现代控制理论概述及实际应用意义

现代控制理论概述及实际应用意义
现代控制理论概述及实际应用意义

13/2012

59

现代控制理论概述及实际应用意义

王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院

【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究

方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义

1.引言

控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。

2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。

2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。

科学技术的发展不仅需要迅速

地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。

2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。

20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/0515453267.html,ndau)在自适应控制理论和应用方面作出了贡献。

与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。

3.现代控制理论的内容及研究方法

现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。

(1)系统辨识

系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。

(2)最优控制问题

在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。

(3)自适应控制问题

在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

13/2012

英文为Model Reference Adaptive Control。自校正自适应控制英文为Self-Turning Adaptive Control。

(4)线性系统基本理论包括系统的数学模型、运动的分析、稳定性的分析、能控及能观测性及状态反馈与观测器等问题。

(5)最佳滤波或称最佳估计当系统中存在随机干扰和环境噪声时,其综合必须应用概率和统计方法进行。即:已知系统数学模型,通过输入输出数据的测量,利用统计方法对系统状态估计。

建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法[1]。

4.经典控制理论与现代控制理论的差异

现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。

经典控制理论和现代控制理论有其共同点和差异。共同点主要表现在研究对象是一致的,都是系统。其区别主要表现在经典控制理论的研究工具是传递函数(结构图),已有初始条件为零时才适用。现代控制理论状

态空间法、研究系统内部输入-状态(内部)-输出。

经典控制理论的特点研究对象是单输入、单输出线性定常系统。其解决方法主要有频率法、根轨迹法、传递函数。要用到的数学工具有拉氏变换、常微分方程。经典控制理论有其局限性主要表现在难以应用于时变系统、多变量系统。难以揭示系统更为深刻的特性。

现代控制理论是随着计算机技术、航空航天技术的迅速发展而发展起来的。其研究对象为多输入、多输出系统,线性、定常或时变、离散系统。解决方法主要是状态空间法(时域方法)。

用到的数学工具为线性代数、微分方程。内容上是线性系统理论、系统辨识、最优控制、自适应控制等。

总之,现代控制理论与古典控制理论的主要共同点是研究对象是相同的,都是研究系统的,并且在主要内容上也有相同之处。两者都是在分析研究系统的原理和性能上改变系统的可能性(即综合性能)。主要区别表现在经典控制理论的研究对象是单入单出的(SISO)系统,以及线性定常系统。用到的工具有传递函数。只有在已有处事条件为零时才适用试探法解决问题。包括PID串联等。现代控制理论的研究对象是多入多出(MIMO)系统、线性定长系统、非线性系统以及时变系统。用到的工具有状态空间法、研究系统内部输入-状态(内部)—输出。改善系统的方法

有状态反馈以及输出反馈[2]。

5.现代控制理论的应用比起经典控制理论,现代控制理论考虑问题更全面、更复杂,主要表现在考虑系统内部之间的耦合,系统外部的干扰,但符合从简单到复杂的规律。现代控制理论已经应用在工业、农业、交通运输及国防建设等各个领域。主要有倒立摆稳定控制、单级倒立摆稳定控制、二级倒立摆稳定控制、导弹稳定控制、地空导弹稳定控制、空空导弹稳定控制、航天器控制、卫星控制、月球车控制、机器人控制、空间机器人控制、足球机器人控制。总之现代控制理论在工业、农业、交通运输及国防建设等各个领域应用非常广泛[3]。

现代控制理论在战术上的应用主要是其在战术导弹上的应用。利用现代控制理论的方法寻找定制导弹的最优导引规律。如应用最优控制理论来研究自动导引的空-空或地-空导弹[4]。

现代控制理论在电机控制中也有重要的应用,1971年,德国学者Blaschke提出了交流电动机矢量控制,它的出现对电机控制技术的研究具有划时代的意义,使电机控制技术的发展步入了一个全新的阶段。1985年德国学者Depenbrock提出了直接转矩控制理论,由于他直接控制定子磁链空间矢量和电磁转矩,使控制系统得以简化,并提高了快速响应能力。

