半导体-金属导体平面结构导电性能的维度效应

半导体-金属导体平面结构导电性能的维度效应
半导体-金属导体平面结构导电性能的维度效应

半导体-金属导体平面界面结构导电性能的维度效应

宋太伟邹杏田璆璐

2017年3月

上海日岳新能源有限公司上海陆亿新能源有限公司上海建冶研发中心

内容摘要:

半导体-金属材料结构界面或其它由2种不同材料组成的复合材料结构界面,一般存在明显的微观扩散结势垒构造,这种扩散结对复合材料的导电性等物理性能产生明显影响。我们发现这种半导体-金属组合结构材料的导电性与半导体和金属导体的几何结构存在明显的关联效应,尤其是在体型半导体平面表面镀上金属薄膜的材料结构,表现出清晰的导电性等物理性能与材料几何结构维度的关联关系,这种材料的导电性呈现明显的二极管效应。我们用时空结构几何理论对此现象分别作了理论阐明。这种普遍存在的由半导体和金属材料的维度差异引起的复合材料的二极管效应,其理论价值与在光电工程领域的应用价值极大。

1引言

两种不同材料的接触面,一般会产生接触势垒。由具有一定导电性能的两种材料依次排列组成的复合材料结构,由于不同材料导电电子的平均约束势能不同,在两种材料的接触界面附近,微观上呈非均衡的载流子扩散形态及电位梯度。界面附近导电电子低约束势能的材料呈现一定的正电性,相应的另一种导电电子高约束势能的材料界面附近呈现一定的负电性,复合材料内部这种不同材料界面附近的微观构造形态,是一种接触电位势垒,可称为电位势结,平面薄膜结构形态的也称为“量子泵”[3]。就导电性能来讲,这种内部界面构造,都有一定程度的二极管效应。半导体PN结是典型的界面电位势结构造形态。

我们在开发研制高效多结层硅基太阳能电池的过程中,发现不同材料界面附近的微观电位势结构造形态,对复合材料的导电性能的影响,存在明显的维度关联关系或者说尺度关联关系,也就是说,复合材料内部界面电位势结产生的二极管效应大小,与两种材料的几何维度构造明显关联,两种不同材料典型的几何维度形态结构组合是3维-2维、3维-1维、3维-0维、2维-1维、2维-0维等,见示意图1。我们重点对半导体硅晶体为3维、金属或非金属为2维薄膜的3-2维界面构造材料(示意图1中的a结构),就其光电性能变化进行了详细的实验与分析研究,使用的实验仪器设备主要包括真空镀膜系统、氙灯、单色仪、i-v曲线源表、椭圆偏振仪、显微镜等。我们运用简单的时空结构几何[1][2]模型,对3维-2维界面

结构,在相同电压条件下,正反两个方向的电流大小比值β(或称为二极管效应的放大倍数)

进行了理论推算,与实验一致。这也从另一方面证明时空结构几何理论的普适性。

23-2维度界面结构材料及实验结果

我们的实验材料以示意图1中的3-2维几何构造组合为主,体型半导体为p 型晶体硅,金属薄膜材料为铝、铜等金属。

2.13-2维度界面结构的主要材料组合

理论上讲,具有3-2维度界面结构的材料组合很多[5][6],见示意图2,有价值的材料结构组合是3维立体材料为半导体S ,2维平面薄膜材料为金属M 或绝缘体I 。

3维立体材料为金属M 、2维薄膜材料为半导体S 或绝缘体I 的复合材料,薄膜材料小S M

a 3S-2M M S c 3M-2S S I

b 3S-2I M

I d 3M-2I

示意图23-2维度界面结构的材料组合形式

于一定尺寸,皆为良导体[7]。

如果体型半导体两边皆镀金属薄膜,如图3结构,则材料

成为良导体,单边镀膜的二极管效应消失。

2.2实验结果实验试制3-2维界面结构材料样品,3维半导体多晶硅为P

型,厚度约220μm ,掺杂浓度约1019/cm 3,金属薄膜AL 和CU 的厚度约20—60nm ,绝缘体AL2O3,薄膜厚度5-20nm ,Si 薄膜厚度约300nm ,ITO 薄膜厚度约70nm ,高真空下镀膜。在外加电压[-1,+1]范围内,测量i-v 曲线,正压表示薄膜端接电压正极。实验测量结果见图4—图8。

3维半导体硅-2维薄膜结构,晶体硅单边镀膜,二极管效应明显。图7为双边镀膜,P 型多晶硅一边镀铜、另一边镀ITO ,二极管效应消失。

3时空结构几何及3-2维度界面结构材料二极管效应的几何逻辑

宋太伟在其《时空结构几何》[2]及《时空统计热力学》[1]中详细地论述了时空结构几何学的主要思想与基础逻辑关系。时空结构几何使用具有普遍意义的时空结构形态来描述系统与系统内部各层次组织构造单元的物理状态。任何物体或系统的时空结构形态,简单来讲,就是物体或系统整体与内部各层次的一个拓扑构造。符合现实的空间对象,是一维的时间运动空间与三维的立体位置存在空间合称即为时空空间,所以称时空结构形态。客观现实世界中任何物体或系统的拓扑结构[10]之间,通过拓扑变换也即是时间变换来联系。现实存在的形态结构,在微观物理层面上,对应相应的能级结构,不同能级结构状态之间的拓扑或时间变M

M

S

Figure 3

换,是通过吸收或放出能量物质量子即光量子、电子、质子、或原子等来实现。

在均衡稳定条件下,时间序列上物体总内能及能谱密度恒定(也即时间变换不变),物体状态的时空结构形态可以以空间结构形态代替,为稳定有序的空间几何结构,此时物体有序的空间几何结构形态,与其物质能量分布结构形态,是对应的映像关系[2]。因此可以用几何形态逻辑直观地分析物体的物理属性之间的内在关系。

