发酵工程重点

发酵工程重点
发酵工程重点

发酵工程重点

————————————————————————————————作者:————————————————————————————————日期:

啤酒

啤酒概念:啤酒是以优质大麦芽为主要原料,啤酒花为香料,经过制麦芽、糖化、发酵等工序制成的富含营养物质和二氧化碳的酿造酒。

啤酒的分类

1、据工艺分类

可分两大类:

以德国、捷克、丹麦、荷兰为典型的下面发酵法啤酒;

以及以澳大利亚、新西兰、加拿大等的上面发酵法啤酒。

2、根据是否巴氏灭菌

分为:生啤酒/熟啤酒

3、根据麦芽度

可分为:8o啤酒/10o啤酒/12o啤酒/14o啤酒/18o啤酒

4、根据色泽

可分为:黑啤酒/黄啤酒/淡色啤酒

啤酒作用:含二氧化碳,饮用时有清凉舒适感,促进食欲。

啤酒花含有蛋白质、维生素、挥发油、苦味素、树脂等,具有强心、健胃、利尿,镇痛等医疗效能,对高血压病、心脏病及结核病等均有较好的辅助疗效。产妇喝啤酒,以增加母体乳汁,使婴儿得到更充分的营养。

适量饮用啤酒对心脏和高血压患者亦有一定疗效。

啤酒是夏秋季防暑降温解渴止汗的清凉饮料,据医学和饮料专家们研究,啤酒含有4%的酒精,能促进血液循环。过度饮用冰冻啤酒伤脾胃,加重体内湿气,影响健康。

啤酒酿造对大麦质量的要求

1.感官

(1)色泽:良好大麦有光泽,淡黄;受潮大麦发暗,胚部呈深褐色;受霉菌侵蚀的大麦则呈灰色或微兰色

(2)气味:良好大麦具有新鲜稻草香味

(3)谷皮:优良大麦皮薄,有细密纹道

(4)麦粒形态:以短胖者为佳

(5)夹杂物:杂谷粒和沙土等应在2%以下

2.物理检验

(1)千粒重:以无水物计千粒重应为30~40g

(2)麦粒均匀度:按国际通用标准,麦粒腹径可分为2.8、2.5、2.2mm三级

(3)胚乳性质:胚乳断面可分为粉状、玻璃质和半玻璃质三种状态

3.化学检验

(1)水分:原料大麦水分不能高于13%,否则不能贮存,易发生霉变,呼吸损失大(2)蛋白质:蛋白质含量一般要求为9~12%,蛋白质含量高,制麦不易管理,易生成玻璃质,溶解差,浸出物相应的低,成品啤酒易浑浊

(3)浸出物:间接衡量淀粉含量的方法,一般为72~80%

4.酿造大麦的质量标准:1986年正式制定和通过了啤酒大麦国家标准,编号为QB—1416—87

酒花的主要化学成分

酒花的化学组成中对啤酒酿造有特殊意义的三大成分为,酒花精油,苦味物质和多酚。1.酒花的苦味物质:是提供啤酒愉快苦味的物质,在酒花中主要指α-酸,β-酸及其一系列氧化、聚合产物,过去把它们统称为“软树脂”

2.酒花精油:是酒花另一重要成分,经蒸馏后成黄绿色油状物,是啤酒重要的香气来源,特别是它容易挥发,是啤酒开瓶闻香的主要成分。

3.多酚物质:约占酒花总量的4-8%。它们在啤酒酿造中的作用

⑴在麦汁煮沸时和蛋白质形成热凝固物,

⑵在麦汁冷却时形成冷凝固物,

⑶在后酵和贮酒直至灌瓶以后,缓慢和蛋白质结合,形成气雾浊及永久浑浊物,

⑷在麦汁和啤酒中形成色泽物质和涩味。

4.酒花的一般化学成分:包括有水分、总树脂、挥发油、多酚物质、糖类、果胶、氨基酸等。

啤酒酿造用水

加工用水中投料水、洗槽水、啤酒稀释用水直接参与啤酒酿造,是啤酒的重要原料之一,在习惯上称酿造水。

制麦

制麦的目的是使大麦产生各种水解酶类,并使麦粒胚乳细胞的细胞壁受纤维素酶和蛋白水解酶作用后变成网状结构,便于在糖化时酶进入胚乳细胞内,进一步将淀粉和蛋白质水解。通过制麦,使大麦胚乳细胞壁受损适度,淀粉和蛋白质等达到溶解状态,在糖化阶段被溶出。同时要将绿麦芽进行干燥处理,除去过多的水分和生腥味,而且要使麦芽具有酿造啤酒特有的色、香、味。

如何制麦

原料大麦→粗选→精选→分级→洗麦→浸渍→发芽→绿麦芽→干燥→除根→贮藏→成品麦芽

*干燥:60℃干燥,大麦酶系仍保持活性

发芽条件

水分、氧气和温度是麦粒发芽的必要条件。大麦经水浸渍后,含水达40%~48%,在制麦过程中需要通入饱和湿空气,环境的相对湿度要维持在85%以上。

麦粒发芽因呼吸作用而耗氧,同时产生大量的CO2,因此在制麦芽时要进行通风。

通风既能供给氧气,又能带走麦粒呼吸产生的CO2,有利于麦粒发芽。但通风既不能过大也不能过少,通风过大麦芽呼吸作用太旺盛,营养物质消耗过多;通风过少容易发生霉烂现象。

发芽的温度一般为13~18℃。温度过低,发芽周期延长;温度太高,麦芽生长速度快,营养物质耗费多。

上面啤酒酵母和下面啤酒酵母

上面啤酒酵母(Saccharomyces cerevisiae)在发酵时,酵母细胞随CO2浮在发酵液面上,发酵终了形成酵母泡盖,即使长时间放置,酵母也很少下沉。

下面啤酒酵母(Saccharomyces carlsbergensis)在发酵时,酵母悬浮在发酵液内,在发酵终了时酵母细胞很快凝聚成块并沉积在发酵罐底。

糖化方法:是指麦芽和非发芽谷物原料不溶性固形物转化成可溶性的,并有一定组成比例的浸出物。

煮出糖化法是指麦芽醪利用酶的生化作用和热力的物理作用,使其有效成分分解和溶解,通过部分麦芽醪的热煮沸、并醪,使醪逐步升温至糖化终了。部分麦芽醪被煮沸次数即几次煮出法。浸出糖化法是指麦芽醪纯粹利用其酶的生化

作用,用不断加热或冷却调节醪的温度,使

之糖化完成。麦芽醪未经煮沸。

复式糖化法

酸休止—蛋白质休止—糖化分解—糖化终了—100度煮出等

啤酒酵母扩大培养

扩大培养是将实验室保存的纯种酵母,逐步增殖,使酵母数量由少到多,直至达到一定数量后,供生产需要的酵母培养过程。

啤酒发酵工艺技术

1.酵母菌株的选择:啤酒菌株特性深刻影响到糖类的发酵,氨基酸的同化,酒精和副产物的形成,啤酒的风味,啤酒的稳定性等方面

2.麦汁组成:有些会直接影响啤酒风味,有些将影响发酵

3.接种量:提高它可以加快发酵

发酵的几个阶段

酵母繁殖期、起泡期、高泡期、落泡期、泡盖形成期

后发酵作用

1.糖类继续发酵:在后发酵中发酵糖类主要是残余麦芽糖和主发酵中大多未发酵的麦芽三糖。只需控制麦汁极限发酵度和下酒嫩啤酒真正发酵度之差,就能保留足够的糖类在后发酵中发酵

