3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示
3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示 课时目标 1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.

1.空间向量基本定理

(1)设i 、j 、k 是空间三个两两垂直的向量,且有公共起点O ,那么,对于空间任一向量p ,存在一个______________,使得____________,我们称______,______,______为向量p 在i 、j 、k 上的分向量.

(2)空间向量基本定理:如果三个向量a ,b ,c ________,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得________________.

(3)如果三个向量a ,b ,c 不共面,那么所有空间向量组成的集合就是___________.这个集合可看作是由向量a ,b ,c 生成的,我们把{a ,b ,c }叫做空间的一个________,a ,b ,c 都叫做__________.空间中任何三个________的向量都可构成空间的一个基底.

2.空间向量的坐标表示

若e 1、e 2、e 3是有公共起点O 的三个两两垂直的单位向量,我们称它们为____________________,以e 1、e 2、e 3的公共起点O 为原点,分别以e 1、e 2、e 3的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Oxyz ,那么,对于空间任意一个向量p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3,把x ,y ,z 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作____________.

一、选择题

1.在以下3个命题中,真命题的个数是( )

①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;

②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.

A .0

B .1

C .2

D .3

2.已知O 、A 、B 、C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB

→-OC →,则与a 、b 不能构成空间基底的是( )

A. OA → B .OB → C.OC → D.OA →或OB →

3.以下四个命题中,正确的是( ) A.若OP =12OA →+13

OB →,则P 、A 、B 三点共线 B .设向量{a ,b ,c }是空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底

C .|(a·b )c |=|a|·|b|·|c |

D. △ABC 是直角三角形的充要条件AB →·AC →=0 4.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3G ,G 1若OG

=xOA →+yOB →+zOC →,则(x ,y ,z )为( )

A .(14,14,14)

B .(34,34,34

) C .(13,13,13) D .(23,23,23

) 5.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则

点A 在基底{i ,j ,k }下的坐标是( )

A .(12,14,10)

B .(10,12,14)

C .(14,12,10)

D .(4,3,2)

6.已知空间四边形OABC 中OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,

N 为BC 的中点,则MN →等于( )

A.12a -23b +12c B .-23a +12b +12

c C.12a +12b -12c D.23a +23b -12

c 二、填空题

7.设{i ,j ,k }是空间向量的一个单位正交基底,则向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是____________.

8.已知空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC 、BD 的中点

分别为E 、F ,则EF →=____________. 9.已知正方体ABCD -A 1B 1C 1D 1中,点O 为AC 1与BD 1的交点,AO =xAB →+yBC →+

zCC 1→,则x +y +z =______.

三、解答题

10.四棱锥P -OABC 的底面为一矩形,PO 平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E 、

F 分别是PC 和PB 的中点,用a ,b ,c 表示BF →、BE →、AE →、EF →.

11.已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且PA=AD,求MN 、DC →的坐标.

能力提升

12.甲、乙、丙三名工人搬运石头,分别作用于石头的力为F 1,F 2,F 3,若i 、j 、k 是空间中的三个不共面的基向量,F 1=i +2j +3k ,F 2=-2i +3j -k ,F 3=3i -4j +5k ,则这三名工人的合力F =x i +y j +z k ,求x 、y 、z .

13.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证:EF ⊥平面B 1AC .

1.空间的一个基底是空间任意三个不共面的向量,空间的基底可以有无穷多个.一个基底是不共面的三个向量构成的一个向量组,一个基向量指一个基底的某一个向量. 2. OP =xOA →=xOA →+yOB →+zOC →,当且仅当x +y +z =1时,P 、A 、B 、C 四点共面.

3.对于基底{a ,b ,c }除了应知道a ,b ,c 不共面,还应明确:

(1)空间任意三个不共面向量都可以作为空间向量的一个基底,基底选定以后,空间的所有向量均可由基底惟一表示.

(2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0.

3.1.4 空间向量的正交分解及其坐标表示

知识梳理

1.(1)有序实数组{x ,y ,z } p =x i +y j +z k x i y j z k (2)不共面 p =x a +y b +z c

(3){p |p =x a +y b +z c ,x ,y ,z ∈R } 基底 基向量 不共面

2.单位正交基底 p =(x ,y ,z )

作业设计

1.C [命题①,②是真命题,命题③是假命题.]

2.C [∵OC →=12

(a -b ),OC →与a 、b 共面, ∴a ,b ,OC →不能构成空间基底.]

3.B [A 中若OP →=12OA →+12

OB →,则P 、A 、B 三点共线,故A 错; B 中,假设存在实数k 1,k 2,使c +a =k 1(a +b )+k 2(b +c )=k 1a +(k 1+k 2)b +k 2c ,

则有????? k 1=1;k 1+k 2=0;

k 2=1.方程组无解,

即向量a +b ,b +c ,c +a 不共面,故B 正确.