下面主要以由3维半导体(如晶体硅)和2维金属(如铜铝等)组成的具有3-2维界面结构的材料为分析讨论对象,材料制成工艺为晶体硅表面镀准2维金属薄膜,见示意图10。

3维晶体硅内部载流子(电子),呈非自由的局域态分布,所有载流子,相对均匀的被弱束缚在3维硅原子晶格中,即使在光照或外加电压的条件下,晶体硅载流子局域化的3维立体空间均匀分布的形态依然存在[2]。在外电场(外加电压)作用下,晶体硅内部导电电子克服自身周围的弱结构阻力,呈现的3维空间集体有序移动,是典型的体电流形态。相应的在3-2维界面结构中的准2维金属薄膜内部的自由电子的有序运动,具2维平面空间运动特征。也就是说,由体型晶体硅和薄膜金属组成的具3-2维界面结构的材料,在外电压作用下,电子在界面两边的有序运动,明显发生由3维变2维、或由2维变3维的维度变换。我们认为,这种维度变化,正是材料导电性能呈现明显二极管效应的主要原因。大量电子由3维立体空间有序运动到2维平面空间的电流密度比相反方向(即电子由2维平面空间有序运动到3维立体空间)的电流密度大得多。2维平面结构相对于3维立体结构来讲,其有序性大得多(一个数量级)[4],能级也更低,对3-2维界面结构附近的导电电子来讲,其集体合成为电流的有序运动,从3维空间“跃迁入”2维空间相对容易得多。因此,在电压大小相同条件下,正反方向电流大小差异很大,维度变化引起的二极管效应明显。这是普遍现象。

前面已经讲过,在均衡条件下,材料的许多物理特性,如导电性、导热性等,主要由材料的几何结构形态的决定。如示意图10所示,

给由3维半导体晶体硅和2维金属组成的3-2

维界面结构的材料加直流电压并测量其i-v关

系。在相同电压v下,变换正负方向,分别测

量电流I,假设金属端输入+V时电流值为I+,金

属端输入-V时电流值为I-,β=I+/I-。文中所

指的二极管效应,即是指I+>>I-,β>>1。

在示意图10中,假设半导体晶体硅的载流子密度为ρs、厚度为d s,金属薄膜的载流子密度ρm、厚度为d m。从结构几何角度分析,显然I+、I-的区别主要由界面两边载流子流入端的几何维度特征即厚度d,以及载流子流入端的载流子密度ρ决定的,即I+ ρs d s,I-

∝ρm d m ,所以,

m m s s d d I I ρρβ==-+/(1)

几何意义上,金属薄膜端电子的流入I -,还有界面反射影响,实际β值比(1)的理论计算要高。

可以按照(1)粗略估算β。晶体硅在氙灯光照条件下,载流子浓度1019/cm 3,晶体硅厚度约2*105nm ,金属铝载流子浓度1022/cm 3[9],厚度约30-50nm ,β大约为10数级。与实验一致。

当然作为修正,公式(1)中的半导体厚度d s 和金属薄膜厚度d m ,有一定尺度范围,首先大小与比值要保证几何组合有3维-2维结构变化特征,d s /d m >300-500,其次金属薄膜的厚度在导电电子的量子关联范围之内,d m <100nm [11],半导体晶体硅厚度d s <100-200μm 。

另外,在外电压0附近,i-v 曲线为非线性,此时β值非常数。

4不同材料接触界面产生电位势垒的量子机理

3维半导体晶体硅与2维金属薄膜组成3-2维界面结构材料,导电性存在二极管效应,传统的量子力学理论解释如下:在半导体-金属的接触面附近,

电子以量子隧道穿越方式扩散,产生抵抗电子扩散的内电场结

构[8]------接触电位势垒,如示意图11,界面附近薄膜金属端呈正

电性,半导体硅端呈负性。将材料加正反电压,当金属薄膜端

为正压方向时,外电场方向与内电场方向一致,界面附近半导

体端自由电子向界面另一端金属侧有序移动,界面附近内部电

场与电位势垒趋于消失,电子通过顺畅,电流I +大;当金属薄

膜端为负压方向时,外电场方向与内电场方向相反,接触界面附近金属薄膜端导电电子更多的移向半导体硅端,界面附近内电场与电位势垒更强,导电电子有序运动受阻,电流I -很小。

我们认为,这种由电荷粒子量子扩散形成的电位势垒所产生的二极管效应,与3-2维度

界面结构等维度变化所产生的二极管效应,是不同的,后者是

无序变有序与有序变无序的时空统计现象,不仅仅只有微观电

荷粒子的集体运动存在这种现象,非带电的微观量子的集体运

动同样存在,一般流体性运动如导热性等,都有这种有序性变

化引起的维度效应。实验证明,在半导体硅表面镀氧化铝薄膜

等形成的3维半导体-2维绝缘体界面结构材料,如图12、图

7所示,在室内自然光条件下,同样存在3-2维度变化的维度效应,这是传统量子机制所不能解释的。

5结论

3维半导体晶体硅与2维金属薄膜组成3-2维界面结构材料,导电性导热性等物理性能的维度效应,普遍存在。3-2维度界面结构材料导电性所呈现的二极管效应,是复合材料维度变化效应与导电粒子量子扩散形成电位势垒效应,双重叠加的二极管效应。由复合材料内部界面结构维度有序变化产生的,材料的导电性、导热性等物理性能的维度关联现象,在光电子等领域具有广阔的应用前景。

6参考文献

[1]《热运动与自组织的本质——时空统计热力学》,宋太伟,百度文库,2015,P26-27,P42。

[2]《时空结构几何》,宋太伟,2014

[3]《高效太阳能电池机理与工艺结构》,宋太伟,百度文库,2014

[4]《低维结构中粒子之间的强关联作用》,宋太伟,百度文库,2016

[5]Franchy R2000Growth of thin,crystalline oxide,nitride and oxynitride films on metal and

metal alloy surface,Surf.Sci.Rep.38,195

[6]Peter T,Beate S,Detlef D and Eckart H,Optical response of metal-insulator-metal

heterostructures and their application for the detection of chemicurrents,New Iournal of Physics12(2010),113014

