx x f dy y g )()(=,两边积分??=dx x f dy y g )()(

(三) 齐次型方程

)(x y dx dy ?=,设x y u =,则dx du

x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy

dv y v dy dx += (四) 一阶线性微分方程

用常数变易法或用公式:

???

???+??=?-C dx e x Q e y dx x P dx

x P )()()(

(五) 可降阶的高阶微分方程

1、)()(x f y n =,两边积分n 次;

2、

),(y x f y '=''(不显含有y ),令p y =',则p y '='';

3、),(y y f y '=''(不显含有x ),令p y =',则dy dp

p y =''

(六) 线性微分方程解的结构

1、21,y y 是齐次线性方程的解,则2211y C y C +也是;

2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通

解;

3、*

2

211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*

y 非齐次方程的特解。

(七) 常系数齐次线性微分方程

二阶常系数齐次线性方程:

0=+'+''qy y p y

特征方程:

02

=++q pr r ,特征根: 21,r r 特征根

通 解

实根 21

r r ≠

(八) 常系数非齐次线性微分方程

1、

)()(x P e x f m x λ=

设特解)(*x Q e x y m x k λ=,其中

???????=是重根

是一个单根不是特征根

, λ, λ, λk 210 2、

()x x P x x P e x f n l x ωωλsin )(cos )()(+=

设特解[]x

x R x x R e x y m m x k ωωλsin )(cos )()

2()1(*+=,

其中 } ,max{n l m =,?????++=是特征根

不是特征根i i k ωλωλ ,1 ,0

高等数学上册知识点

高等数学上册 第一章 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函 数、双曲函数、反双曲函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定 理、介值定理及其推论。 (二) 极限 1、 定义 1) 数列极限

εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 δδε-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+ = )()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限。 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷 大量。 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无 穷小 Th1 )(~ααββαo +=?;

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

六年级数学上册重点知识归纳

六年级数学上册重点知识归纳 第一单元:位置 1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2、用数对表示位置时,一般先表示第几列,再表示第几行。如数对(3,2)中的“3”表示第三列,“2”表示第二行。 3、物体平移前后顶点的位置变化: (1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变; (2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。 第二单元:分数乘法 1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。 2、分数乘分数,应该分子乘分子,分母乘分母。注意:能约分的可以先约分再乘。 注意:一个大于0的数乘大于1的数,积大于这个数。一个大于0的数乘小于1的数,积小于这个数。 3、分数混合运算的顺序和整数的混合运算顺序相同。 (1)在没有括号的算式里,同级运算从左往右进行计算; (2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减; (3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。 4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。 (1)乘法交换律:a×b=b ×a (2)乘法结合律:(a ×b)×c=a ×(b ×c) (3)乘法分配律:(a+b)×c=a ×c+b ×c 5、解决求一个数的几分之几是多少的问题,用乘法计算。 6、乘积是1的两个数互为倒数。求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。注意:1的倒数是1,0没有倒数。 7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。 第三单元:分数除法 1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。 2、分数除法的计算方法: ①分数除以整数(0除外),等于分数乘这个整数的倒数。 ②一个数除以分数,等于这个数乘分数的倒数。 ③甲数除以乙数(0除外),等于甲数乘乙数的倒数。 3、一个数除以小于1(不等于0)的数,商大于被除数; 一个数除以1,商等于被除数; 一个数除以大于1的数,商小于被除数。

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

(完整版)高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a -b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

六年级数学上册知识点整理归纳

六年级上册数学知识点 第一单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如:5 3×7表示: 求7个5 3的和是多少? 或表示:5 3的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。 注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如:5 3×6 1表示: 求5 3的6 1是多少? 9 × 61表示: 求9的61 是多少? A × 61表示: 求a 的6 1 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘, 计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别 在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分 数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b <1时,c

(完整版)同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高等数学上册知识点

高等数学上册知识点 Prepared on 24 November 2020

高等数学上册 第一章 函数与极限 (一)函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函 数、双曲函数、反双曲函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续)()00 x f x = 第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定 理、介值定理及其推论。 (二)极限 1、 定义 1) 数列极限 2) 函数极限 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+ = 2、 极限存在准则

1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ → 2) 单调有界准则:单调有界数列必有极限。 3、 无穷小(大)量 1) 定义:若0lim =α 则称为无穷小量;若∞=αlim 则称为无穷大 量。 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b)e x x x x x x =+=++∞→→)11(lim )1(lim 1 5) 无穷小代换:(0→x ) a) x e x ~1- (a x a x ln ~1-) b) x x ~)1ln(+ (a x x a ln ~ )1(log +) 第二章 导数与微分

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

新人教版八年级数学上册知识点总结归纳

新人教版八年级上册数学 知识点总结归纳 1 第十一章三角形 第十二章全等三角形 第十三章轴对称 第十四章整式乘法和因式分解 第十五章分式 第十一章三角形

1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积=2 1 ×底×高 多边形知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形 分类1: 凹多边形 正多边形:各边相等,各角也相等的多边形叫做正多边形。 分类2: 多边形 非正多边形: 1、n 边形的内角和等于180°(n-2)。 多边形的定理 2、任意凸形多边形的外角和等于360°。

高等数学上册,必背的知识点,期末考试备考的重点知识

高等数学上册,必背的 知识点,期末考试备考 的重点知识 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高等数学上册,必背的知识点,期末考试备考的重点知识 东西不多,但都是经典,多了也记不住,是吧。 (14)C x dx x +-=?csc cot csc (15)C x xdx x +=?sec tan sec (16)C x xdx +-=?|cos |ln tan (17)C x xdx +=?|sin |ln cot (18)C x x xdx ++=?|tan sec |ln sec (19)C x x xdx +-=?|cot csc |ln csc (20)C a x a dx x a +=+?arctan 112 2 (21)C a x a x a dx a x ++-=-?||ln 2112 2 (22)C a x dx x a +=-?arcsin 12 2 (23)C a x x a x dx +++=+? )ln(222 2 (24)C a x x a x dx +-+=-?||ln 222 2 用于三角函数有理式积分的变换: 把sin x 、cos x 表成2 tan x 的函数然后作变换2 tan x u = 2 22122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x x x x x x x +=+== =? 2 2 2222112 sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=? 变换后原积分变成了有理函数的积分 二 泰勒多项式 若)(x f 在点x 0处N 阶可导,称

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

相关文档
最新文档