现代控制理论在电机控制中的具体应用主要有三相感应电动机的矢量控制、永磁电动机矢量控制、三相

13/2012

61

感应电动机直接转矩控制、三相永磁同步电动机直接转矩控制。

6.学习现代控制的意义现代控制理论在工业、农业、交通运输及国防建设等各个领域应用非常广泛,因此掌握现代控制理论的知识至关重要。同时,现代控制理论不仅是所学专业的理论基础,也是研究生阶段学习提高理论水平的重要知

识。因此更应该重视现代控制理论的学习为其他专业课的学习打下基础,并为相关方向的进一步研究做铺垫。

参考文献:

[1]胡松涛.自动控制原理[M].科学出版社,2006,11.[2]张惠平,戴波,杨薇.现代控制理论在过程工业中的应用和发展[J].2006,9.

[3]李祥彬,李学仁.倒立摆系统可线性化建模条件

及稳定控制的研究[J].自动化技术与应用,2007(9).[4]王晓东.导弹和运载火箭姿态稳定与控制技术发展的回顾和展望[J].导弹与航天运载技术,2003(3).

作者简介:

王凡(1980—),女,湖北汉川人,主要从事能源与动力研究。

郑卫刚(1967—),男,湖北武汉人,技师,主要研究方向:机电,发表论文50余篇。

关于建设工程安全生产管理的探讨

庄锡东 青岛阳光东辉建设集团有限公司

【摘 要】建筑施工的特点决定了建筑业是高危险、事故多发行业:施工生产的流动性、建筑产品的单件性和类型多样性、施工生产过程的

复杂性都决定了施工生产过程中不确定性,因而容易发生安全事故。笔者根据多年的工作实践,分析了建设工程安全事故的种种诱因,并提出了相应的对策措施。

【关键词】建设工程;安全生产;管理

1.建设工程安全事故频繁发生建筑业是我国国民经济的支柱产业之一,建筑产品为国民经济的发展奠定了重要的物质基础。我国建筑业从业人数由90年代初的2500万人,到2003年升至3893万人,完成建筑业产值突破21865.49亿元。改革开放以来,随着我国建筑事业的迅猛发展,大量的农民工涌入城市的建筑队伍。建设的高潮一浪高于一浪,而安全生产管理滞后,甚至流行于表面形式,导致了安全生产事故频繁发生!据统计,2000年建筑业发生事故846起,死亡987人,而2003年发生事故1278起,死亡1512人,死亡人数几乎翻了一倍。这是一组触目惊心的数据,是一个值得思考的严肃的问题。

2.建设工程安全事故频繁发生的原因分析

2.1 建筑业是高危险的行业建筑施工的特点决定了建筑业是高危险、事故多发行业:施工生产的流动性、建筑产品的单件性和类型多样性、施工生产过程的复杂性都决定了施工生产过程中不确定性,施工过程、工作环境必然呈多变状态因而容易发生安全事故。建筑产品的多样性决定了建筑安全的不断变化;建筑现场的千差万别决定了建设过程时刻会面临新安全问题的挑战。

2.2 施工现场存在的不安全因素复杂

建筑施工的高能耗、施工作业的高强度、施工现场的噪音、热量、有害气体和滚滚尘土等,以及施工工人露天作业,受天气、温度影响较大,这些都是工人面对的不利工作环境和负荷。高温和严寒使得工人的体力下降,工作面的复杂使得工人注意力不集中,因此,高处坠落、物体打击、机械伤害、坍塌事故、触电等危险源令人防不胜防。

2.3 参建主体复杂,安全管理存在诸多漏洞

2.3.1 建设单位存在的问题建设单位是一个投资主体,其更注重于投资资金能不能节约一点,建设质量能否搞得更好点,建设进度能不能更快一点。而往往忽略保证足够资金用于安全防护,文明施工。特别是房地产商,是整个项目投资建设的老大,无论是勘察设计单位、施工

现代控制理论习题解答..