C 中,a·b =|a||b |cos 〈a ,b 〉≤|a|·|b |,故C 错.

D 中,由AB →·AC →=0?△ABC 是直角三角形,但△ABC 是直角三角形,可能角B 等于90°,则有BA →·BC →=0.故D 错.]

4.A [因为OG →=34OG 1→=34

(OA →+AG 1→) =34OA →+34×23[12

(AB →+AC →)] =34OA →+14

[(OB →-OA →)+(OC →-OA →)] =14OA →+14OB →+14

OC →, 而OG →=x OA →+y OB →+z OC →,

所以x =14,y =14,z =14

.] 5.A [设点A 在基底{a ,b ,c }下对应的向量为p ,

则p =8a +6b +4c =8i +8j +6j +6k +4k +4i

=12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).]

6.B [MN →=ON →-OM →=12(OB →+OC →)-23

OA → =-23a +12b +12

c .] 7.(3,2,-1),(-2,4,2)

8.3a +3b -5c

解析 ∵EF →=EA →+AB →+BF →,

又EF →=EC →+CD →+DF →,

∴两式相加得

2EF →=(EA →+EC →)+AB →+CD →+(BF →+DF →).

∵E 为AC 中点,故EA →+EC =0,同理BF →+DF →=0,

∴2EF →=AB →+CD →=(a -2c )+(5a +6b -8c )

=6a +6b -10c ,∴EF →=3a +3b -5c .

9.32

解析 AO →=12A C 1→=12

(AB →+BC →+CC 1→). 故x =y =z =12,∴x +y +z =32

. 10.解 BF →=12BP →=12

(BO →+OP →) =12(c -b -a )=-12a -12b +12

c . BE →=BC →+CE →=-a +12CP →

=-a +12

(CO →+OP →) =-a -12b +12

c . AE →=AP →+PE →

=AO →+OP →+12

(PO →+OC →) =-a +c +12

(-c +b ) =-a +12b +12

c . EF →=12CB →=12OA →=12a .

11.解

∵P A =AD =AB ,且P A ⊥平面ABCD ,AD ⊥AB ,

∴可设DA →=e 1,AB →=e 2,AP →=e 3.

以e 1、e 2、e 3为坐标向量建立空间直角坐标系Axyz ,如图所示. ∵MN →=MA →+AP →+PN →

=MA →+AP →+12

PC → =MA →+AP →+12

(PA →+AD →+DC →) =-12e 2+e 3+12

(-e 3-e 1+e 2) =-12e 1+12

e 3, ∴MN →=????-12

,0,12,DC →=AB →=e 2=(0,1,0). 12.解 由题意,得F =F 1+F 2+F 3=(i +2j +3k )+(-2i +3j -k )+(3i -4j +5k )=2i +j +7k .

又因为F =x i +y j +z k ,所以x =2,y =1,z =7.

13.证明 设AB →=a ,AD →=c ,AA 1→=b , 则EF →=EB 1→+B 1F →

=12

(BB 1→+B 1D 1→) =12

(AA 1→+BD →) =12(AA 1→+AD →-AB →)=12

(-a +b +c ), AB 1→=AB →+EB 1→=AB →+AA 1→=a +b . ∴EF →·AB 1→=12(-a +b +c )·(a +b ) =12

(b 2-a 2-a·b +a·b +c·a +c·b ) =12

(|b |2-|a |2)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1. 同理,EF ⊥B 1C .

又AB 1∩B 1C =B 1,∴EF ⊥平面B 1AC .