2.增加CO2的溶解:CO2是啤酒的重要组成部分,它能赋予啤酒起泡性和杀口性,增加啤酒的防腐性和抗氧化,CO2在啤酒中溢出能拖带啤酒芳香味散发

3.促进啤酒的成熟:啤酒风味成熟是复杂过程,包括还原、氧化、酯化、聚合等过程

4.促进啤酒的澄清:过去啤酒的过滤只有简单的粗滤,最终包装后啤酒的透明度、非生物稳定性主要取决于过滤前啤酒的澄清度。现在,啤酒工业有各种高技术澄清方法,相对来说,在后发酵和贮藏过程“自然澄清”意义要小得多

不同发酵阶段的目的和温度

糖化:将粉碎的麦芽和淀粉质辅料用温水分别在糊化锅、糖化锅中混合,调节温度。糖化锅先维持在适于蛋白质分解作用的温度(45~52℃)(蛋白休止)。将糊化锅中液化完全的醪液兑入糖化锅后,维持在适于糖化(β-淀粉和α-淀粉)作用的温度(62~70℃)(糖化休止),以制造麦醪。麦醪温度的上升方法有浸出法和煮出法两种。蛋白、糖化休止时间及温度上升方法,根据啤酒的性质、使用的原料、设备等决定用过滤槽或过滤机滤出麦汁后,在煮沸锅中煮沸,添加酒花,调整成适当的麦汁浓度后,进入回旋沉淀槽中分离出热凝固物,澄清的麦汁进入冷却器中冷却到5~8℃。

发酵:冷却后的麦汁添加酵母送入发酵池或圆柱锥底发酵罐中进行发酵,用蛇管或夹套冷却并控制温度。进行下面发酵时,最高温度控制在8~13℃,发酵过程分为起泡期、高泡期、低泡期,一般发酵5~10日。发酵成的啤酒称为嫩啤酒,苦味犟,口味粗糙,CO2含量低,不宜饮用。

后酵:为了使嫩啤酒后熟,将其送入贮酒罐中或继续在圆柱锥底发酵罐中冷却至0℃左右,调节罐内压力,使CO2溶入啤酒中。贮酒期需1~2月,在此期间残存的酵母、冷凝固物等逐渐沉淀,啤酒逐渐澄清,CO2在酒内饱和,口味醇和,适于饮用。

过滤:为了使啤酒澄清透明成为商品,啤酒在-1℃下进行澄清过滤。对过滤的要求为:过滤能力大、质量好,酒和CO2的损失少,不影响酒的风味。过滤方式有硅藻土过滤、纸板过滤、微孔薄膜过滤等。

啤酒发酵新技术

连续化啤酒发酵:塔式连续发酵和多罐式连续发酵

固定化酵母啤酒发酵:吸附法和包埋法。

高浓稀释

(1) 麦汁稀释糖化麦汁采用高浓度, 在回旋沉淀槽稀释。此法减少了糖化用水量, 所以可以提高糖化设备的利用率。

(2) 贮酒稀释糖化和主发酵均采用高浓度, 后发酵(双乙酰还原) 时稀释。此法发酵设备利用率也将提高, 对稀释水脱氧要求较低。

(3) 过滤稀释啤酒发酵、贮酒结束, 成熟啤酒在后处理或过滤前稀释。此法贮酒设备的利用率也会提高, 对稀释用水的要求较高。

固定化细胞发酵

(1)吸附法

利用各种吸附剂,将细胞吸附在其表面而使细胞固定的方法称为吸附法

酵母细胞带有负电荷,在pH3~5的条件下能够吸附在多空陶瓷、多空塑料等载体的表面,制成固定化细胞,用于酒精和啤酒等的发酵生产

(2)包埋法

将细胞包埋在多空载体内部而制成固定化细胞的方法称为包埋法。包埋法可分为凝胶包埋法和半透膜包埋法。

凝胶包埋法是应用最广泛的细胞固定方法。

啤酒的等压过滤—减少CO2损失

将锥形罐排CO2管道出口与清酒罐排气管道出口用管道连通,并加压缩空气或CO2使锥罐和清酒罐压达到比锥罐过滤前罐压高0.5~1kg的压力,然后再开始过滤。

锥罐——过滤机——清酒罐形成闭路循环。

随滤酒量的增加,锥罐液位下降,液面空间增大,罐压减小;而清酒罐则由于清酒液增多,液面空间减小,罐压加大。由于锥罐与清酒罐液面空间用管道相连通,故清酒罐的压力大于锥罐压力时,清酒罐液面气体自然向锥罐液面补充,从而保持了锥罐与清酒罐压力的稳定和平衡,从而达到减少CO2损失的目的。

热凝固物的分离

热凝固物:

回旋沉淀槽分离热凝固物:回旋沉淀槽可以装置在糖化室的煮沸锅旁,尽可能缩短输送管长度,输送泵也应采用低速涡轮泵

冷凝固物分离:

(1)酵母繁殖槽法:由浮球出液法泵出上层澄清麦汁,或用位差法,在底部小心排出澄清麦汁

(2)冷静置沉降法:是利用冷凝固物颗粒自然沉降

(3)硅藻土过滤法:麦汁过滤常采用硅藻土过滤机

(4)麦汁离心分离法:采用盘式离心分离机

(5)浮选法:关键在于混合的空气形成泡沫的细密度

葡萄酒(四十分)

一、葡萄酒的基本概念,分类,作用等

1、概念:

葡萄酒只能是经破碎或未破碎的新鲜葡萄浆果或葡萄汁经完全或部分酒精发酵后获得的饮料, 其酒度不能低于8.5%(V/V)。但是,根据气候、土壤条件、葡萄品种和一些葡萄产区特殊的质量因素或传统,在一些特定的地区,葡萄酒的最低总酒度可降低到7.0%(V/V)。

2、分类:

(1)、按酒的颜色分类:红葡萄酒、白葡萄酒、桃红葡萄酒。

(2)、按含糖的多少分类:干葡萄酒、半干葡萄酒、半甜葡萄酒、甜葡萄酒。

(2)、按酿造方法分类:天然葡萄酒、加强葡萄酒、加香葡萄酒。

(4)、按含不含二氧化碳分类:平静葡萄酒、起泡葡萄酒、葡萄汽酒

3、作用:优质的红葡萄酒对我们的心血管是非常有益

(1) 多酚及类黄酮的抗氧化功能,能够阻止低脂胆固醇进一步转化为有害物。

(2) 多酚能够减轻血管收窄程度,使血管壁放松血液流通顺畅。

(3) 多酚配合酒精防止血凝出现。

二、葡萄酒的原料:葡萄、酵母、二氧化硫(六个作用)、二氧化硫的添加方式?