《现代控制理论》第1章习题解答 1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为: x Ax Bu y Cx Du =+=+ 线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,而对线性时变系统,其系数矩阵A ,B ,C 和 D 中有时变的元素。线性定常系统在物理上代表结构和参数都不随时间变化的一类系统, 而线性时变系统的参数则随时间的变化而变化。 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下: 1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点? 答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。对于n 阶传递函数 121210 1110 ()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++, 分别有 ⑴ 能控标准型: []012 101 210100000100000101n n n x x u a a a a y b b b b x du ---????? ???????????? ???=+?? ???????? ? ?????----???? ? =+??

⑵ 能观标准型: []0011221100010 00 100010 1n n n b a b a x a x u b a b y x du ---?-?? ????? ??-????? ?????=-+???? ? ????? ??????-???? ?=+?? ⑶ 对角线标准型: []1212 001001001n n p p x x u p y c c c x du ????? ??????? ???=+?????? ????? ??????=+? 式中的12,, ,n p p p 和12,,,n c c c 可由下式给出, 12121012 1 11012 ()n n n n n n n n n b s b s b s b c c c G s d d s a s a s a s p s p s p ------++++=+=+++ +++++--- 能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。 能观标准型的特点:能控标准型的对偶形式。 对角线标准型的特点:状态矩阵是对角型矩阵。 1.4 对于同一个系统,状态变量的选择是否惟一? 答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。 1.5 单输入单输出系统的传递函数在什么情况下,其状态空间实现中的直接转移项D 不等 于零,其参数如何确定? 答: 当传递函数)(s G 的分母与分子的阶次相同时,其状态空间实现中的直接转移项D 不等于零。 转移项D 的确定:化简下述分母与分子阶次相同的传递函数 1110 111)(a s a s a s b s b s b s b s G n n n n n n n ++++++++=---- 可得: d a s a s a s c s c s c s G n n n n n ++++++++=----0 11 10 111)( 由此得到的d 就是状态空间实现中的直接转移项D 。 1.6 在例1. 2.2处理一般传递函数的状态空间实现过程中,采用了如图1.12的串联分解,试 问:若将图1.12中的两个环节前后调换,则对结果有何影响?

第二章线性系统的状态空间描述1

第二章 线性系统的状态空间描述 §2-1 系统数学描述 1、系统数学描述的两种基本类型 系统是指由一些相互制约的部分构成的整体,它可能是一个反馈闭合的整体,也可能是某一控制装置或被控对象。本章所研究的系统均假定具有若干的输入端和输出端,如图所示。 图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出,二者分别用T p u u u u ],,,[21 =和T q y y y y ],,,[21 =表示,他们均为系统的外部变量。 描述系统内部每个时刻所处状况的变量为系统的内部变量,以向量T n x x x x ] ,,,[21 =表示。 系统的数学描述是反映系统变量间因果关系和变换关系的一种数学模型。系统的数学描述有两种基本类型: (1)外部描述:即输入—输出描述。把系统看成一个“黑箱”,只是反映系统外部变量间即输入—输出间的因果关系。 (2)内部描述:即状态空间描述。 这种描述是基于系统内部结构分析的一类数学模型,通常由两个数学方程组成:一个是 反映系统内部变量T n x x x x ],,,[21 =及输入变量T p u u u u ],,,[21 =之间因果关系的数 学表达式,称为状态方程;另一个是表征系统内部变量T n x x x x ],,,[21 =及输入变量 T p u u u u ],,,[21 =和输出变量T q y y y y ],,,[21 =之间转换关系的数学表达式,具有代 数方程的形式,称为输出方程。 外部描述只描述系统的外部特征,不能反映系统的内部结构特性,而具有完全不同内部结构的俩个系统也可能具有相同的外部特征,因而外部描述通常只是对系统的一种不完全的描述。内部描述则是对系统的一种完全描述,它能完全表征系统的所有动力学特征。 仅当系统具有一定属性的条件下,两种描述才具有等价关系。 2、系统数学描述中常用的基本概念 (1)输入和输出 由外部施加到系统上的全部激励称为输入,能从外部量测到的来自相同的信息称为输出。 u 1u 2 u p 1 2 q

现代控制理论课程设计心得【模版】

宁波理工学院现代控制理论课程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (4) 2.课程设计题目描述和要求 (4) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (5) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (8) 4.1 能控性分析 (8) 4.2 能观性分析 (8) 4.3 稳定性分析 (9) 5. 总结 (11)