[7]Suarez C,Bron W E and Juhasz T,1995,Dynamics and transport of electronic carriers in

Thin gold films,Phys.Rev.Lett.75,4536-9

[8]《固体物理学》,黄昆,韩汝琦,高等教育出版社,2001,P351-360

[9]Mizielinski M S and Bird D M,2010,Accuracy of perturbation theory for nonadiabatic

effects in adsorbate-surface dynamics,J.Chem.Phys.132,184704

[10]《拓扑学基础与应用》,Colin Adams,Robert Franzosa,沈以淡等译,机械工业出版社,

2010,P16-44,73-107

[11]Bird D M,Mizielinski M,Lindenblatt M and Pehlke E,2008,Electronic excitation in atomic

adsorption on metals:a comparison of ab initio and model calculations,Surf.Sci.6021212-6

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

半导体基础知识

半导体基础知识(详细篇) 2.1.1概念 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。 1. 导体:容易导电的物体。如:铁、铜等 2. 绝缘体:几乎不导电的物体。如:橡胶等 3. 半导体:半导体是导电性能介于导体和半导体之间的物体。在一定条件下可 导电。 半导体的电阻率为10-3?109 cm 典型的半导体有硅 Si 和锗Ge 以 及砷化傢GaAs 等。 半导体特点: 1) 在外界能源的作用下,导电性能显著变化。光敏元件、热敏元件属于此 类。 2) 在纯净半导体内掺入杂质,导电性能显著增加。二极管、三极管属于此 类。 2.1.2本征半导体 1. 本征半导体一一化学成分纯净的半导体。制造半导体器件的半导体材料的纯度 要达到99.9999999%常称为“九个9”。它在物理结构上呈单晶体形态。电子 技术中用的最多的是硅和锗。 硅和锗都是4价元素,它们的外层电子都是4个。其简化原子结构模型如下 图: 外层电子受原子核的束缚力最 小, 成为价电子。物质的性质是由价 电子决 定的。 2. 本征半导体的共价键结构 本征晶体中各原子之间靠得很近, 相邻原子的吸引,分别与周围的四个原子 的价电子形成共价键。 外层电子受原子核的束缚力最小, 的。 使原分属于各原子的四个价电子同时受到 共价键中的价电

3.共价键 共价键上的两个电子是由相邻原子各用 一个电子组成的,这两个电子被成为束缚电子。 束缚电子同时受两个原子的约束,如果没有足 够的能量,不易脱离轨道。因此,在绝对温度 T=0° K (-273° C )时,由于共价键中的电子 被束缚着,本征半导体中没有自由电子,不导 电。只有在激发下,本征半导体才能导电 4. 电子与空穴 当导体处于热力学温度0°K 时,导体中没有自由电子。当温度升高或受到 光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电, 成为自由电子。这一现象称为本征激发,也称热激发。 自由电子产生的同时,在其原来的共价键中就出现了一个空位, 原子的电中 性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性 的这个空位为空穴。 电子与空穴的复合 可见因热激发而出现的自由电子和空穴是同时成对出现的, 称为电子空穴对。 游离的部分自由电子也可能回到空穴中去, 称为复合,如图所示。本征激发和复 合在一定温并为它们所束缚,在空间形成排列有序的晶体。如下图所 硅晶体的空间排列与共价键结构平面示意图 空A * 电 子为这些原子所共有,

物质的导电性半导体的导电特性

neSv t t neSv t q I =??=??= 物质的导电性和半导体的导电性 知识要点 一、物质的导电性 1、金属中的电流 金属导体内的电流强度与自由电子的平均定向运动速率有关。则 由上式可估算出电子的定向运动速率是很小的,一般为s m /105 -数量级,与电子热 运动的平均速率(约s m /10 5 数量级)和“电的传播速率”(即电场的传播速率,为 s m /1038?)不能混为一谈。 2。液体中的电流 (1)液体导电包括液态金属导电与电解质导电两种。电解质导电与金属导电的机理不同,固态金属导电跟液态金属(如汞)导电的载流子是自由电子,在导电过程中,金属本身不发生化学变化,而电解质导电的载流子是正负离子,在导电过程中,伴随着电解现象,在正负极板处同时发生化学反应(即电解)。 (2)法拉第总结出了两条电解定律。 第一定律::电解时析出物质的质量m 跟通过电解液的电量Q 成正比,用公式表示为: kIt kQ m ==式中比例恒量k 叫做电化当量,其物理意义是:通过1C 电量时,所析出 这种物质的质量。 第二定律:各种物的电化当量k 与它的化学当量成正比,即Fn M k /=,在化学中, 我们常将 n M /称为“化学当量”,F 叫法拉第常量。实验指出, 96=F mol C mol C /1064.9/4844?≈,将上式代入电解第一定律可得()Fn MQ m /= 这就是法拉第电解定律的统一表达式。当析出物质的质量m 等于该物质的化学当量,则F 与Q 在数值上相等。 3、气体中的电流 ①通常情况下,气体不导电。只有在电离剂存在或极强大的电场情况下,气体才会被电离而导电。气体导电既有离子导电,又有电子导电。气体导电不遵从欧姆定律。 ②由于引起气体电离的原因不同,可分为被激放电和自激放电。在电离剂(用紫外线、X 射线或放射性元素发出的放射线照射或者用燃烧的火焰照射气体)的作用下,发生的气体放电现象叫做被激放电。没有电离剂作用而在高电压作用下发生的气体放电现象叫做自激放电。 放电可以变成弧光放电。若电源的功率很大时,火花放电可以变成弧光放电。