1、二氧化硫的六个作用:

杀菌作用:酿酒用的葡萄汁在发酵前不进行灭菌处理,有的发酵是开放式的,因此,为了消除细菌和野生酵母对发酵的干扰,在发酵时添加一定量的SO2;

抗氧化作用:抑制酵母有氧呼吸,防止葡萄汁和葡萄酒颜色加深;

溶解作用:SO2在水中生成亚硫酸,能将葡萄皮中不溶于葡萄汁和发酵液的色素溶解出来;澄清作用:SO2很快使不溶性的物质沉淀下来;

增酸作用:抑制分解酒石酸和苹果酸的细菌,将酒石酸和苹果酸从各自的盐类中游离出来;

除醛作用:与醛结合,除去影响酒液口味的物质.

二氧化硫的添加方式:

(1)往葡萄汁中直接通入二氧化硫气体,一般一升三十克

(2)添加含有6% SO2的亚硫酸溶液

(3)添加固体焦亚硫酸钠

三、红葡萄酒和白葡萄酒的生产工艺,红葡萄酒,白葡萄酒、红白葡萄酒的差别。

1、红葡萄酒:用皮红肉白或皮肉皆红的葡萄,经葡萄皮和汁混合发酵而成。

流程图:红葡萄分选→除梗破碎→葡萄浆(加SO2)→成分调整→浸渍发酵(加酒母)→压榨→后发酵→倒桶→苹果酸-乳酸发酵→换桶、下胶、过滤、调配、包装→红葡萄酒

2、白葡萄酒选用白葡萄或红皮葡萄为原料,经果汁分离、澄清、控温发酵而成。

流程图:葡萄分选→破碎→压榨→分离取汁(加SO2)→澄清→清汁→浸渍发酵(加酒母)→倒桶→贮酒→过滤→冷处理→调配→过滤→红葡萄酒

3、红葡萄酒与白葡萄酒生产工艺的主要区别在于,白葡萄酒是用澄清葡萄汁发酵的,而红葡萄酒则是用皮渣(包括果皮、种子和果梗)与葡萄汁混合发酵的。葡萄酒的颜色越深,其由色素和丹宁构成的酚类物质的含量也越高,所以红葡萄酒与白葡萄酒的主要差异在于它们之间的酚类物质的含量和种类的差异。

四、葡萄汁制备:葡萄汁调酸,调糖,如何调?调多少?

调糖:如果葡萄浆的实际含糖量在200g/L以下,为了发酵生成12°的红原酒,在红葡萄浸渍发酵过程中,要补加白砂糖。大致1%的酒精需要加入20g糖。

发酵工程要点总结

第一章绪论 发酵:通过微生物、动物细胞和植物细胞的培养,大量生成和积累特定的代谢产物或菌体的过程。 发酵工程:是发酵原理和工程学的结合,是研究由生物细胞(包括微生物、动植物细胞)参与的工艺过程的原理的科学,是研究利用生物材料生产有用物质,服务于人类的一门综合性科学技术。这里所指的生物材料包括来自自然界微生物、基因重组微生物等以及各种来源的动物细胞和植物细胞。 发酵工程组成从广义上讲,由三部分组成:上游工程、发酵工程、下游工程 第二章发酵设备 固体发酵 液体发酵(厌氧发酵,好氧发酵) 厌氧发酵:酒精发酵罐 好氧发酵:通风搅拌发酵罐 通风搅拌发酵罐设备主要部件包括: 1罐身 酒精发酵罐2电机 3搅拌器 4轴封 5消泡器 6联轴器 7中间轴承 8空气吹泡管(或空气喷射器) 9挡板 10冷却装置 1.罐体:罐体由圆柱体或碟形封头焊接而成,材料为碳钢或不锈钢,大型发酵罐可用衬不锈钢或复合不锈钢制成,为了满足工艺要求,罐需要承受一定压力,罐壁厚度决定于罐径及罐压的大小。罐体上的管路越少越好 2.搅拌作用:打碎空气气泡,增加气液接触界面以提高气液间的传质效率使发酵液充分混和。3挡板的作用:防止液面中央产生漩涡,促使液体激烈翻动,提高溶解氧。竖立的蛇管、列管、排管也可以起挡板作用; 4消泡器:利用机械的方法打碎气泡 5仪表:测量相关参数 为什么压力表不用直管:会有培养基冲入,污染压力表;起不到缓冲作用;灭菌冷却后有冷凝水(含菌)掉入罐内,污染菌种,弯管液封,上面的杂菌不会掉入下面管道中。 6罐体各部分的尺寸有一定比例,高/径比约为2.5~4。 发酵罐的灭菌 (在夹套中)关好空气阀,蒸气上进下出,冲蒸气,压力大于2 kg/cm2(120℃),最好是4~5 kg/cm2(160℃)。当罐内温度>80℃,进蒸气口(蒸气阀)关掉,出蒸气口(排气阀)关小。打开空气阀,蒸气直接进罐,121℃,20~30min。从80℃~100℃上升很快,大于100℃后温度上升很慢,到118℃时就开始计时,计时25min时立即关掉蒸气阀。关掉蒸气阀后通入无菌空气,使罐内一直保持正压(高于大气压,空气不会倒灌入罐内)。(在夹套中)立即加自来水冷却,从下向上,使温度尽快降到55℃左右,到37~38℃时关掉水,也有缓冲性。升温降温时注意缓冲性灭菌时蒸气从夹套中进去,如从罐中进去,蒸气冷凝,产生冷凝水、无法接种、容易污染冬天温度低、散热快,低于30℃需加温。加温时蒸气由下进入、从上

发酵工程总结

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业; 1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

最新发酵工程重点总结

发酵工程重点总结

第一章 发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。 发酵工业的特点?(7点) 1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。 2.可用较廉价原料生产较高价值产品。 3.反应专一性强。 4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。 5.发酵过程中对杂菌污染的防治至关重要。 6.菌种是关键。 7.发酵生产不受地理、气候、季节等自然条件限制。 工业发酵的类型? 厌氧发酵 1. 按微生物对氧的不同需求需氧发酵 兼性厌氧发酵 液体发酵(包括液体深层发酵) 2.按培养基的物理性状浅盘固体发酵 深层固体发酵(机械通风制曲) 分批发酵 按发酵工艺流程补料分批发酵 单级恒化器连续发酵 连续发酵多级恒化器连续发酵 带有细胞再循环的单级恒化器连续发酵 发酵生产的基本工业流程? 1. 用作种子扩大培养及发酵生产的各种培养基的配制; 2. 培养基、发酵罐及其附属设备的消毒灭菌; 3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中; 4. 控制最适发酵条件使微生物生长并形成大量的代谢产物; 5. 将产物提取并精制,以得到合格的产品; 6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图? 第二章 1、发酵工业菌种分离筛选的一般流程? 调查研究(包括资料查阅) 试验方案设计 含微生物样品的采集(如何使样品中所含微生物的可能性大?) 样品预处理(如何在后续的操作中使这种可能性实现) 菌种分离 根据目的菌株及其产物特点分 选择性分离方法随机分离方法 (定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离) 富集液体培养固体培养基条件培养 (初筛) 菌种纯化 复筛 菌种纯化 初步工艺条件摸索再复筛生产性能测试 较优菌株1-3株 保藏及进一步做生产试验某些必要试验和 或作为育种的出发菌株毒性试验等 2、菌种选育改良的具体目标。(4点)? 1.提高目标产物的产量