项目组成员具体分工

打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验 证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮

华南农业大学现代控制理论期末考试试卷

华南农业大学期末考试试卷(A卷)2007 学年第1 学期考试科目:自动控制原理II 考试类型:闭卷考试时间:120 分钟 学号年级专业 题号 1 2 3 4 5 6 7 8 9 10 总分得分 评阅人 1、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R 2 上的电压为输出量的输出方程。并画出相应的模拟结构图。(10分) 解:(1)由电路原理得: 1 1 2 2 12 1 111 2 22 11 1 11 L L c L L c c L L di R i u u dt L L L di R i u dt L L du i i dt c c =--+ =-+ =- 22 2 R L u R i = 11 22 1 11 1 2 22 1 01 1 00 11 L L L L c c R i i L L L R i i u L L u u c c ?? --?? ???? ?? ?? ???? ?? ?? ???? ?? =-+?? ???? ?? ?? ???? ?? ?? ???? ?? ?? - ???? ?????? ?? ?? g g g

[]1222 00L R L c i u R i u ??????=?????????? 2、建立下列输入-输出高阶微分方程的状态空间表达式。(8分) 322y y y y u u u +++=++&&&&&&&&& 解:方法一: 12301233,2,10,1,2,1 a a a b b b b ======= ()001110221120331221300 1301 231201 13121102 b b a b a a b a a a ββββββββββ===-=-?==--=-?-?=-=---=-?--?-?= ()010100111232100x x u y x ?????? ? ?=+-? ? ?? ? ?---????? ?=?& 方法二:

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

现代控制理论基础试卷及答案

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: ) 一.填空题(共27分,每空分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T为周期进 行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为__________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义能量, V(x, t)称为___________。8." 9.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函数的所有 极点具有______。 10.控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的 _________、_________和较强的_________。 11.所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 12.实际的物理系统中,控制向量总是受到限制的,只能在r维控制空间中某一个控制域内取值,这个控制域称为_______。 13._________和_________是两个相并行的求解最优控制问题的重要方法。二.判断题(共20分,每空2分) 1.一个系统,状态变量的数目和选取都是惟一的。(×) 2.传递函数矩阵的描述与状态变量选择无关。(√) 3.状态方程是矩阵代数方程,输出方程是矩阵微分方程。(×) 4.对于任意的初始状态) ( t x和输入向量)(t u,系统状态方程的解存在并且惟一。(√) 5.( 6.传递函数矩阵也能描述系统方程中能控不能观测部分的特性。(×) 7.BIBO 稳定的系统是平衡状态渐近稳定。(×)

现代控制理论论文

湖北民族学院 姓名 XX 班级 XX 学号 XXXXXXXX

摘要 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 关键词:最优控制;控制规律;最优性能指标;线性二次型

Abstract The optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control. A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value. Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic

(完整版)现代控制理论考试卷及答案

西北工业大学考试试题(卷)2008 -2009 学年第2 学期

2009年《现代控制理论》试卷A 评分标准及答案 第一题(10分,每个小题答对1分,答错0分) (1)对 (2)错 (3)对 (4)错 (5)对 (6)对 (7)对 (8)对 (9)对 (10)错 第二题(15分) (1))(t Φ(7分):公式正确3分,计算过程及结果正确4分 ? ? ? ???+-+---=-=Φ?? ?? ??????+- +-+- +-+- ++-+=??????-+++=-??? ???+-=------------t t t t t t t t e e e e e e e e A sI L t s s s s s s s s s s s s A sI s s A sI 22221 11 2222}){()(22112 21221112112 213)2)(1(1 )(321 (2) 状态方程有两种解法(8分):公式正确4分,计算过程及结果正确4分 ??????-+-+-=????? ???????+-+++-+++-++??????+--=??????????? ???????++-++++-=-+-=??????---+-=????? ?+--+??? ???+--=??????-Φ+Φ=------------------------------??t t t t t t t t t t t t t t t t t t t t t e e te e e te s s s s s s L e e e e t x t x s s s s s L x A sI L t x s BU A sI x A sI s X e e t e e t d e e e e e e e e e t x t x d t Bu x t t x 222 21 22212 21111122)(02222210 2344}2414)1(42212)1(4 {2)()(} )2()1(4) 2()1()3(2{)}0(){()() ()()0()()(2)34()14(22222)()()()()0()()(或者 ττ τττττττ 第三题(15分,答案不唯一,这里仅给出可控标准型的结果) (1) 系统动态方程(3分) []x y u x x 0010 1003201 00010=???? ??????+??????????--=&