半导体-金属导体平面结构导电性能的维度效应

半导体-金属导体平面界面结构导电性能的维度效应 宋太伟邹杏田璆璐 2017年3月 上海日岳新能源有限公司上海陆亿新能源有限公司上海建冶研发中心 内容摘要: 半导体-金属材料结构界面或其它由2种不同材料组成的复合材料结构界面,一般存在明显的微观扩散结势垒构造,这种扩散结对复合材料的导电性等物理性能产生明显影响。我们发现这种半导体-金属组合结构材料的导电性与半导体和金属导体的几何结构存在明显的关联效应,尤其是在体型半导体平面表面镀上金属薄膜的材料结构,表现出清晰的导电性等物理性能与材料几何结构维度的关联关系,这种材料的导电性呈现明显的二极管效应。我们用时空结构几何理论对此现象分别作了理论阐明。这种普遍存在的由半导体和金属材料的维度差异引起的复合材料的二极管效应,其理论价值与在光电工程领域的应用价值极大。 1 引言 两种不同材料的接触面,一般会产生接触势垒。由具有一定导电性能的两种材料依次排列组成的复合材料结构,由于不同材料导电电子的平均约束势能不同,在两种材料的接触界面附近,微观上呈非均衡的载流子扩散形态及电位梯度。界面附近导电电子低约束势能的材料呈现一定的正电性,相应的另一种导电电子高约束势能的材料界面附近呈现一定的负电性,复合材料内部这种不同材料界面附近的微观构造形态,是一种接触电位势垒,可称为电位势结,平面薄膜结构形态的也称为“量子泵”[3]。就导电性能来讲,这种内部界面构造,都有一定程度的二极管效应。半导体PN结是典型的界面电位势结构造形态。 我们在开发研制高效多结层硅基太阳能电池的过程中,发现不同材料界面附近的微观电位势结构造形态,对复合材料的导电性能的影响,存在明显的维度关联关系或者说尺度关联关系,也就是说,复合材料内部界面电位势结产生的二极管效应大小,与两种材料的几何维度构造明显关联,两种不同材料典型的几何维度形态结构组合是3维-2维、3维-1维、3维-0维、2维-1维、2维-0维等,见示意图1。我们重点对半导体硅晶体为3维、金属或非金属为2维薄膜的3-2维界面构造材料(示意图1中的a结构),就其光电性能变化进行了详细的实验与分析研究,使用的实验仪器设备主要包括真空镀膜系统、氙灯、单色仪、i-v曲线源表、椭圆偏振仪、显微镜等。我们运用简单的时空结构几何[1][2]模型,对3维-2维界面

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体导电性

在电场和磁场作用下,半导体中的电子和空穴的运动会引起各种电荷的输运现象 半导体的导电性强弱随温度和杂质的含量变化而变化。 1. 从能带角度理解半导体的导电性 半导体在绝对零度时,被电子占据的最高能带为满带,上面临近的能带是空带,当有一定温度时,电子从满带激发到空带,原来的空带变为不满带,在电场作用下,电子的状态在布里渊区中的分布不再对称,半导体导电。 2. 从晶格角度理解半导体的导电性 在一定温度下,共价键上的电子e 挣脱了价键的束缚,进入到晶格空间形成准自由电子,这个电子在外电场的作用下运动而形成电子电流。在价键的电子进入晶格后留下空穴,当这个空穴被电子重新填充后,会在另一个位置产生新的空穴,这一过程为空穴电流 3. 载流子的散射 理想完整晶体中电子处于严格周期势场中,v (k )不变,实际晶体由于存在缺陷,相当于在原有严格周期性势场上叠加了附加势场,从而引起了载流子状态的改变成为载流子的散射 连续两次散射间的平均自由时间,散射主要有晶格振动散射和电离杂质散射。(1)电离杂质原因是:电离杂质因为形成库仑场,附加在周期场上,局部破坏了周期势场。散射几率: (2)晶格振动散射:晶体中格波氛围声学支和光学支。声学支描述原胞的整体运动,光学支描述一个原胞内两个原子的相对运动。一个原胞有n 个原子,则三维情况下总的格波数为3n ,其中3支声学波,3(n-1)支光学波。 ①声学波散射原因:纵波的振动形式使原子形成疏密分布,半导体体积在疏处膨胀,密处压缩,使能带发生振动,产生附加势。②光学波散射原因:原子的相对运动使电荷分布形成正电荷区和负电荷区,产生电场,形成附加势。 4. 载流子的漂移运动,迁移率 (1) 在有外加电场存在时,载流子沿一定方向的有规则运动,称为漂移运动。它是引起电 荷流动的原因。 考虑平均,则电子和空穴的漂移速率分别为 ετ *- =n n n m q v 和 ετ *=p p p m q v ,*p m 和p τ分别为空穴的有效质量和弛豫时间。

半导体的导电特性(精)

自然界的各种物质就其导电性能来说,可以分为导体、绝缘体和半导体三大类。 半导体的导电能力介于导体和绝缘体之间,如硅、锗等,它们的电阻率通常在之间。半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。如纯净的半导 体单晶硅在室温下电阻率约为,若按百万分之一的比例 掺入少量杂质(如磷)后,其电阻率急剧下降为,几乎降低了一百万倍。半导体具有这种性能的根本原因在于半导体原子结构的特殊性。 1.1.1 本征半导体 图1.1.1 硅原子的简化模型 常用的半导体材料是单晶硅(Si)和单晶锗(Ge)。所谓单晶,是指整块晶体中的原子按一定规则整齐地排列着的晶体。非常纯净的单晶半导体称为本征半导体。