发酵工程总结

绪论: 一、概念:发酵工程(Fermentation Engineering)指在最适发酵条件下,在发酵罐中大量培养细胞和生产代谢产物的技术。 二、发酵工程研究的主要内容 发酵工程主要包括代谢工程和发酵工艺两个主要内容 具体来说它一般包括微生物细胞或动植物细胞的悬浮培养,或利用固定化酶,固定化细胞所做的反应器加工底物,以及培养加工后产物大规模的分离提取等工艺。发酵工艺主要是在生物反应过程中提供各种所需的最适环境条件。如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。 四、发酵工程的特点 一个完整的发酵过程包括:1材料的预处理2生物催化剂的制备3生化反应器及发应条件的选择与监控 第二章:菌种的来源 一、工业化生产菌种的要求 ?能够利用廉价的原料,简单的培养基,大量高效地合成 产物 ?有关合成产物的途径尽可能地简单,或者说菌种改造的 可操作性要强 ?遗传性能要相对稳定 ?不易感染它种微生物或噬菌体 ?产生菌及其产物的毒性必须考虑(在分类学上最好与致病 菌无关) ?生产特性要符合工艺要求 二、自然界中菌种分离的一般过程(步骤): 土样的采取→预处理→培养→菌落的选择→产品的鉴定. 目的:高效地获取一株高产目的产物的微生物. 三、采样时要注意的问题: 气候、水分、空气;来源要广;结合产品的特点;标签:地点、时间、气候等四、目的微生物富集的一些基本方法 富集的目的:让目的微生物在种群中占优势,使筛选变得可能。 富集的三种方案: ?定向培养:采用特定的有利于目的微生物富集的条件,进行培养。 ?当不可能采用定向培养时,则可设计在一个分类学中考虑, ?不能提供任何有助于筛选产生菌的信息,这时只能通过随机分离的办法. 定向培养的方法 物理方法:加热、膜过滤等但主要是通过培养的方法 定向培养的富集方法 1、底物 2、pH条件 3、培养时间 4、培养温度等一切能提高目的微生物相对生长速度的手段,培养(固体、液体;分批连续)后使目的微生物在种群中占优势。 五、菌落的选出 1.从产物角度出发:在培养时以产物的形成有目的的设计培养基 利用简单、快速的鉴定方法,如抗生素

发酵工程知识点复习进程

第一章发酵工程概述 一、发酵工程:是利用微生物特定的形状和功能,通过现代化工程技术生产有用物质或直接应用与工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。二、发酵工程简史: 1590 荷兰人詹生制作了显微镜 1665 英国人胡克制作的显微镜观察到了霉菌 近代发酵工程建立初期1864 巴斯德灭菌法 1856 psateur 酵母导致酒精发酵 19世纪末Koch 纯种分离和培养技术 三、发酵工程技术的特点 (1)主体微生物的特点 ①微生物种类繁多,繁殖速度快、代谢能力强,容易通过人工诱变获得有益的突变株; ②微生物酶的种类很多,能催化各种生化反应 ③微生物能够利用有机物、无机物等各种营养源 ④可以用简易的设备来生产多种多样的产品 ⑤不受气候、季节等自然条件的限制等优点 (2)发酵工程技术的特点 ①发酵工程以生命体的自动调节方式进行,数十个反应能够在发酵设备中一次完成 ②反应通常在常温下进行,条件温和,耗能少,设备简单 ③原料通常以糖蜜,淀粉等碳水化合物为主 ④容易生产复杂的高分子化合物 ⑤发酵过程中需要防止杂菌污染 (3)发酵工程反应过程的特点 ①在温和条件下进行的 ②原料来源广泛,通常以糖、淀粉等碳水化合物为主 ③反映以生命体的自动调节形式进行(同(2)①) ④发酵分子通常为小分子产品,但也很容易生产出复杂的高分子化合物 四、发酵工程的一般特征 ①与化学工程相比,发酵工程中微生物反应具有以下特点: 作为生物化学反应,通常在常温常压下进行,没有爆炸之类的危险,不必考虑防爆问题,还有可能使一种设备具有多种用途 ②原料通常以糖蜜、淀粉等碳水化合物为主,加入少量的各种有机或无机氮源,只要不含毒,一般无精制的必要,微生物本身就有选择的摄取所需物质 ③反应以生命体的自动调节方式进行因此数十个反应过程能够像单一反应一样,在称为发酵罐的设备内很容易进行 ④能够容易的生产复杂的高分子化合物,是发酵工业最有特色的领域 ⑤由于生命体特有的反应机制,能高度选择性的进行复杂化合物在特定部位的氧化还原官能团导入等反应

谷氨酸的发酵工程

谷氨酸发酵过程控制 【摘要】谷氨酸是构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。谷氨酸的质量受到发酵的条件、菌种、温度、pH、接种量和种龄等因素的影响。如果控制不好这些因素整个发酵过程发酵液受污染、出现菌体的生长缓慢和代谢产物的积累很少、发酵周期延长甚至所得产品不是最终产品。本文通过综述发酵培养基、培养条件的控制及发酵过程温度、pH、接种量和种龄的控制,以及消泡等多方面因素,来提控制高谷氨酸发酵过程的参数来提高发酵的质量以些方法。 【关键词】谷氨酸、发酵、控制 1.谷氨酸概述 谷氨酸学名:2-氨基-5-羧基戊酸。构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。L-谷氨酸是蛋白质合成中的编码氨基酸,哺乳动物非必需氨基酸,在体内可以由葡萄糖转变而来。D-谷氨酸参与多种细菌细胞壁和某些细菌杆菌肽的组成。符号:E。 1.1谷氨酸用途 1)下游产品开发 将有一定反应活性的双功能基试剂氯乙醇和L—谷氨酸直接酯化保护羧基,用三光气活化成其相应的N—羧酸酐,可直接得到侧链具有一定反应活性的聚L—氯乙基谷氨酸酯。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。 2)食品业 谷氨酸是在食品工业中应用较多的氨基酸。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,能显着提高食品的风味和有增香作用。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。 3)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种。如:N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。谷氨酸作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养

微生物工程总复习整理

微生物工程总复习 名词解释:15题共45分 简答题: 7题共35分 论述题: 2题共20分 第一章概论 微生物工程:将微生物学、生物化学和化学工程学的基本原理有机地结合 起来,是一门利用微生物的生长和代谢活动来生产各种有用物质的工程技术。又称为发酵工程,是生物技术的重要组成部分,是生物技术产业化的重要环节。 简述微生物工程发展简史(四个阶段特征) 1、天然发酵 2、纯培养技术——第一代发酵技术 3、深层培养技术——第二代发酵技术 4、微生物工程——第三代发酵技术 简述微生物工程组成及研究内容 1、微生物工程组成 从广义上讲,由三部分组成: 上游工程 发酵工程 下游工程 2、微生物工程研究内容 (1)无菌生长技术; (2)计算机控制技术; (3)种子培养和生产培养工艺技术; (4)小试中试动力学模型; (5)发酵工程工艺放大。 第二章生产菌种的来源 试述生产菌种的来源及其分离思路 来源:根据资料直接向科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路:依照生产要求、产物性质、菌种特性(分类地位及生态环境),设计各种筛选方法,快速、准确地把所需要的菌种挑选出来。 实验室或生产用菌种若不慎污染杂菌,也必须重新进行分离纯化。 筛选重点:抗生素及治疗作用的药物产生菌。 试述生物物质产生菌的分离纯化和筛选步骤(1)定方案 查阅资料,了解所需菌种的生长培养特性。 (2)标本采集 有针对性地采集样品。