平面向量正交分解及坐标表示及坐标运算

2.3.2平面向量的正交分解及坐标表示、坐标运算 学习目标 1.掌握平面向量的正交分解及其坐标表示; 2.会用坐标表示平面向量的加、减、数乘运算。 学习任务: (一)平面向量的正交分解: 阅读课本94-95页,回答下列问题 1、什么是正交分解? 2、观察右图,OA a = ,完成下列问题: (1)向量1OA 与向量i 共线,则存在唯一实数x ,使得i OA ___1 =; (2)向量2OA 与向量j 共线,则存在唯一实数y ,使得j OA __2=; (3)由平行四边形法则,________________+=+==OA a . 3、阅读课本第95-96页,完成下列问题 向量的坐标表示的定义:分别选取与x 轴、y 轴方向相同的 向量i ,j 作为 ,对于任一向量a , ____________一对实数x 、y ,使得a xi y j =+,(,x y R ∈),实数对(,)x y 叫___________,记作_________ 其中x 叫 ,y 叫 。 说明:(1)对于a ,有且仅有一对实数(,)x y 与之对应; (2)相等的向量的坐标 ; (3)i =( , ),j =( , ),0(0,0)=; (4)直角坐标系中点A 、向量OA 、有序数(x,y )有什么关系?从原点引出的向量OA 的坐标(,)x y 就是 。 (二)平面向量的坐标运算 1.阅读课本第96页,完成问题 已知),(),,(2211y x b y x a == ,则 (1)=+b a ____________________,=-b a ____________________(用坐标表示)。 (2)=a λ____________________(R ∈λ)(用坐标表示)。 2.阅读课本第97页例4,完成课本第100页练习1,2;课本第101页习题A 组2。 3.若A 点坐标为),(11y x ,B 点坐标为),(22y x ,O 为坐标原点,则 (1)OA =___________,OB =___________,________________________=-=-=AB 。 (2)若A 点坐标为(-1,4),B 点坐标为(2,1),则________=AB 。 (3)完成课本第100页练习3;课本第101页习题A 组1。 3.阅读课本第97页例5,;课本第101页练习6,7,习题A 组3,4,7,B 组1。 4.已知点A (2,3),B (5,4),C (7,10).若),(R AC AB AP ∈+=λλ试求λ为何值时, (1)点P 在第一、三象限角平分线上;(2)点P 在第三象限内. 2.3.4平面向量共线的坐标表示 学习目标 1.理解用坐标表示的平面向量共线的条件。 2.学会将几何问题转化为代数问题,从而体会转化及数形结合的数学思想。 自学探究: 1.你还记得向量共线定量吗?若),(11y x a =,),(22y x b =则怎样用坐标表示两个共线向量? 2.阅读课本第98页,完成下列任务: (1)若),(11y x a =,),(22y x b =)0( ≠b ,则_____________________//??b a ; (2)阅读课本第98页例6,完成100页练习4,101页A 组5,6 (3)阅读课本第98页例7,完成101页B 组2 ★ 总结:证明A,B,C 三点共线的方法是什么? 技能提升 1.已知a = (4,2),b = (6,y),且a ∥b ,求y. 2.设向量a = (1,2),b =(2,3),若向量b a +λ与向量c = )7,4(--共线,求λ. 3.已知),1,(),2,1(x b a ==,若b a 2+与b a -2平行,则x 的值为 。 4.若向量),,4(),1,(x b x a ==则当x = 时a 与b 共线且方向相同。 5.已知向量()()5,4,12,==→ → OB k OA ()10,k OC -=→ 则A 、B 、C 三点共线则k 为( ) A 、 32 B 、32- C 、2 1 D 、1 1 A 2 A

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

《空间向量的正交分解及其坐标表示》教学设计

《空间向量的正交分解及其坐标表示》 教学设计 杨华 燕大附中

3.1.4空间向量的正交分解及其坐标表示教学设计 一、教学任务及对象 1、教学内容分析 《空间向量的正交分解及其坐标表示》是选修2-1第三章第一节的内容,前面学生已经把平面向量及其加减和数乘运算推广到空间,本节内容从空间向量的正交分解出发,学习空间最重要的基础定理——空间向量分解定理,这个定理是立体几何数量化的基础,有了这个定理,空间结构变得简单明了,整个空间被三个不共面的向量所确定,空间一个点或一个向量和实数组(x,y,z)建立起一一对应的关系。 2、教学对象分析 本节课授课的对象是高二年级的学生,他们已掌握了平面向量的基本原理,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但在把向量推广到空间中缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。 二、教学目标 依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下: 1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。 2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。 3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。 三、重、难点分析 重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 难点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 四、教学策略 为了突出重点、突破难点,在教学中采取了以下策略: 1.教法分析 为了充分调动学生学习的积极性,采用“学、研、导、练”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣. 2.学法分析 本节课通过类比平面向量基本定理及坐标表示,推广到空间向量,让学生体会类比、推广思想,加深对向量的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

高中数学 3.1.4空间向量的正交分解及其坐标表示教案 新人教A版选修2-1

3. 1.4 空间向量的正交分解及其坐标表示 教学目标 1.能用坐标表示空间向量,掌握空间向量的坐标运算。 2.会根据向量的坐标判断两个空间向量平行。 重、难点 1.空间向量的坐标表示及坐标运算法则。 2.坐标判断两个空间向量平行。 教学过程 1.情景创设: 平面向量可用坐标表示,空间向量能用空间直角坐标表示吗? 2.建构数学: 如图:在空间直角坐标系O xyz -中,分别取与x 轴、y 轴、z 轴方向相同的单位向量,,i j k 作为基向量,对于空间任一向量a ,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a xi y j zk =++;有序实数组(x ,y ,z )叫做向量a 的空间直角坐标系O xyz -中的坐标,记作a =(x ,y ,z )。 在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA 是确定的,容易得到 OA =xi y j zk ++。 因此,向量OA 的坐标为OA =(x ,y ,z )。 这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标。 类似于平面向量的坐标运算,我们可以得到空间向量坐标运算的法则。 设a =(123,,a a a ),b =(123,,b b b ),则