1.本征半导体的原子结构 半导体锗和硅都是四价元素,其原子结构示意图如图1.1.1所示。它们的最外层都有4个电子,带4个单位负电荷。通常把原子核和内层电子看作一个整体,称为惯性核。惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。 2.本征激发 在本征半导体的晶体结构中,每一个原子与相邻的四个原子结合。每一个原子的价电子与另一个原子的一个价电子组成一个电子对。这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓共价键的结构,如图1.1.2所示。 图 1.1.2 本征硅共价键结构 一般来说,共价键中的价电子不完全象绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,将这种物理现象称作为本征激发。 理论和实验表明:在常温(T=300K)下,硅共价键中的价电子只要获得大于电离能E G(=1.1eV)的能量便可激发成为自由电子。本征锗的电离能更小,只有0.72eV。 当共价键中的一个价电子受激发挣脱原子核的束缚成为自由电子的同时,在共价键中便留下了一个空位子,称“空穴”。当空穴出现时,相邻原子的价电子比较容易离开它所在的共价键而填补到这个空穴中来使该价电子原来所在共价键中出现一个新的空穴,这个空穴又可能被相邻原子的价电子填补,再出现新的空穴。价电子填补空穴的这种运动无论在形式上还是效果上都相当于带正电荷的空穴在运动,且运动方向与价电子运动方向相反。为了区别于自由电子的运动,把这种运动称为空穴运动,并把空穴看成是一种带正电荷的载流子。 在本征半导体内部自由电子与空穴总是成对出现的,因此将它们称作为电子-空穴对。当自由电子在运动过程中遇到空穴时可能会填充进去从而恢复一个共价键,与此同时消失一个“电子-空穴”对,这一相反过程称为复合。 在一定温度条件下,产生的“电子—空穴对”和复合的“电子—空穴对”数量相等时,形成相对平衡,这种相对平衡属于动态平衡,达到动态平衡时,“电子-空穴对”维持一定的数目。 可见,在半导体中存在着自由电子和空穴两种载流子,而金属导体中只有自由电子一种载流子,这也

半导体的导电性

第四章 半导体的导电性 引言 前几章介绍了半导体的一些基本概念和载流子的统计分布,还没有涉及到载流子的运动规律。本章主要讨论载流子在外加电场作用下的漂移运动,讨论半导体的迁移率、电导率、电阻率随温度和杂质浓度的变化规律,以及弱电场情况下电导率的统计理论和强电场情况下的效应,并介绍热载流子的概念。 §载流子的漂移运动和迁移率 一、欧姆定律 1.金属:V I R = () l R s ρ=() 单位:m Ω?和cm Ω? 1 = σρ () 单位:/m S 和/cm S 2.半导体: 电流密度:通过垂直于电流方向的单位面积的电流,J=I s ??() 单位:/m A 和/cm A 电场强度:= V l ε()单位:/m V 和/cm V 均匀导体:J= I s () 所以,J==I V l s Rs Rs εεσ==() 上式表示半导体的欧姆定律,把通过导体某一点的电流密度和改点的电导率及电场强度直接联系起来,称为欧姆定律的微分形式。 二、漂移速度和迁移率 有外加电压时,导体内部的自由电子受到电场力的作用,沿电场反方向作定向运动构成电流。电子在电场力作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。 电子的平均漂移速度为d v ,则其大小与电场强度成正比: d v με=()其中,μ称为电子的迁移率,表示单位场强下电子的平均漂移速度,单位是

m 2 /V·s 或cm 2 /V·s。由于电子带负电,其d v 与E 反向,但μ习惯上只取正值, 即d v με = () d J nqv =- 三、 半导体的电导率和迁移率 型半导体:n p ,0n n q σμ=() 型半导体:p n ,0p p q σμ=() 3.本征半导体:i n p n ==,()i n p n q σμμ=+() 4.一般半导体:n p nq pq σμμ=+() §载流子的散射 一、载流子散射的概念 在有外加电场时,载流子在电场力的作用下作加速运动,漂移速度应该不断增大,由式: d J nqv =-可知,电流密度将无限增大。但是由式:J σε=可知,电流密度应该是恒定的。 因此,二者互相矛盾。 (一)没有外电场作用时 在一定温度下: 半导体内部的大量载流子永不停息地做无规则的、杂乱无章的运动,称为热运动; } d v με =(4.110) J nq με=-(4.111) nq σμ=-电导率与迁移率之间的关系 实际中,存在破坏周期性势场的作用因素:杂质、缺陷、晶格热振动等。 一块均匀半导体,两端加以电压,在其内部形 成电场。 电子和空穴漂移运动的方向不同,但形成的电 流都是沿着电场方向的。 半导体中的导电作用应该是电子导电和空穴导 电的总和。

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

第6章半导体导电性作业

第六章 半导体导电性作业 1. 一块n 型硅半导体,其施主浓度315/10cm N D =,本征费米能级i E 在禁带正中,费米能级F E 在i E 之上eV 29.0处,设施主电离能eV E D 05.0=?,试计算在K T 300=时,施主能级上的电子浓度。 2. 一块n 型硅材料,掺有施主浓度315/105.1cm N D ?=,在室温(K T 300=)时本征载流子浓度312/103.1cm n i ?=,求此时该块半导体材料的多数载流子浓度和少数载流子浓度。 3.一硅半导体含有施主杂质浓度315/109cm N D ?=,和受主杂质浓度316/101.1cm N A ?=,求在K T 300=时(310/103.1cm n i ?=)的电子和空穴浓度以及费米能级位置。

4. 若锗在300=T K 时,319101.1-?=cm N C ,3191051.0-?=cm N V ,禁带宽度为67.0=g E eV ,试计算: (1)电子和空穴的有效质量*e m 和*h m ; (2)300=T K 时的本征载流子浓度; (3)在77K 时的,C N ,V N 及本征载流子浓度(77=T K 时,70.0=g E eV )。

5、试用能带论解释为何固体有导体,半导体和绝缘体之分? 晶体电子的状态由分立的原子能级分裂为能带,电子填充能带的情况分为满带、不满带和空带,对于半导体和绝缘体,只存在满带和空带,最高满带称价带,最低满带称导带,导带与价带之间的间隔称带隙,一般绝缘体带隙较大,半导体带隙较小。 对于导体,出满带和空带外,还存在不满带,即导带。满带电子不导电,而不满带中的电子参与导电。半导体的带隙较小,价带电子受到激发后可以跃迁至导带参与导电,绝缘体的带隙较大,价电子须获得很大的能量才能激发,故一般情况下,不易产生跃迁现象。