(3)增殖: 人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。(4)分离:利用分离技术得到纯种。 (5)性能鉴定发酵性能测定 进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、 产品品种和产量、耐受最高温度、生长和发酵最适温度、最适 pH值、提取工艺等。 第三章微生物代谢调节及代谢工程 新陈代谢(分解代谢、合成代谢):新陈代谢(metabolism) 是指发生在活细胞中的各种分解代谢(catabolism)和合成代谢(anabolism)的总和。即:新陈代谢=分解代谢+合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系的催化,产生简单分子、腺苷三磷酸(ATP)形式的能量和还原力(或称还原当量,一般用[H]来表示)的作用。合成代谢:与分解代谢正好相反,是指在合成代谢酶系的催化下,由简单小分子、ATP形式的能量和[H]形式的还原力一起合成复杂大分子的过程。 分解代谢与合成代谢的含义及其间的关系可简单地表示为: 酶活性调节:酶分子水平上的一种代谢调节,通过改变酶分子活性来调 节新陈代谢的速率,包括:酶活性的激活和抑制两个方面。 能荷:细胞 ATP、ADP、AMP可作为代谢反应功能的高能磷酸键的量度,通 过 ATP、ADP、AMP三者的比例调节代谢。 协同反馈抑制:指分支代谢途径中的几个末端产物同时过量时才能抑制 共同途径中的第一个酶的一种反馈调节方式 合作反馈抑制:两种末端产物同时存在时,可以起着比一种末端产物大 得多的反馈抑制作用。 累积反馈抑制:每一分支途径的末端产物按一定百分率单独抑制共同途 径中前面的酶,所以当几种末端产物共同存在时,它们的抑制作用发生累积。 顺序反馈抑制:当 E过多时,抑制 C→D,由于 C浓度过大而促使反 应向 F、G方向进行,结果造成 G浓度的增高。由于 G过多抑制了 C→F,结果造成 C的浓度进一步增高。C过多又对 A→B间的酶发生抑制,从而达到反馈抑制的效果。通过逐步有顺序的方式达到的调节称为顺序反馈抑制。 试述酶活性调节、合成调节的异同点 酶分子水平上的一种代谢调节,通过改变酶分子活性来调节新陈代谢的速率,包括:酶活性的激活和抑制两个方面。 酶活性激活系指在分解代谢途径中,后面的反应可被较前面的中间产物所促进。

(建筑工程管理)第五章第三节发酵工程简介

(建筑工程管理)第五章第三节发酵工程简介

第五章第三节发酵工程简介 教学目标 1.知识方面 (1)发酵工程的概念(知道)。 (2)发酵工程中培养基的配制、菌种选育、灭菌、扩大培养和接种、发酵过程和产品的分离、提纯等相关内容(知道)。 (3)有关发酵工程在医药工业和食品工业中应用的内容(知道)。 2.态度观念方面 (1)通过学习发酵工程的有关内容,培养学生理论联系实际的科学态度。 (2)通过学习有关发酵工程在医药工业和食品工业中应用的知识激发学生学习生物学的兴趣,提高学生把所学知识转化为技术,且服务于社会的STS意识。 3.能力方面 通过对发酵过程中菌种选育、发酵条件控制等相关内容的讨论,培养学生综合运用知识去解决实际问题的能力。 重点、难点分析 1.教学重点: (1)通过对谷氨酸发酵实例的分析、讨论,使学生了解发酵工程的概念,了解菌种选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离、提纯等内容是本节的重点。(2)让学生收集有关发酵工程应用的资料,且相互交流、讨论,使学生了解发酵工程在医药工业、食品工业中的应用知识也是本节的教学重点之壹。 2.教学难点: 有关发酵工程的内容是本节教学的难点,因为这些内容中涉及了细胞工程、基因工程、杂菌污染对发酵工业造成的危害以及发酵条件对菌种代谢途径的影响等多点知识,比较繁杂,学生较难理解。 教学模式 启发讲解和学生讨论相结合。 教学手段 谷氨酸棒状杆菌合成谷氨酸的代谢途径及发酵的的示意图的投影片,影响谷氨酸代谢途径的因素表格及谷氨酸发酵所用培养基的成分的表格。 课时安排二课时。 设计思路 1.前期知识准备: (1)复习有关谷氨酸棒状杆菌合成谷氨酸的途径及其人工控制的内容。 (2)复习有关微生物群体生长的规律及影响微生物生长的环境因素的内容。 (3)复习有关微生物的营养、培养基、代谢产物等内容。 2.通过讨论谷氨酸发酵过程,使学生了解从菌种选育、培养基配制到产品生成等简要的发酵生产过程,了解发酵生产的主体设备发酵罐及其控制部分,且了解发酵工程的概念。3.通过分析、讨论有关发酵过程的内容,使学生了解培养基的配制、菌种选育、灭菌、扩大培养接种、发酵过程和产品的分离、提纯等相关知识。 4.通过学生讨论、交流等活动,总结出发酵工程在医药工业和食品工业上的应用的知识。第壹课时 壹、设疑引出新课题 前面我们学习了有关微生物的代谢的内容,我们知道了微生物的代谢是指微生物细胞内所发生的全部的化学反应。在微生物的代谢过程中,会产生多种多样的代谢产物,如氨基酸、维

发酵工程中的染菌原因及解决办法

学生综述性论文 题目:发酵过程中染菌的分析、检测及预 防 姓名:刘莉学号:2008132114 专业:生物技术班级:083班 课程名称:微生物工程 指导教师:燕平梅 课程学期:2010至2011学年第一学期

发酵过程中染菌的分析、检测及预防 姓名:刘莉指导老师:燕平梅 (太原师范学院生物系083班学号:2008132114) 摘要:通过分析发酵过程中染菌的各种原因,总结检测染菌的方法,并提出染菌后应采取哪些措施及预防染菌的方法。 关键词:发酵;染菌;危害;检查;预防 前言:发酵工业生产中,污染杂菌造成发酵失败的事故时常发生,严重影响发酵生产,关于发酵过程是否污染杂菌,如何检测,染了菌后如何处理等等,这些问题的研究是十分有意义的。 内容: 1发酵染菌的危害 1.1不同种类的杂菌对发酵的影响 青霉素发酵:污染细短产气杆菌比粗大杆菌的危害大 链霉素发酵:污染细短杆菌、假单孢杆菌和产气杆菌比粗大杆菌的危害大 四环素发酵:污染双球菌、芽孢杆菌和夹膜杆菌的危害较大 柠檬酸发酵:最怕污染青霉菌 肌苷、肌苷酸发酵:污染芽孢杆菌的危害最大 谷氨酸发酵:最怕污染噬菌体 高温淀粉酶发酵:污染芽孢杆菌和噬菌体的危害较大 1.2不同染菌时间对发酵的影响 1.2.1种子培养期染菌 菌体浓度低、培养基营养丰富