a + b =(112233,,a b a b a b +++), a - b =(112233,,a b a b a b ---), λa =(123,,a a a λλλ)λ∈R 。 空间向量平行的坐标表示为 a ∥ b (a ≠0)112233,,()b a b a b a λλλλ?===∈R 。 例题分析: 例1:已知a =(1,-3,8),b =(3,10,-4),求a +b ,a -b ,3a 。 例2:已知空间四点A (-2,3,1),B (2,-5,3),C (10,0,10)和D (8,4,9),求证:四边形ABCD 是梯形。 例3:求点A (2,-3,-1)关于xOy 平面,zOx 平面及原点O 的对称点。 练习:见学案 小结: 作业:见作业纸

专题3-空间向量的正交分解与坐标表示

23,,e e 为有公共起点O 的三个两两

点O 重合,得到向量OA =a .由空间向量基本定理可知,存在有序实数组{,,}x y z ,使得 =a __________.我们把x ,y ,z 称作向量a 在单位正交基底123,,e e e 下的坐标,记作=a __________. 注:向量的坐标由起点、终点的坐标共同决定,并不受起点位置的影响. 5.单位正交基底之间的数量积运算 (1)因为单位正交基底123,,e e e 互相垂直,所以121323?=?=?=e e e e e e __________. (2)因为123,,e e e 为单位向量,所以1122331?=?=?=e e e e e e . 6.空间向量的坐标运算 空间向量的加法、减法、数乘及数量积运算的坐标表示都可以类似平面向量的坐标运算得到. 设123(,,)a a a =a ,123(,,)b b b =b ,则 (1)112233(,,)a b a b a b +=+++a b , 112233(,,)a b a b a b -=---a b , 123(,,)a a a λλλλ=a , 112233a b a b a b ?=++a b ; (2)112233,,a b a b a b λλλλ?=?===∥a b a b , 11223300a b a b a b ??=?++=⊥a b a b , =?=|a |a a __________, 112233 22222 2 123123cos ,a b a b a b a a a b b b ++= ++++<>a b ; (3)在空间直角坐标系中,已知点111()A x y z ,,,222()B x y z ,,,则A ,B 两点间的距离 ||d AB == 222121212()()()x x y y z z -+-+-. 注:进行向量运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算,一般按照右手系建系.

平面向量的分解及向量的坐标表示

平面向量的分解及向量的坐标表示 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第二节平面向量的分解及向量的坐标表示 课时作业 一、选择题 1.(2009年湖北卷>若向量a=(1,1>,b=(-1,1>,c=(4,2>,则c=( > A.3a+bB.3a-b C.-a+3bD.a+3b 2.(2009年广东卷>已知平面向量a=(x,1>,b=(-x,x2>,则向量a+b( > A.平行于x轴 B.平行于第一、第三象限的角平分线 C.平行于y轴 D.平行于第二、四象限的角平分线 3.(2009年重庆卷>已知向量a=(1,1>,b=(2,x>,若a+b 与4b-2a平行,则实数x的值是( >b5E2RGbCAP A.-2B.0 C.1D.2 4.(2008年海南宁夏卷>平面向量a,b共线的充要条件是( > A.a,b方向相同 B.a,b两向量中至少有一个为零向量 C.?λ∈R,b=λa D.存在不全为零的实数λ1,λ2,λ1a+λ2b=0

5.如右图所示,在△ABC中,已知 A(2,3>,B(6,-4>,G(4,-1>是中线AD 上一点,且错误!=2错误!,则点C的坐标 为( >p1EanqFDPw A.(-4,2> B.(-4,-2> C.(4,-2> D.(4,2> 二、填空题 6.(2009年江西卷>已知向量a=(3,1>,b=(1,3>,c=(k,7>,若(a-c>∥b,则k=________.DXDiTa9E3d 7.(2009年辽宁卷>在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0>,B(6,8>,C(8,6>,则D点的坐标为________.RTCrpUDGiT 8.(2009年湖北卷>已知P={a|a=(1,0>+m(0,1>,m∈R},Q ={b|b=(1,1>+n(-1,1>,n∈R}是两个向量集合,则P∩Q=________.5PCzVD7HxA 三、解答题 9.如右图所示,已知A(-2,1>, B(1,3>,求线段AB的中点M和三等分点 P,Q的坐标. 10.已知A(1,0>,直线l:y=2x- 6,点R是直线l上的一点,若错误!=2 错误!,求点P的轨迹方程.jLBHrnAILg 参考答案 1.解读:c=(4,2>=3a-b.选B. 答案:B