控制科学发展前沿课程论文报告

研究生课程论文封面 课程名称控制科学发展前沿讲座教师姓名 研究生姓名 研究生学号 研究生专业 所在院系自动化学院 类别: 硕士 日期:

对智能控制技术的认识 1 引言 随着计算机、材料、能源等现代科学技术的迅速发展和生产系统规模不断扩大,形成了复杂的控制系统,导致了控制对象、控制器、控制任务等更加复杂。与此同时,对自动化程度的要求也更加广泛,面对来自柔性控制系统(FMS)、智能机器人系统(IRS)、数控系统(CNS)、计算机集成制造系统(CIMS)等复杂系统的挑战,经典的与现代的控制理论和技术已不适应复杂系统的控制。智能控制是在控制论、信息论、人工智能、仿生学、神经生理学及计算机科学发展的基础上逐渐形成的一类高级信息与控制技术。智能控制是自动控制发展的高级阶段。 2 背景和意义 现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制任务和目的的日益复杂化。别一方面,人类对自动化的要求也更加广泛,面对来自旬电力系统、工业生产过程控制系统、智能机器人系统、计算机集成制造系统(CIMS)、核电站安全运行控制、航空航天及军事指挥系统等复杂性系统的挑战,传统的自动控制理论和方法显得已不适应于复杂系统的控制。能否建立新一代的控制理论方法来解决复杂系统的控制问题,已成为各国控制学术界所共同关心的热门研究课题。 近年来人们开始认识到,在许多系统中,复杂性不仅仅表现在高维性上,更多则表现在:(1)被控对象模型的不确定必;(2)系统信息的模糊性,信息模式;(3)高度非线性;(4)输入(传感器)信息的多样化;(5)多层次、多目标的控制要求;(6)计算复杂性和庞大的数据处理以及严格性能指标。自然,对于复杂系统需要在传统的控制理论基础上结合其它学科的知识,建立一种更有力的控制理论和方法,以解决上述提到的问题。智能控制就是在这种背景下提出和形成的。 人类对智能机器及其控制的幻想与追求已有三千多年的历史,然而,真正的智能机器只有在计算机技术和人工智能技术发展的基础上才能成为可能。人工智

现代控制理论课程设计

现代控制理论 学院:电气工程学院 班级:09级自动化3班姓名:赵明 学号: 任课教师:刁晨 单倒置摆控制系统的状态空间设计

一.设计题目 1.介绍 单倒置摆系统的原理图,如图1所示。设摆的长度为L、质量为m,用铰链安装在质量为M的小车上。小车有一台直流电动机拖动,在水平方向对小车施加控制力u,相对参考系产生位移z。若不给小车施加控制力,则倒置摆会向左或向右倾倒,因此,它是一个不稳定系统。控制的目的是,当倒置摆无论出现向左或向右倾倒时,通过控制直流电动机,使小车在水平方向运动,将倒置摆保持在垂直位置上。 2.用途 倒立摆系统以其自身的不稳定性为系统的平衡提出了难题,也因此成为自动控制实验中验证控制算法优劣的极好的实验装置。单倒立摆的系统结构、数学模型以及系统的稳定性和可控性,对倒立摆进行了成功的控制,并在MATLAB 中获得了良好的仿真效果。倒立摆控制理论将在半导体及精密仪器加工、机器人技术、伺服控制领域、导弹拦截控制系统、航空器对接技术等方面具有广阔的开发利用前景。 3.意义 倒立摆是一种典型的快速、多变量、非线性、绝对不稳定系统. 人们试图寻找同的控制方法以实现对倒立摆的控制,以便检验或说明该方法对严重非线性和绝对不稳定系统的控制能力。同时,由于摩擦力的存在,该系统具有一定的不确定性。对这样一个复杂系统的研究在理论上将涉及系统控制中的许多关键问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等都可以以它为例进行研究。 二.被控对象的模型 为简化问题,工程上往往忽略一些次要因素。这里,忽略摆杆质量、执行电动机惯性以及摆轴、轮轴、轮与接触面之间的摩擦及风力。设小车瞬时位置为z,倒置摆出现的偏角为θ,则摆心瞬时位置为(z+lsinθ)。在控制力u的作用下,小车及摆均产生加速运动,根据