1.2.2发酵前期染菌 杂菌与生产菌争夺营养成分,干扰生产菌的繁殖和产物的形成 1.2.3发酵中期染菌 严重干扰生产菌的繁殖和产物的生成 1.2.4发酵后期染菌 如杂菌量不大,可继续发酵。如污染严重,可采取措施提前放罐 1.3不同染菌途径对发酵的影响 种子带菌:种子带菌可使发酵染菌具有延续性 空气带菌:空气带菌也使发酵染菌具有延续性,导致染菌范围扩大至所有发酵罐 培养基或设备灭菌不彻底:一般为孤立事件,不具有延续性 设备渗漏:这种途径造成染菌的危害性较大 1.4染菌对产物提取和产品质量的影响 1.4.1对过滤的影响 发酵液的粘度加大;菌体大多自溶;由于发酵不彻底,基质的残留浓度加度。造成过滤时间拉长,影响设备的周转使用,破坏生产平衡;大幅度降低过滤收率。 1.4.2对提取的影响 a.有机溶剂萃取工艺:染菌的发酵液含有更多的水溶性蛋白质,易发生乳化,使水相和溶剂相难以分开 b.离子交换工艺:杂菌易粘附在离子交换树脂表面或被离子交换树脂吸附,大大降低离子交换树脂的交换量 1.4.3对产品质量的影响 a.对内在质量的影响:染菌的发酵液含有较多的蛋白质和其它杂质。对产品的纯度有较大影响。 b.对产品外观的影响:一些染菌的发酵液经处理过滤后得到澄清的发酵液,放置后会出现混浊,影响产品的外观。 1.5染菌对三废处理的影响 使过滤后的废菌体无法利用,发酵染菌的废液,生物需氧量(BOD)增高,增加三废治理费用和时间。 2发酵过程中染菌的检查判断

发酵工程发展现状及趋势

发酵工程发展现状及趋势 引言 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。发酵技术有着悠久的历史,早在几千年前,人们就开始从事酿酒、制酱、制奶酪等生产。作为现代科学概念的微生物发酵工业,是在20世纪40年代随着抗生素工业的兴起而得到迅速发展的,而现代发酵技术又是在传统发酵技术的基础上,结合了现代的基因工程、细胞工程、分子修饰和改造等新技术。由于微生物发酵工业具有投资少、见效快、污染小、外源目的基因易在微生物菌体中高效表达等特点,日益成为全球经济的重要组成部分。 摘要 当前,发酵工程的应用是十分广泛的,在不同的工业领域中都有重要应用,例如医药工业、食品工业、能源工业、化学工业、农业、环境保护等,且随着生物技术的发展,发酵工程的应用领域也在不断扩大。 一、发酵工程在各领域的发展现状 1、医药行业 微生物发酵是生物转化法之一,在中药中早有应用。真菌是发酵中药的主要功能菌。发酵时大都采用单一菌种纯种发酵法。现代中药发酵技术分为液体发酵和固体发酵。中药发酵技术按应用方式可分为无渣式和去渣式,前者可直接用药,后者要提取和制剂用药。发展发酵中药可进一步推进中药现代化和国际化进程,提高中药行业的竞争力,为中药走向世界、造福人类作出新的贡献。 2、食品工业 现代化生物技术的突飞猛进,改写了食品发酵工艺的历史。据报道,由发酵工程贡献的产品可占食品工业总销售额的15%以上。目前利用微生物发酵法可以生产近20种氨基酸。该法较蛋白质水解和化学合成法生产成本低,工艺简单,且全部具有光学活性。 3、能源工业 乙醇作为一种生产工艺成熟,生产原料来源广泛的替代能源越来越受到人们的关注。燃料酒精不仅可以缓解能源短缺的问题,从长远的利益和能源的可再生性来看,燃料酒精又是一种潜力巨大的物能源。酒精发酵的方式有间歇式发酵、半连续式发酵和连续发酵。

医学微生物学重点整理

第三章消毒灭菌与病原微生物实验室生物安全 一、消毒灭菌的常用术语 ⑴灭菌:杀灭物体上所有微生物的方法。灭菌比消毒要求高,包括杀灭细菌芽胞在内的全部病原微生物和非病原微 生物。 ⑵消毒:杀死物体上病原微生物的方法,并不一定能杀死含芽胞的细菌或非病原微生物。用以消毒的药品称为消毒 剂。⑶抑菌:抑制体内或体外细菌的生长繁殖。常用的抑菌剂为各种抗生素。⑷防腐:防止或抑制体外细菌生长繁殖的方法。细菌一般不死亡。⑸无菌:不存在活菌,多是灭菌的结果。⑹无菌操作:防止微生物进入人体或物体的操作技术。⑺清洁:是指通过除去尘埃和一切污秽以减少微生物数量的过程。 二、热力灭菌法原理: ⑴干热灭菌法:通过脱水、干燥和大分子变性。一般细菌繁殖体在干燥状态下,80-100℃经1小时可被杀死,芽 胞则需要更高温度才能被杀死。包括:焚烧、烧灼、干烤、红外线。 ⑵湿热灭菌法:最常用,在相同温度下湿热灭菌法比干热灭菌法效果更好,因为:①湿热中细菌菌体蛋白较易凝 固变性;②湿热的穿透力比干热大;③湿热的蒸汽有潜热效应存在。包括:巴氏消毒法(加热至61.1-62.8℃30分钟,71.7℃经15-30秒)、煮沸法、流动蒸汽消毒法、间歇蒸汽灭菌法、高压蒸汽灭菌法(压力103.4KPa (1.05Kg/cm2)、温度121.3 ℃、时间—15-20min;效果:杀灭包括芽孢在内所有微生物;应用:所有耐高温、高压、耐湿的物品)。 三、辐射杀菌法紫外线 原理:波长200-300nm的紫外线具有杀菌作用。其中260~266nm波长UV与DNA吸收光谱一致。其主要作用于DNA,使一条DNA链上相邻的两个胸腺嘧啶共价结合形成二聚体,干扰DNA复制与转录,导致细菌变异和死亡,并可杀灭病毒。特点:穿透力较弱。应用:物体表面及空气消毒 四、滤过除菌法 用物理阻留的方法除去液体或空气中的细菌, 真菌。特点:只能除去细菌,真菌, 不能除去病毒、支原体、L型细菌。应用:用于一些不耐高温灭菌的血清、毒素、抗生素,以及空气的除菌。 五、口腔黏膜消毒可用3%过氧化氢;冲洗阴道、膀胱、尿道等可用0.1%~0.5%氯已定或1g/L高锰酸钾。 六、第一类、第二类病原微生物统称为高致病性病原微生物。一、二级实验室不得从事高致病性病原微生物实验活动。 三级、四级实验室从事高致病性病原微生物实验活动。 第四章噬菌体 一、噬菌体是感染细菌、真菌、放线菌或螺旋体等微生物的病毒。基本特点★个体微小,可以通过细菌滤器;★无细 胞结构,主要由衣壳(蛋白质)和核酸组成;★只能在活的微生物细胞内复制增殖,是一种专性胞内寄生的微生物。★噬菌体分布极广。 二、噬菌体感染细菌有两种结果: ①毒性噬菌体:能在宿主细胞内复制增殖,产生许多子代噬菌体,并最终裂解细菌,建立溶菌周期。②温和噬菌 体:噬菌体基因与宿主染色体整合,成为前噬菌体,细菌变成溶原性菌,不产生子代噬菌体,但噬菌体DNA能随细菌DNA复制,并随细菌的分裂而传代,建立溶原性状态。 三、溶原性细菌温和噬菌体的基因组能与宿主菌基因组整合,并随细菌分裂传至子代细菌的基因组中,不引起细菌裂 解。整合在细菌基因组中的噬菌体基因组称为前噬菌体。带有前噬菌体基因组的细菌称为溶原性细菌。 第五章细菌的遗传与变异 一、细菌变异的类型:表型变异与基因型变异。 二、细菌变异的机理:?突变的概念,规律及分子基础。遗传性变异是细菌DNA的结构发生了改变而引起的,改变了 的性状能相对稳定地遗传给子代。 三、基因转移:外源性的遗传物质由供体菌进入某受体菌细胞内的过程。 基因重组:转移的基因与受体菌DNA整合在一起,使受体菌获得供体菌某些特性。 细菌的基因转移和重组方式:转化、接合、转导、溶原性转换、原生质体融合。 四、转化:是供体菌裂解释放的DNA被受体菌直接摄取,使受体菌获得新的性状。 转导:是以温和噬菌体为载体,将供体菌的DNA转入到受体菌,使受体菌获得供菌的部分遗传性状。根据转导基因片段的范围,可将转导分为两类:普遍性转导和局限性转导。 溶原性转换是指温和噬菌体感染宿主菌后,以前噬菌体形式与细菌基因组整合,成为溶原性细菌,从而获得由噬