《平面向量的正交分解及坐标表示》教学设计

《平面向量的正交分解及坐标表示》教学设计 【教学设计构想】 1.体现知识的发生、发展过程;本节课的核心知识是“平面向量正交分解条件下坐标表示”,学生正确建构了向量的坐标表示,才能真正理解向量的“代数化”,进而从代数的角度理解向量的运算,所以本节课的设计,力图呈现平面向量坐标表示的发生、发展过程。 2.将知识的数学形态转化为教学形态;教材中对本节内容的介绍只有本页之多,却内涵丰富,承前启后,不能以自己的想法代替学生的想法,不能简单地告诉学生定义、结论,通过问题的设置来引导学生操作、思考、讨论交流,推进教学的进程。 3.教学重心前移;对于本节课的知识,如果学生记住向量坐标表示的结论,学生也能解决一系列的问题,以往的教学,是将重心放在如何强化学生的解题训练上,注重解题的方法与技巧,在题的难度上和解法技巧上进行设计,本次教学的重心放在学生对向量坐标表示的意义理解上。 4.还学生自主学习的空间与时间;在学生的“最近发展区内”设置有思考价值的问题,形成学生认知上的冲突,才是给学生提供学习的空间;在对学生设置好探究问题后,要舍得给学生独立思考,与同伴交流的时间。 【教材内容地位】 本课时的内容包括“向量的正交分解及坐标表示”,向量基本定理实际上是建立向量坐标的一个逻辑基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算。 2.3节平面向量的基本定理及坐标表示主要四部分内容1.平面向量的基本定理,2.平面向量的正交分解及坐标表示, 3.平行向量的坐标运算, 4.平面向量共线的坐标表示。本节教学的内容是本单元的第2节。 【目标与目标解析】 知识与技能: 1.掌握向量的正交分解,理解向量坐标表示的定义,具体要求:(1)能写出给定向量的坐标;(2)给出坐标能画出表示向量的有向线段; 2.掌握向量的坐标与表示该有向线段起、终点坐标的关系,具体要求:(1)知道起点在坐标原点时,向量的坐标就是终点的坐标;(2)向量的坐标等于终点减去起点坐标。 3.理解向量与坐标之间是一一对应关系。 过程与方法: 学生经历向量的几何表示——线性表示——坐标表示的实现过程,从中体会由特殊到一般的研究问题的方法,体会由“形”到“数”的数形结合思想及与点与坐标关系的类比思想。 情感态度与价值观: 在实现平面向量坐标表示的过程中,学生独立探索、参与讨论交流,从中加深对知识的理解,体验学习数学的乐趣。 重点:平面向量坐标表示的定义 突破办法:渗透从特殊到一般的归纳,由“形”到“数”的数形结合的思想. 难点:对平面向量坐标表示生成过程的理解 突破办法:设置情景问题,注意过程分析与引导,力求自然、合理 【教学过程】 (一)问题情境1:倾斜角为30度的斜面上,质量为100kg的物体匀速下滑, 欲求物体受到的滑动摩擦力和支持力,该如何对重力进行分解? 设计说明:引出课题。 回顾向量基本定理,构造建立直角坐标系条件,为研究问题做铺垫。 (二)向量坐标表示的定义探究 问题1:如图所示,取与x轴、y轴方向相同的两个单位向量i,j为基底,分别用i,j表示向量a、b.

向量的坐标表示及其运算

第八讲向量的坐标表示及其运算 一、知识点 (一)向量及其表示: 1.平面向量的有关概念: (1)向量的定义:既有大小又有方向的量叫做向量. (2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示. (3)模:向量的长度叫向量的模,记作|a |或|AB |. (4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定. (5)单位向量:长度为1个长度单位的向量叫做单位向量. (6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线. (7)相等的向量:长度相等且方向相同的向量叫相等的向量. 2向量坐标的有关概念 (1)基本单位向量 (2)位置向量 (3)向量的正交分解 3.向量的坐标运算:设 4.向量的摸:22y x a += (二)向量平行的充要条件: 1向量共线定理:向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa ,即b ∥a ?b =λa (a ≠0). 2设a =(x 1,y 1),b =(x 2,y 2)则b ∥a ?1221y x y x = (三)定比分点公式: 1线段的定比分点是研究共线的三点P 1,P ,P 2坐标间的关系.应注意:(1)点P 是不同于P 1,P 2的直线P 1P 2上的点;(2)实数λ是P 分有向线段21P P 所成的比,即P 1→P ,P →P 2的顺序,不能搞错;(3)定比分点的坐标公式??? ????++=++=λλλλ112121y y y x x x ,(λ≠-1). 2中点坐标公式 3三角形重心坐标公式 二、典型例题 例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少? 例2 下列哪些是向量?哪些是标量? (1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ?ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ?重心,求GA 的坐标 例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()3若a BD AC a 求,-=