半导体的导电性

半导体的导电性 1载流子的漂移运动和迁移率 欧姆定律 电流密度 指通过垂直于电流方向的单位面积的电流 漂移速度和迁移率 1.有外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向作定向运动构成电 流。电子在电场力作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。 2.当导体内部电场E恒定时,电子应具有一个恒定不变的平均漂移速度v_d。电场强度增大时, 电流密度J也相应地增大,因而,平均漂移速度v_d也随着电场强度E的增大而增大,反之亦 然。 3.电子的迁移率μ的大小反映了载流子在外电场的作用下,载流子运动能力的强弱。 半导体的电导率和迁移率 1.半导体的导电作用是电子导电和空穴导电的总和。 2.导电的电子是在导带中,它们是脱离了共价键可以在半导体中自由运动的电子;而导电的空穴 是在价带中,空穴电流实际上是代表了共价键上的电子在价键间运动时所产生的电流。 3.在相同电场作用下,导带电子平均漂移速度>价带空穴平均漂移速度,就是说,电子迁移率>空 穴迁移率。 2载流子的散射 载流子散射的概念 1.在一定温度下,半导体内部的大量载流子即使没有电场作用,它们也不是静止不动的,而是永 不停息地作着无规则的、杂乱无章的运动,称为热运动。 2.载流子无规则热运动与热振动着的晶格原子、电离了的杂质离子发生碰撞,速度方向发生改 变,即电子波在传播时遭到了散射。 3.自由载流子,实际上只在两次散射之间才真正是自由运动的,其连续两次散射间自由运动的平 均路程称为平均自由程,而平均时间称为平均自由时间。 4.存在外电场时,一方面载流子受到电场力的作用,作定向漂移运动;另一方面载流子仍不断地 遭到散射,使运动方向不断发生改变。→运动方向和速度大小不断变化→漂移速度不能无限地积累→加速运动只在两次散射之间存在→平均漂移速度 半导体的主要散射机构 散射原因:周期性势场被破坏而存在附加势场。

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质 何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG? 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass) 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体 二氧化硅其K值为3.9表示何义 答:表示二氧化硅的介电质常数为真空的3.9倍 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体 简述Endpoint detector之作用原理. 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测到强度变强或变弱,当超过某一设定强度时,即定义制程结束而该点为endpoint.

半导体的导电特性

半导体的导电特性 根据物质的导电能力可分为导体、半导体和绝缘体三大类,顾名思义半导体的导电能力介于导体绝缘体之间。硅、锗、硒及大多数金属氧化物和硫化物都是半导体。 半导体的导电特性 热敏性:当环境温度升高时,导电能力显著增强(可做成温度敏感元件,如热敏电阻)。光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。 掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。 1.本征半导体 本征半导体:完全纯净的、不含其它杂质的半导体通称本征半导体。 用得最多的是硅和锗,图1所示是硅和锗的原子结构图,它们都是四价元素,在原子的最外层轨道上都有四个价电子。 (a) 锗Ge (b) 硅Si 图1 硅和锗的原子结构 在本征半导体中,每个原子的一个价电子与另一原子的一个价电子组成一个电子对,并且对两个原子所共有,因此称为共价键。由共价键结构形成的半导体其原子排列都比较整齐,形成晶体结构,因此半导体又称为晶体,如图2所示。 图2 晶体中原子的排列方式本征半导体的导电机理

在本正半导体的晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对。这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓的共价键结构,如图 3所示。 图3 硅单晶中的共价键结构 在共价键结构的晶体中,每个原子的最外层都有八个价电子,因此都处于比较稳定的状态。只有当共价键中的电子获得一定能量(环境温度升高或受到光照射)后,价电子方可挣脱原子核的束缚成为自由电子,并且在共价键中留下一个空位,称为空穴。如图4所示。 图4 空穴和自由电子的形成 在一般情况下,本征半导体中自由电子和空穴的数量都比较少,其导电能力很低。由于本征半导体中的自由电子和空穴总是成对出现,因此在一定温度下,它们的产生和复合将达到动态平衡,使自由电子和空穴维持在一定数目上。温度愈高,自由电子和空穴的数量愈多,导电性能也愈好。所以,温度对半导体的性能影响很大。 当半导体外加电压时,在电场的作用下,半导体中将出现两部分电流:一是自由电子作定向运动形成的电子电流;二是有空穴的原子吸引相邻原子中的价电