发酵工程总结50327复习课程

发酵工程总结50327

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目

标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业;1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

微生物工程复习重点

微生物工程是利用微生物的特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系;是将传统发酵与现代DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的现代发酵技术。 富集培养是在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境下的优势种,以利分离到所需的菌株。 透明圈法、变色圈法、生长圈法、抑菌圈法(概念) 组成酶:不依赖于酶底物或类似物的存在而合成 诱导酶:依赖于某种底物或底物的结构类似物的存在而合成 代谢工程:利用生物学原理,系统分析细胞代谢网络,并通过DNA重组技术合理设计细胞代谢途径及遗传修饰,进而完成细胞特性改造的应用性学科。 节点:代谢网络分流处的代谢产物(其中对终产物合成起决定作用的少数节点称为主节点)依赖型网络:如果网络或亚网络中的每一节点都依照化学计量规则将代谢物转化为终端产物的组成部分,那么这样的网络或亚网络就是相依型网络。 独立型网络:若由主要节点流出的代谢物不能完全合成终端产物,即代谢网络的主节点不集中,就属于独立型网络。 原生质体融合:就是把两个亲本的细胞分别去掉细胞壁,获得原生质体,将两亲本的原生质体在高渗条件下混合,由聚乙二醇(PEG)作为助融剂,使它们互相凝集,发生细胞质融合,接着两亲本基因组由接触到交换,从而实现遗传重组。 生长因子:微生物生长不可缺少的微量有机物质。 前体:指某些化合物加入到发酵培养基中,能直接被微生物在生物合成过程中结合到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而又较大的提高。促进剂:是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂。抑制剂:抑制某些代谢途径的进行,同时刺激另一代谢途径,以致可以改变微生物的代谢途径。 溶解氧(DO):是指溶解于水中的氧的含量,它以每升水中氧气的毫克数表示. 摄氧率(OUR):单位时间内单位体积培养液中微生物摄取氧的量。记作rO2 (mmol/L·h)。比耗氧速率:相对于单位质量的干菌体在单位时间内所消耗的氧量。也称呼吸强度;用Q O2表示(mmol O2 /g ·h) 临界溶氧浓度:当不存在其他限制性基质时,如果溶氧浓度高于某定值,细胞的比耗氧速率保持恒定;如果溶氧浓度低于该值,细胞的比耗氧速率就会大大下降;则该值即为临界溶氧浓度。[DO]cri 剪应力:单位流体面积上的切向力;F/A 最适温度:是指在该温度下最适于菌的生长或产物的生成,它是一种相对概念,是在一定条件下测得的结果。 变温培养:在抗生素发酵过程中采用变温培养比用恒温培养所获得的产物有较大幅度的提高。 二阶段发酵:最适温度分最适生长温度和最适产物合成温度,两者往往不同,各阶段可用不同温度。 呼吸商(RQ):指菌体呼吸过程中,CO2释放率和菌的耗氧速率之比,RQ反映菌的代谢情况。 分批发酵:是指在一封闭系统内含有初始限量基质的发酵方式。在这一过程中,除了氧气、消泡剂及控制pH的酸或碱外,不再加入任何其它物质。发酵过程中培养基成分减少,微生物得到繁殖。

发酵工程总结

发酵工程总结 一名词解释 1.发酵:传统概念,是指微生物在无氧条件下分解代谢有机物质释放能量的过程。现代概念,利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程。 2.发酵工程:采用现代化工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。 3.微生物的生物转化:是利用生物细胞对一些化合物某一特定部位的作用,是它转化成结构相类似但是更具有经济价值的化合物。 4.生产微生物细胞物质:是以获得具有多种用途的微生物菌体细胞为目的产品的发酵工业。 5.筛选:采用与生产相近的培养基和培养条件,通过三角瓶的容量进行小型发酵实验,以求得适合于工业生产用菌种。方法有a平皿快速检测法(变色圈法、透明圈法、生长圈法、抑菌圈法、梯度平板法)b摇瓶培养法。 6.诱变育种:就是利用物理或化学诱变剂处理均匀分散的微生物细胞群,提高基因突变频率,再通过适当的筛选方法获得所需要的高产优质菌种的育种方法。 7.基因突变:指的是DNA碱基发生变化即点突变。 8.自然选育:在生产过程中,不经过人工诱变处理,利用菌种的自发突变选育出优良菌种的过程。

9.回复突变:高产菌株在传代的过程中,由于自然突变导致高产性状的丢失,生产性能下降的情况。 10.菌种退化:是指在较长时期传代保藏后,菌种的一个或多个生理性状和形态特征逐渐减退或消失的现象。 11.狭义的菌种复壮:指在菌种已发生衰退的情况下,通过纯种分离和测定生产性能等方法,从衰退群体中找出少数尚未衰退的个体,从而达到恢复浓菌原有典型性状的目的。广义的复壮是一项积极的措施,指在菌种的典型特征或生产性状尚未衰退前,就经常有意识地采取纯种分离和生产性状的测定工作,以期从中选择到自发的正变个体12.种子扩大培养:是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级放大培养而获得一定数量和质量的纯种过程。 13.基本培养基MM:凡是能满足野生型菌株营养要求的最低成分的合成培养基。 14.完全培养基CM:满足一切营养缺陷性菌株生长的天然或半合成培养基。 15.补充培养基SM:在基本培养基中有针对性的加入一种或几种营养成分以满足相应营养缺陷型菌株生长的合成培养基。 16.天然培养基:是采用化学成分还不清楚或化学成分还不恒定的各种植物和动物组织或微生物的浸出物、水解液等物质制成的。 17.合成培养基:也称组合培养基(多用于定量研究);是用化学成分和数量完全了解的物质配制而成的。