高中数学选修2-1精品教案1:3.1.4 空间向量的正交分解及其坐标表示教学设计

3.1.4 空间向量的正交分解及其坐标表示 教学目标: 掌握空间向量的正交分解及空间向量基本定理和坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直. 教学重点:空间向量基本定理、向量的坐标运算. 教学难点:理解空间向量基本定理. 教学过程: 一.复习引入 平面向量基本定理及应用 二.思考分析 在一次消防演习中,一消防官兵特别行动小组接到命令,由此往南500米,再往东400米处的某大厦5楼发生火灾.行动小组迅速赶到现场,经过1个多小时的奋战,终于将大火扑灭.火灾的发源地点是由消防官兵驻地“南500米”“东400米”“5楼”三个量确定.设e1是向南的单位向量,e2是向东的单位向量,e3是向上的单位向量. 问题1:这三个向量能作为该空间的一组基底吗? 提示:能. 问题2:若每层楼高3米,请把“发生火灾”的位置由向量p表示出来? 提示:p=500e1+400e2+15e3. 三.抽象概括 1.空间向量基本定理 定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量. 2.空间向量的正交分解及其坐标表示 (1)单位正交基底 三个有公共起点O的两两垂直的单位向量e1,e2,e3称为单位正交基底. (2)空间向量的坐标表示 以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz. 对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP―→=p.由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3.把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z). (1)空间任意三个不共面的向量都可以作为空间向量的一个基底. (2)0与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着

向量的坐标表示(一)

向量的坐标表示(一) 【学习重点与难点】: 重点:平面向量基本定理的应用;平面内任一向量都可以用两个不共线非零向量表示 难点:平面向量基本定理的理解. 【学法与教学用具】: 1. 学法: (1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 2. 教学用具:多媒体、实物投影仪. 【课时安排】:1课时 【教学思路】: 一、思考和讨论 【问题1】:(教材69P 例1):平行四边形ABCD 的对角线AC 和BD 交于点M ,=?→?AB a ,=?→?AD b ,试用向量a ,b 表示?→?MA ,?→?MB ,?→?MC ,?→ ?MD 。 结论:由作图可得a 1λ=1e +2λ2e 【问题2】:对于向量a ,1λ和2λ是否是惟一的一组? 二、研探学习 1.共面向量定理 【探索】:(1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一的? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 学生分析设1e ,2e 是不共线向量,a 是平面内任一向量 ?→?OA =1e ?→?OM =1λ1e ?→?OC =a =?→?OM +?→?ON =1λ1e +2λ2e ?→?OB =2e ?→?ON =2λ2e 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数1λ,2λ,使a 1λ=1e +2λ2e .我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;这个定理也叫共面..向量定理. 【注意】: 1e 2e a C

平面向量的正交分解与坐标表示

140206平面向量的正交分解与坐标表示 140206平面向量的正交分解与坐标运算 教学目的:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。 教学重点:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。 教学难点:掌握平面向量的正交分解方法,会运用坐标计算向量的和、差、数乘运算。 教学过程: 一、问题探索 【问题1】如图,光滑的斜面上,物体会向下滑动, 如何知道使物体下滑的作用力有多大 30时,你能计算出【思考】当重力是4N,斜面的倾斜角是0 下滑的作用力吗 【定义】将一个向量分解为两个互相垂直的向量,称为向量的正 交分解。 二、向量的正交分解与坐标表示 【问题2】将向量a 置于直角坐标系内,以两轴正向的 单位向量i 、j 作为基底, 如何研究向量a 的正交分解式 【结论】1、对于直角坐标平面内的任一向量a ,存在唯一的一 对实数,x y , 使(,)a xi y j x y =+= 2、当向量a 的起点在坐标原点时,终点的坐标是(,)x y 3、||a = 三、平面向量的坐标运算