半导体导电原理

半导体导电原理(2009-03-15 14:13:07)转载▼ 标签:科技文化物理新视点 半导体的导电原理也是因为有电子通路——流通 所有物质(包括半导体)的导电原理同出一辙——流通 半导体一般是由4 价的硅(或者是锗,以下同)为主体材料,?它们的晶体结构也和金刚石一样,每个原子结合成4 个结构元在空间等距、有序环绕,构成金刚石结构,很纯的单晶硅基本不导电。 在纯硅晶体中加了少量的5价元素后,就形成了N型半导体。 在纯硅晶体中加入少量的3价元素后,就形成了P型半导体。 [分析]在上一章谈到了金属物质的导电,谈到了流通,建立了电子空位之说,论述了电压波的传导和金属的导电。有人会问:硅、锗、?金刚石等物质的原子外层仅4个价电子,还有4个空位,那它们为什么不导电?石墨也是由碳原子构成,它为什么又导电呢? 这里需要说明的是:导电是物质的整体性能,不应以单个或几个原子的状态来认识整体,电子空位是电子在价和运动时出现的暂时效应,不能以静止的眼光来看待空位,亦不能以静止的眼光来看待物质的导电。 在硅、锗晶体中每个原子与相邻的4个原子共用外层电子组成4个结构元,四周的价和电子以均匀的速率规则绕核心而运动,从整体上看,其核外电子层是均匀饱满的,难以形成电子空位,所以它不导电(电阻很大)。 石墨是由碳原子构成,其外层有4个价电子,?但是其晶体是片状石墨晶格结构,每个原子与周边的3 个原子组成平面丫字形结构元,进而结合成平面六边形结构,而另一价电子则在两平面间作价和运转。其原子的层间间距是平面间距的二倍多,层间价和电子在途时间较长,层间电子在途时,就形成了电子空位,电压波在其间传导,电子在回路中换位移动形成电流,于是石墨就成了良好的导体,同时也构成了石墨导电体的方向性。 N型半导体在纯硅晶体中加了少量的5价元素后,就形成了N型半导体。 掺杂加入的5价元素,例如磷原子镶嵌在硅晶体中,磷原子占据了晶体中硅原子的一个位置,磷的5个价电子参与硅中的4个价和运转,尚有1个价电子无价和轨道,这多出的一个电子并不是在外老实呆着,而是稍有机会就混杂进入别的价和运转的轨道中,参与价和运转,扰乱了原硅晶体均匀的速率,使得整个晶体中的价和电子的运转出现了拥挤和等待的紊乱现象。有许多瞬时价和电子因途中紊乱而没有到位,于是晶体中出现了临时性的电子空位(临时性空位在晶体中占有一定概率),电压波可以乘机传导,电子可以在电压波的引导下乘虚而入,形成电子的定向流动——电流。 这样,掺杂5价元素使得硅晶体的导电能力增加,形成了N型半导体。 由于N型半导体是掺杂多电子元素使规律运转的核外电子产生运动不均衡,发生混乱所形成的电子空位,而温度上升能加剧核外电子运动的混乱,所以温升能有效地增加N型半导体的导电能力,即N型半导体有较强的热敏性能。 P型半导体在硅晶体中加入少量的3价元素后,就形成了P型半导体。 3价元素例如硼,在价和结构中顶替了一个硅原子,因硼外层只有3个价电子,使得与硼相连的4个结构元中有一个是单电子价和运转,形成了电子空位。与这个单电子结构元相连的6个结构元相继有电子进入补充,形成了更多的电子空位,电压波乘机在电子空位间传导,引导电换位移动形成电流。这样,掺杂3价元素使得硅晶体的导电能力较大地增加,形成了P型半导体。

半导体材料导电类型的测定

实验1 半导体材料导电类型的测定 1.实验目的 通过本实验学习判定半导体单晶材料导电类型的几种方法。 2.实验内容 用冷热探针法和三探针法测量单晶硅片的导电类型。 3.实验原理 3.1 半导体的导电类型是半导体材料重要的基本参数之一。在半导体器件的生产过程中经常要根据需要采用各种方法来测定单晶材料的导电类型。测定材料导电类型的方法有很多种,这里介绍常用的几种测定导电类型的方法,即冷热探针法、单探针点接触整流法和三探针法。 3.1.1 冷热探针法 冷热探针法是利用半导体的温差电效应来测定半导体的导电类型的。在图1a中,P型半导体主要是靠多数载流子——空穴导电。在P型半导体未加探针之前,空穴均匀分布,半导体中处处都显示出电中性。当半导体两端加上冷热探针后,热端激发的载流子浓度高于冷端的载流子浓度,从而形成了一定的浓度梯 度。于是,在浓度梯度的驱使下,热端的空穴就 向冷端做扩散运动。随着空穴不断地扩散,在冷 端就有空穴的积累,因而带上了正电荷,同时在 热端因为空穴的欠缺(即电离受主的出现)而带上 了负电荷。上述正负电荷的出现便在半导体内部 形成了由冷端指向热端的电场。于是,冷端的电 势便高于热端的电势,冷热两端就形成了一定的 电势差,这一效应又称为温差电效应,这个电势 差又称为温差电势。如果此时在冷热探针之间接 入检流计,那么,在外电路上就会形成由冷端指 向热端的电流,检流计的指针就会向一个方向偏 转。从能带的角度来看,在没有接入探针前,半 导体处于热平衡状态,体内温度处处相等,主能 带是水平的,费米能级也是水平的。在接入探针 以后,由于冷端电势高于热端电势,所以冷端主 能带相对于热端主能带向下倾斜,同时由于冷端 温度低于热端,故热端的费米能级相对于冷端的 费米能级来说,距离价带更远,如图1b所示。 如果我们将上述的P型半导体换成N型半导 体,则电子做扩散运动,在冷端形成积累。由于

半导体导电类型

半导体材料电学参数测量(electric parameter measurement for semiconductor material) 电学参数是半导体材料钡0量的重要内容。它主要包括导电类型、电阻率、寿命和迁移率测量。 导电类型测量半导体的导电过程存在电子和空穴两种载流子。多数载流子是电子的称n型半导体;多数载流子是空穴的称p型半导体。测量导电类型就是确定半导体材料中多数载流子的类别。常用的方法有冷热探针法、整流法等。冷热探针法是利用温差电效应的原理,将两根温度不同的探针与半导体材料表面接触,两探针间外接检流计(或数字电压表)形成一闭合回路,根据两个接触点处存在温差所引起的温差电流(或温差电压)的方向可以确定导电类型。整流法是利用金属探针与半导体材料表面容易构成整流接触的特点,可根据检流计的偏转方向或示波器的波形测定导电类型。常用三探针或四探针实现整流接触。霍耳效应亦可测定半导体材料的导电类型。 电阻率测量电阻率是长1cm,截面积1cm2材料的电阻,它反映了半导体材料导电能力的大小。测量电半阻率的方法较多,最基本的有两探针法、直线四探针法、扩展电阻法和专门用于薄片状半导体材料的范德堡法等。两探针法是在一电阻率均匀的规则样品上通过恒定的直流电流,两根沿电流方向排列的探针与样品压触,测量两根探针间的电位差(图1)。 式中V T为探针间的电位差,mV;I为通过样品的直流电流,mA;A为样品截面积,cm2;L为探针间距,cm。直线四探针法是用一直线排列的四根探针与一相对于探针间距是半无穷大的样品表面压触,外面探针通过恒定直流电流,测定中间两根探针的电位差(图2)。