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 1 1K s K K p +s K s K p 1 +s J 11s K n 2 2s J K b - + + - +- ) (s θ)(s U 图1-27系统方块结构图 解:系统的模拟结构图如下: ) (s U ) (s θ-- - + ++图1-30双输入--双输出系统模拟结构图 1 K p K K 1p K K 1++ +p K n K ? ? ?1 1J ? 2 J K b ? ?- 1 x 2 x 3 x 4 x 5x 6x 系统的状态方程如下:

u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 1611166 13153 46 1 51 41 31 33 222 11+ - - =+-==+ + - - == =? ? ? ? ? ? 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????????? ???????????=??????? ? ?????????? ????+?? ???????? ?????????????????????? ? ??? ? ???????? ?---- -=??????????????????????????????6543211654321111111126543 2100 0001 000000 00 0000 0001 00100000 000 000 10 x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 R1 L1 R2 L2 C U ---------Uc --------- i1 i2图1-28 电路图

化工自动化备课笔记

[教学目的要求]: 1、了解何为(过程)自动化和自动化技术、自动化仪表的简要发展过程 2、掌握如何来构筑一个控制系统 [教学重点]:自动化技术、自动化仪表的简要发展过程[教学难点]:如何来构筑一个控制系统 [教学时数]:1 [教学内容]: 第一章绪论 1.1 何为(过程)自动化: 从工艺的眼光来看 在工艺设备上,配备一些自动化装置,用它们来代替操作人员的(部分)直接劳动,使生产在不同程度上按照规定的要求自动地进行,也即:用自动化装置来管理设备(生产过程),使之正常运行 换一种说法 所谓自动化是使工艺参数保持在需要的值或者状态上,

或者使生产过程按照一定的程序或者步骤运行,保证生产过程运行在最佳状态 所谓“自动控制”是指应用自动化仪器仪表或自动控制装置代替人自动地对仪器设备或工业生产过程进行控制,使之有目的地修正被控对象的动力学行为,以达到预期的状态或满足预期的性能要求。 为什么要实现自动控制? 原因一:代替人的劳动,减轻劳动强度,提高生产效率原因二:炼油、化工、冶金、电力、生物、制药等工业过程的生产规模越来越向大型化、复杂化方向发展,各种类型的自动控制技术已经成了现代工业生产实现安全、高效、优质、低耗的基本条件和重要保证 1.2 如何来构筑一个控制系统?

1.3自动化技术的简要发展过程 1、控制理论的简要发展过程 自动控制的本质:是指应用自动化仪器仪表、自动控制装置代替人,自动地对仪器设备或工业生产过程进行控制,使之有目的地修正被控对象的动力学行为,以达到预期的状态或满足预期的性能要求 进 料出 料 H 玻璃管液位计 i q h 0q 测量 仪表 设定值 控制器

现代控制理论课后习题答案

绪论 为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。 根据老师要求,本次任务分组化,责任到个人。我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。2.题解详略得当,老师要求的步骤必须写上。3.遇到一题多解,要尽量写出多种方法。 本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!