【问题3】已知11(,)a x y = ,22(,)b x y = ,求a b + ,a b - 和a λ 【思考】请你总结向量的加法、减法和数乘运算的法则。四、向量坐标运算的应用 O i j x y a 【例1】已知(,)A A A x y 、(,)B B B x y ,求证: (,)B A B A AB x x y y =-- 【例2】已知)2,3(-=a ,)1,2(-=b ,)4,7(-=c ,若b a c μλ+=,求实数λ和μ的值。 【例3】平行四边形的三个顶点的坐标是A(-2,1)、B(-1,3)、C(3,4),求第四个顶点的坐标。 【练习】 1、已知)4,3(-=a ,)1,1(-=b 且A B = b a 23-,若B 点坐标是 (1,0),求A 点坐标。 2、已知M是圆22 x y -+-=上的动点,A点坐标是(1,1), (3)(3)4 点N在MA的延长线上,且MA=2AN,求动点N的轨迹方程。 五、布置作业 P101 T1 T2 T3 T4 六、课后反思

向量的坐标表示及其运算

向量的坐标表示及其运算

向量的坐标表示及其运算 【知识概要】 1. 向量及其表示 1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上 面加箭头来表示,如a读作向量a, 向量也可以用两个大写字母上面加 箭头来表示,如AB,表示由A到B的向量. A为向量的起点,B为向量的终点).向量AB(或a)的大小叫做向量的模,记作AB(或a). 注:①既有方向又有大小的量叫做向量,只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别; ②长度为0的向量叫零向量,记作的方向是任意的注意与0的区别 ③长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都是只限制大

小,不确定方向. 例1 下列各量中不是向量的是( D A.浮力 B.风速 C.位移 D.密度 例2 下列说法中错误 ..的是( A ) A.B.零向 量的长度为0 C. D.零向 例 3 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D ) A.B. C. D. 2)向量坐标的有关概念 ①基本单位向量: 在平面直角坐标系中,方向分别与x轴和y轴正方向相同的两个单位向量叫做基本单位,记为i和j. ②将向量a的起点置于坐标原点O,作OA a , 则OA叫做位置向量,如果点A的坐标为(,) x y,它在

x 轴和 y 轴上的投影分别为 ,M N ,则 ,.OA OM ON a OA xi y j =+==+ ③ 向量的正交分解 在②中,向量OA 能表示成两个相互垂直的向量i 、j 分别乘上实数,x y 后组成的和式,该和式称 为i 、j 的线性组合,这种向量的表示方法叫做向 量的正交分解,把有序的实数对(,) x y 叫做向量a 的坐标,记为a =(,)x y . 一般地,对于以点1 1 1 (,)P x y 为起点,点2 2 2 (,)P x y 为终 点的向量12 PP ,容易推得122 121()()PP x x i y y j =-+-,于是相 应地就可以把有序实数对2 121(,) x x y y --叫做12 PP 的坐 标,记作12 PP =2 121(,) x x y y --. 3)向量的坐标运算:1 1 2 2 (,),(,)a x y b x y ==,R λ∈ 则1 2 1 2 1 2 1 2 1 2 (,);(,);(,)a b x x y y a b x x y y a x x λλλ+=++-=--=. 4) 向量的模:设(,)a x y =,由两点间距离公式,可求得向量a 的模()norm . 2a x =+ 注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示;

空间向量运算的坐标公式

空间向量运算的坐标公式 如果三个向量不共面那么对空间任一向量存在一个唯一的 有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个 ______基底空间任意三个不共面向量都可以构成空间的一 个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一 点O和一个单位正交基底i、j、k 。以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐 标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、 向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系 O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是 存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量 的直角坐标运算.111222axyzbxyz设则 121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例

平面向量的正交分解及坐标表示

2.3.2平面向量的正交分解及坐标表示 考点一:平面向量的坐标表示 1.平面向量的正交分解:在不共线的两个向量中,垂直是一种特殊的形式,把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。 2.已知起点和终点求向量的坐标 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j.我们把有序数对(x, y)叫做向量a的坐标,记作a=(x,y).其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,a =(x,y)叫做向量的坐标表示. 显然:i=(1,0),j=(0,1),0=(0,0). 例1:如图,分别用基底i,j(i,j分别为x轴,y轴正方向的单位向量)表示a,b,并求它们的坐标。 变式1:⑴如图,已知A(4,2),B(1,4),试求 → AB的坐标。 ⑵已知直角坐标系x0y中,向量a,b,c的模分别为2,3,4, 方向如图所示,分别求它们的坐标。 ⑶已知O是坐标原点,点A在第一象限,∣OA∣=43, ∠x0A=60°,求向量 → OA的坐标。 ⑷在平面直角坐标系x0y中,向量a的模为3,方向如图所 示,求a的坐标。 考点二:相等向量的坐标表示 例2:向量a=(x+3,x2-3x-4)与 → AB相等,其中A(1,2),B(3,2),则x=______. 变式2:⑴已知向量a=(x2+3x,2),b(2x,y-4),且a=b,则 x=_______,y=_______. ⑵已知向量a=(5,2),b=(x2+y2,xy),且a=b,则 x=_______,y=_______. ⑶已知向量i=(1,0),j=(0,1),a=(3i+3j),则a的坐标是 ______.