图2四探针法测量半导体电阻率示意图 样品的电阻率可用下式计算:式中S为探针系数,cm;V23为中间两根探针电位差的测量值,mV;I14。为通过样品的电流,mA;对于直线排列的四探针, 探针系数S为:式中S1、S2和S3分别为相应的探针间的距离,cm。应用直线四探针法测量时,还必须考虑样品的边界影响和由探针游移引起的误差。扩展电阻法是利用单根探针与半导体材料接触时,电流展开效应引起的扩展电阻,在接触状态不变时仅与半导体材料电阻率有关的原理: 式中R S为扩展电阻,Ω;ρ为样品电阻率,Ωcm;ɑ为有效电接触半径,cm。扩展电阻法对测量半导体材料微区电阻率尤为重要,它可以确定体积为10-10cm。区域的电阻率,分辨率可达1μm。因此适用于抛光片、单层或多层结构外延层电阻率的测量,还可依此确定外延层(或扩散层)的厚度和过渡区的宽度。范德堡法适用于薄片状样品的电阻率测试,它要求样品的厚度和电阻率均匀,且无空洞。可在样品的边缘上制备A、B、C、D 四个触点,并尽量注意。任意相邻的两点,如AB间通电流I AB,测量另一对触

导体的特性

3.2 导体的特性 1.导体的定义 2.静电场中的导体 3.恒定电场中的导体 4.导电材料的物态方程 5.导体的电导率

1. 导体的定义:含有大量可以自由移动的带电粒子的物质。导体分为两种金属导体:电解质导体:由自由电子导电。 由带电离子导电。 2. 静电场中的导体静电平衡状态的特点: (1)导体为等位体;(2)导体内部电场为零; (3)导体表面的电场处处与导体表面垂直,切向电场为零; (4)感应电荷只分布在导体表面上,导体内部感应电荷为零。 (0)V ρ=++++++ ------E 外 E 内

3. 恒定电场中的导体 将一段导体与直流电源连接,则导体内部会存在恒定电场。其平均电子速度称为漂移速度: d e E νμ=-式中:称为电子的迁移率, 其单位为。e μ2(m /V s)?如图: 单位时间内通过的电量为: d S e d d =d d q I N e S t ν=-式中:为自由电子密度。 e N 故电流密度为:C e d J N e ν=-C e e J N e E μ=可得:

C e e J N e E μ=e e N e σ μ=若设:C J E σ=则: 描述导电材料的电磁特性的物态方程。 导体的电导率 4. 导电材料的物态方程

5. 导体的电导率 电导率是表征材料导电特性的一个物理量。 电导率除了与材料性质(如,)有关外,还与环境温度有关。e N e μ(1)导体材料: 随着温度的升高,金属电导率变小。有些导体在低温条件下电导率非常大,使电阻率趋向于零,变成超导体。 如铝在时时,就呈现超导状态。1.2K 不同材料的电导率数据见教材。 (2)半导体材料: 随着温度的升高,电导率明显增大。 e e h h N e N e σμμ+=

半导体的导电特性及其应用

半导体的导电特性及其应用 半导体是现代信息化工业的基础,可以利用半导体材料制作电子器件和集成电路,这些都是信息技术的基础,其材料的研发和制作大大的促进了现代社会信息化的飞速发展。半导体的种类也多种多样。本文将主要介绍半导体的相关基础概念、半导体的导电特性及其应用。 關键词:半导体导体特性导电性PN结 引言 [1]1990年以前的半导体材料主要以硅材料为主,几乎完全垄断着整个电子行业。目前的很多半导体相关电子器件也主要是用硅材料制作的。硅材料相关电子器件的发展完全决定和导致了微型计算机的出现和发展甚至整个信息产业的飞跃。随着社会信息化的发展,除了硅材料以外的砷化镓、磷化铟、氮化镓等半导体材料也在电子行业展露头角,其相较硅材料的各种优势也逐渐被人们发现,当然其不足也同样存在。 一、半导体的基本概念 从材料的导电与否可以分为导体、绝缘体和半导体。而半导体,则通常是指其导电性能在导体与绝缘体之间,其导电性可被人为控制。 原子的最外层电子受到激发,会形成自由电子,电子逃离后变成了空穴。半导体中有两种载流子——自由电子和空穴。[2]其中半导体又分为N型半导体和P型半导体。P型半导体通常又可以称为空穴半导体,因为其是指通过空穴导电的半导体,在纯净的晶体硅中掺入三价的原子,掺入的原子取代硅原子在晶格中的位置,会形成空穴,当然掺入的原子越多,形成的空穴则越多,导电性就会越好;N型半导体也可以称为电子半导体,因为其是指依靠自由电子导电的半导体,在纯净的晶体硅中掺入五价原子,掺入的原子取代硅原子在晶格中的位置,会形成自由电子,当然掺入的原子越多,形成的自由电子则越多,导电性就会越好。但通常空穴的多少还取决于温度,而自由电子的浓度取决于掺入的原子浓度。 [3]单一的P型半导体或者单一的N型半导体都仅能做电阻使用,用处都不大,通常是将二者结合在一起使用。当二者相互接触时,其交界区域成为PN结。 二、半导体的导电特性 [4]纯净的半导体材料在温度很低(绝对零度左右)时,价电子被束缚得很紧,内部几乎完全没有电子可以移动,也就是没有载流子可以导电,这种情况下的半导体材料的导电性接近绝缘体。但半导体材料的特别之处就是,其导电能力会随着外加条件的改变而改变。即前面提过的导电能力可控性。

相关文档
最新文档