发酵工程期末考试重点整理(终极版)

●发酵工程:以微生物、动植物细胞为生物作用剂进行工业化生产的工程,包括发酵工艺和发酵设备。 ●主要研究内容:菌种选育与构建、大规模培养基和空气的灭菌、大规模细胞培养过程、细胞生长和产物形成动力学、生物反应器的优化设计和操作、发酵产品的分离纯化过程中的技术问题等。 ●发酵工程原理:指导发酵产品研究与开发,发酵工厂设计与建设以及发酵生产实践的理论。 ●初级代谢:是许多生物都具有的生物化学反应,蛋白质、核酸的合成等,均称为初级代谢。 ●初级代谢产物:指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、多糖等。 ●次级代谢:微生物以初级代谢产物为前提合成的对微生物本身的生命活动没有明确功能的物质的过程。 ●自然选育:不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程。 ●杂交育种:将两个基因型不同的菌株经吻合使遗传物质重新组合,分离和筛选具有新性状的菌株。 ●诱变育种:利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在促进其突变率显著提高的基础上,采用简便、高效的筛选方法,从中挑选出少数符合目的的突变株,以供科学实验或生产实践使用。 ●原生质体融合育种:两个亲本的原生质体在高渗条件下混合,由聚乙二醇作为助融剂,使它们互相凝集,发生细胞融合,接着两个亲本基因组由接触到交换,从而实现遗传重组。 ●前体:某些化合物加入发酵培养基中,能直接被微生物在生物合成过程中结合到产物中去,而自身结构并没有明显变化,产物的产量却因前体的加入而有较大的提高。 ●抑制剂:某些化合物可以抑制特定代谢途径的进行,使另一种代谢途径活跃,获得人们所需产物的积累。如生产甘油加抑制剂亚硫酸钠,它与代谢过程中的乙醛生成加成物。这样使乙醇代谢途径中的乙醛不能成为NADH2(还原型辅酶I)的受氢体,而使NADH2在细胞中积累,从而激活α-磷酸甘油脱氢酶的活性,使磷酸二羟基丙酮取代乙醛作为NADH2的受氢体而还原为α-磷酸甘油,其水解后即形成甘油。 ●促进剂:指那些既不是营养物质又不是前体,但却能提高产量的添加剂,如加巴比妥盐能使利福霉素单位增加,并能使链霉菌推迟自溶,延长分泌期。 ●灭菌:用化学或物理的方法杀灭或除掉物料及其器皿中所有的生命体。消毒是指杀死病原微生物的过程。 ●分批灭菌:培养基置于发酵罐中加热,达到预定温度后维持一段时间,再冷却到发酵所需温度的灭菌。 ●连续灭菌:在发酵罐外连续不断地进行加热、维持和冷却,同时把灭完菌的培养基通入已灭过菌的发酵罐的灭菌方式。 ●对数残留定律:在微生物死亡过程中的任一时刻,活菌数的减少速率与该时刻残留的活菌数成正比,这就是微生物死亡的对数残留定律。微分式为:-dN/dτ=kN;积分式为:τ=(2,303/k)log(N0/Ns) N0开始灭菌时的活菌数 Ns灭菌结束时残留菌数。 ●单种法:一个种子灌接种一只发酵罐的接种方法。 ●双种法:用两只种子灌接种一只发酵罐的接种方法。 ●倒种法:从一只发酵罐中倒出适宜的,适量的发酵液给另一个发酵罐做种子的方法。 ●生长关联型:产物生成与菌体生长之间有平行的准量关系。这样的产品或为菌体本身或初级代谢产物。 ●部分生长关联型:菌体生长出现两个高峰,第一个生长高峰与产物合成无平行的准量关系,第二个生长高峰与产物合成有平行的准量关系。 ●非生长关联型:细胞生长与产物合成无平行的准量关系,只与菌体的总量有关。大部分次级代谢产物属于这一类。 ●凝聚:是在中性盐作用下,由于双电层排斥电位的降低,而使胶体体系不稳定的现象。 絮凝:在某些高分子絮凝剂存在下,基于架桥作用,使胶粒形成粗大的絮凝团的过程,是一种以物理的集合为主的过程。 ●如何从一个菌种得到另一个菌种(如从生产菌种获得缺陷型): ①诱变剂处理:采用辐射、化学试剂等因素处理细菌。②淘汰野生型:抗生素法或菌丝过滤法。 ③检出缺陷型:用一个培养皿即可检出,有夹层培养法和限量补充培养法;在不同培养皿上分别进行对照和检出的有逐个捡出法和影印检出法。④鉴定缺陷型:可借生长谱法进行。

专业技术工作总结发酵工程

竭诚为您提供优质文档/双击可除专业技术工作总结发酵工程 篇一:发酵工程总结版 发酵工程期末复习 名词解释: 1.发酵工程是发酵原理与工程学的结合,是研究生物细胞参与的工艺过程的的原理和科学,是研究利 用生物材料生产有用物质服务于人类的综合性科学技术。 2.分批培养:是指在一个密闭系统内,投入有限数量的营养物质后接入少量微生物菌种进 行培养,使微生物生长繁殖,在特定条件下只完成一个生长周期的微生物培养方法。 3.连续培养:是指以一定的速度向培养系统内添加新鲜培养基,同时又以相同的速度流出 培养液,从而使培养系统内培养液的量维持恒定,微生物细胞能在近似恒定状态下生 长的发酵方式。

4.补料分批培养:是指在分批培养过程中,间歇或连续地补加新鲜培养基的培养方法 5.液化:用α-淀粉酶将淀粉转化为糊精和低聚糖。 6.糖化:用糖化酶(又称葡萄糖淀粉酶)将糊精和低聚糖转化为葡萄糖 7.糊化:在温水中,当淀粉颗粒无限膨胀形成均一的粘稠液体的现象,称为淀粉的糊化。此时的温度称 为糊化温度。 8.老化:分子间已断裂的氢键、糊化淀粉又重新排列形成新的氢键的过程,也就是复结的过程。 9.间歇灭菌 间歇灭菌就是将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备一起进行灭菌的操作过程,也称分批灭菌或实罐灭菌。 10.连续灭菌将配制好的培养基在向发酵罐输送的同时加热、保温和冷却,进行灭菌。 11.呼吸强度(比耗氧速率)Qo2:单位质量干菌体在单位时间内消耗氧的量。 单位:mmolo2/(kg干菌体·h)。 12.摄氧率γ(耗氧速率):单位体积培养液在单位时间内消耗氧的量。单位: γ=Qo2·xx——细胞浓度,kg(干重)/m3

发酵工程总结

发酵工程总结

————————————————————————————————作者:————————————————————————————————日期:

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业; 1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

相关文档
最新文档