空间直角坐标系及空间向量的坐标表示

选修2—1 第三章 空间向量与立体几何 §3.1.4 空间向量的坐标表示 总第(4)教案 (理科使用) ● 教学目的: 1、掌握空间直角坐标系的概念,会确定简单几何体的顶点坐标; 2、掌握空间向量坐标运算规律; 3、会根据向量的坐标,判断两个向量共线或垂直; 4、会用中点坐标公式解决有关问题● 教学重点:空间直角坐标系,向量坐标运算● 教学难点:空间向量的坐标的确定及运算 教学过程: 一、复习引入: 空间直角坐标系: (1)若空间一个基底的三个基向量互相垂直,长为1,这个基底叫单位正交基底,用{} k j i ,,表示; (2)在空间选定一点O 和一个单位正交基底{} k j i ,,,以点O 为原点,分别以k j i ,,的方向为 正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系 O xyz -,点O 叫原点,向量 i ,都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分 别称为xOy 平面, yOz 平面,zOx 平面;(这里建立的坐标系都是右手直角坐标系) 2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一 的有序实数组(,,)x y z ,使z y x ++= ,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作 (,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算:(类比平面向量的坐标运算) (1)若),,(321a a a a =,),,(321b b b b =,则 ),,(332211b a b a b a +++=+ ),,(332211b a b a b a ---=-, ))((321R a a a ∈=λλλλλ,,, 332211b a b a b a ++=?, ‖? 332211,,b a b a b a λλλ===(R ∈λ) 0332211=++?⊥b a b a b a 模长||3 22212a a a ++= (2)若111(,,)A x y z ,222(,,)B x y z , 则 ),,(122212z z y y x x AB ---=. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标 |AB|=2 12212212)()()(z z y y x x -+-+-

向量的坐标表示

§4.1 平面向量(四) ——平面向量的直角坐标及运算 一、复习旧知:(1)坐标系和点的坐标表示; (2)数和向量的意义和表示方法。 导入:哲学家卡尔.波普尔曾指出“科学与知识的增长永远始于问 题,终于问题——愈来愈深化的问题,愈来愈能启发新问题的问题”,这对数学亦不例外。 因此,在新课的引入中首先提出“在直角坐标系内,平面内的每一个点都可以用一对实数(即它的坐标)来表示”。同样,在平面直角坐标系内,每一个平面向量是否也可以用一对实数来表示?”启发学生思考 二、新授: 1、用坐标表示起点为原点的平面向量: i、j分别是与x轴、y轴方向相同的两个单位向量。则 一般地,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j,则对平面内任一向量a,都有唯一一对实数x、y,使得a=xi+yj我们把有序数对(x,y)叫做向量a的直角坐标,记作a=(x,y) 我们把( x , y ) 叫做向量的直角坐标,记作) , x (y

其中x 叫做a 在 x 轴上的坐标, y 叫做a 在y 轴上的坐标。 2、运算律: (1)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差: ),(2121y y x x b a ±±=±→ → (其中),(),,(2211y x b y x a ==→ → ) (2)一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标: 如果),(),,(2211y x B y x A ,则),(1212y y x x AB --=→ -; (3)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标: 若),(y x a =→,则),(y x a λλλ=→ ; 例题1: 用:单位向量→ i 、→j 分别表示向量→a 、→b 、→c 、→ d ,并求它们的坐标; 方法一:→ a =→-→-+21AA AA =2→i +3→j ,∴→a =(2,3)同理→ b =(-2,3),→ c =(-2,-3), → d =(2,-3) 方法二: A (2,2),B (4,5)∴→ a =(4,5)-(2,2)=(4-2,5-2)= (2,3) 同理→b =(-2,3),→c =(-2,-3),→ d =(2,-3) 方法三: →-OA =(2,2),→-OB =(4,5)∴→a =→-OB -→ -OA =(4,5)-(2,2)=(4-2,5-2)=(2,3) 同理→b =(-2,3),→c =(-2,-3),→ d =(2,-3)(2,2)=(2,3) 例题2:已知a =(1,2),b =(-5,3),求a +b ,a -b,3a -2b 分析:用向量的运算律进行计算 :拓展练习: 例题3:已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别为 (-2,1)、(-1,3)、(3,4),求顶点D 的坐标; 分析:本题检测如何用向量的终点和始点坐标求向量的坐标,并利用相等向量的坐标相同,建立等量关系求D 点的坐标; 解:设D 点坐标为(x ,y )→ -AB =(-1,3)-(-2,1)=(1,2) → -DC =(3,4)-(x ,y )=(3-x ,4-y )

相关文档
最新文档