这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。 本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正! 2014年6月2日 第一章 控制系统的状态空间表达式 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y =

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

现代控制理论期末试卷

一、(10分,每小题1分) 1、任一线性连续定常系统的系统矩阵均可对角形化。(×) 2、对SISO 线性连续定常系统,传递函数存在零极点对消,则系统一定不能观且不能控制。(×) 3、对线性连续定常系统,非奇异变换后的系统特征值不变。(√) 4、对于线性连续定常系统的最小实现是唯一的。(×) 5、稳定性问题是相对于某个平衡状态而言的。(√) 6、Lyapunov 第二法只给出了判定稳定性的充分条件。(√) 7、对于SISO 线性连续定常系统,状态反馈后形成的闭环系统零点与原系统一样。(√) 8、对于一个系统,只能选取一组状态变量。(×) 9、对于一个n 维的线性定常连续系统,若其完全能观,则利用状态观测器实现的状态反馈闭环系统是2n 维的。(√) 10、对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵特征值都具有负实部是一致的。(√) 二(10分,每小题5分) (1)简述平衡状态及平衡点的定义。 (2)简述状态方程解的意义。 解:(1)状态空间中状态变量的导数向量为零向量的点。由平衡状态在状态空间中所确定的点称之为平衡点。 (2)线性连续定常系统状态方程的解由两部分组成,一部分是由初始状态所引起的自由运动即零输入响应,第二部分是由输入所引起的系统强迫运动,与输入有关称为零状态响应。 三、(10分)考虑如图的质量弹簧系统。其中,m 为运动物体的质量,k 为弹簧的弹性系数,h 为阻尼器的阻尼系数,f 为系统所受外力。取物体位移为状态变量x 1,速度为状态变量x 2,并取位移为系统输出y ,外力为系统输入u ,试建立系统的状态空间表达式。 解: f ma =……………………………….……1分 令位移变量为x 1,速度变量为x 2,外力为输入u ,有 122u kx kx mx --=………………………………2分 于是有 12x x =………………………………..……………1分 2121k h x x x u m m m =--+……….….……………….2分 再令位移为系统的输出y ,有

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

自动控制理论第四版夏德钤翁贻方第一章笔记

第一章引论 自动控制,就是采用控制装置使被控对象自动地按照给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照给定的规律变化 一、开环控制和闭环控制 自动控制系统有两种最基本的形式:开环控制和闭环控制。 1.开环控制 (1)开环控制的框图 (2)开环控制的特点 在控制器与被控对象之间只有正向控制作用而没有反向控制作用,即系统的输出量对控制量没有影响。 2.闭环控制 (1)闭环控制的框图 (2)闭环控制的特点

在控制器与被控对象之间,不仅存在着正向作用,而且存在着反馈作用,即系统的输出量对控制量有直接影响。 二、自动控制系统的类型 根据不同的分类方法,自动控理系统的类型有如下分类: 1.随动系统与自动调整系统 (1)随动系统:输入量总在频繁地或缓慢的变化,要求系统的输出量能够以一定的准确度跟随输入量而变化。 (2)自动调整系统:输入保持为常量,或整定后相对保持常量,而系统的任务式尽量排除扰动的影响,以一定的准确度将输出量保持在希望的数值上。 2.线性系统和非线性系统 (1)线性系统:组成系统的元器件的特性均为线性(或基本为线性),能用线性常微分方程描述其输入与输出关系的系统。 (2)非线性系统:组成系统的元器件中,只要有一个元器件的特性不能用线性方程描述,该系统即为非线性系统。 3.连续系统与离散系统 (1)连续系统:各部分的输入和输出信号都是连续函数的模拟量。(2)离散系统:某一处或数处的信号以脉冲或数码的形式传递的系统。 4.单输入单输出系统与多输入多输出系统 (1)单输入单输出系统:其输入量和输出量各为一个,系统结构

较为简单。 (2)多输入多输出系统:其输入量和输出量多于一个,系统结构较为复杂,回路多。 5.确定系统与不确定系统 (1)确定系统:系统的结构和参数是确定的、已知的,系统的输入信号(包括参考输入及扰动)也是确定的,可用解析式或图表确切表示。 (2)不确定系统:当系统本身或作用于该系统的输入信号不确定时,该系统称为不确定系统。 6.集中参数系统和分布参数系统 (1)集中参数系统:能用常微分方程描述的系统称为集中参数系统。 (2)分布参数系统:不能用常微分方程,而需用偏微分方程描述的系统称为分布参数系统。 三、自动控制理论概要 1.自动控制理论概要 (1)稳定性:自动控制理论应给出判断系统稳定性的方法,并应指出稳定性与系统的结构(或称控制规律)及参量间的关系。 (2)稳态响应:自动控制理论应给出计算系统稳态响应的方法,并且指出系统控制规律及参量与稳态响应间的关系。 (3)暂态响应:自动控制理论研究系统的控制规律及参量与暂态

现代控制理论综合设计报告—你懂得

《现代控制理论综合设计报告》 问题重述: 图示为单倒立摆系统的原理图,其中摆的长度l=1m,质量m=0.1kg,通过铰链安装小车上,小车质量M=1kg,重力加速度g=9.8m/s2。控制的目的是当小车在水平方向上运动时,将倒立摆保持在垂直位置上。 分别列写小车水平方向的力平衡方程和摆的转矩平衡方程,通过近似线性化处理建立系统的状态空间表达式; 绘制带状态观测器状态反馈系统的模拟仿真图,要求系统期望的特征值为:-1,-2,-1+j,-1-j;状态观测器的特征值为:-2,-3,-2+j,-2-j; 根据模拟仿真图,分别绘制系统综合前后的零输入响应曲线 本文的仿真实验亮点如下: ●对单倒立摆进行传统的传递函数、状态空间建模,全面分析了单倒立摆的物理性质。 ●在物理模型建立时,强调了角速度θ不能近似为0。 ●建立状态空间表达时,选择位移x和角度θ作为输出,是一个多输出系统。但增加了状 态观测器设计的复杂度。 ●在摆运动过程中,初始扰动角θ可达60度左右;而且调节过程中,倒立摆θ在(-90,90) 范围内变化,符合实际情况。 ●在仿真波形图中,展示了状态观测器的跟踪过程,体现了其在反馈控制中起到的作用。 ●在初始扰动60度下,分别在原始系统、状态反馈系统、带状态观测器反馈系统,进行 了零输入响应、阶跃输入响应的仿真实验。 ●解释了带状态观测器反馈时,阶跃输入,但系统前1秒处于稳态的现象的原因。

1单级倒立摆数学模型的建立 倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。本设计是以一阶倒立摆为被控对象来进行设计的。 传递函数法:对SISO 系统进行分析设计,在这个系统中θ作为输出,因为它比较直观,作用力u 作为输入。 状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制,并给小车加一个阶跃输入信号。 本文利用Matlab ,对系统的传递函数和状态空间进行分析,并用指令计算状态空间的各种矩阵,仿真系统的开环阶跃响应。Matlab 将会给出系统状态空间方程的A,B,C 和D 矩阵,并绘出在给定输入为阶跃信号时系统的响应曲线。 在忽略了空气阻力、各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。 假设系统内部各相关参数为: φ和θ都表示摆杆与垂直向上方向的夹角 l L 、都表示 摆杆长度 1m M 小车质量 1kg m 摆杆质量 0.1kg x 小车位置 单倒立摆系统力的平衡方程分析 小车、摆杆力的分析图如下所示: 小车的平衡方程:u H Mx -= 摆杆的X 轴方向力的平衡方程:2 2(sin )d H m x l dt θ=+ 摆杆Y 轴方向,力的平衡方程:2 2(lcos )d V mg m dt θ-= 摆杆的转矩平衡方程:sin cos VL HL I θθθ-= 选择摆杆的质心在端点处,则惯性惯量2 12ml I = 方程的线性化处理 当θ很小时,可对方程进行线性化。由于控制的目的当小车在水平方向上运动时,将倒立摆保持在垂直位置上。在施加合适的外力下,θ比较小,接近于0,sin ,cos 1θθθ→→,对以 上方程进行线性化。但要注意的是,θ不能约等于0,因为摆杆的角速度在实际情况中是比较快的。但对以上方程先求导会产生θ及其平方项,但这些项都和sin θ相乘,于是这些项还是约等于0。另外,如果先线性化,再求导,则不会产生以上需要考虑的问题。线性化后方程如下:

相关文档
最新文档