高二数学杨辉三角综合测试题

高二数学杨辉三角综合测试题
高二数学杨辉三角综合测试题

选修2-3 1.3.2 杨辉三角与二项式系数的性质

一、选择题

1.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( )

A .2n -1

B .2n -1

C .2n +1-1

D .2n [答案] C

[解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1

=2n +1-1.

解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C. 2.(x -y )7的展开式中,系数绝对值最大的是( ) A .第4项 B .第4、5两项 C .第5项

D .第3、4两项

[答案] B

[解析] (x -y )n 的展开式,当n 为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n 为奇数时,展开式有n +1项,中间两项的二项式系数最大,而(x -y )7的展开式中,系数绝对值最大的是中间两项,即第4、5两项.

3.若? ??

??x 3+1x 2n

展开式中的第6项的系数最大,则不含x 的项等于

( )

A .210

B .120

C .461

D .416

[答案] A

[解析] 由已知得,第6项应为中间项,则n =10.

T r +1=C r 10·(x 3)10-r ·? ??

??1x

2r =C r 10·x 30-5r

. 令30-5r =0,得r =6.∴T 7=C 6

10=210.

4.(2008·安徽·6)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( )

A .2

B .3

C .4

D .5

[答案] A

[解析] ∵a 0=a 8=C 08=1,a 1=a 7=C 18=8,a 2=a 6=C 28=28,a 3

=a 5=C 38=56,a 4=C 4

8=70,∴奇数的个数是2,故选A.

5.设n 为自然数,则C 0n 2n -C 1n 2

n -1+…+(-1)k C k n 2n -k

+…+(-1)n C n n =( )

A .2n

B .0

C .-1

D .1

[答案] D

[解析] 原式=(2-1)n =1,故选D.

6.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·

32+1,则A -B =( )

A .128

B .129

C .47

D .0

[答案] A

[解析] A -B =37-C 1736+C 2735-C 3734+…-1=(3-1)7

=128.

7.? ??

??x 2+2x 8

的展开式中x 4项的系数是( ) A .16 B .70 C .560

D .1120

[答案] D

[解析] 考查二项式定理的展开式.

设第r +1项含有x 4,则T r +1=C r 8(x 2)8-r (2x -1)r =C r 8

·2r ·x 16-3r , ∴16-3r =4,即r =4,所以x 4项的系数为C 4824=1120.

8.(2010·广东惠州)已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( )

A .第9项

B .第10项

C .第19项

D .第20项 [答案] D

[解析] ∵(1+x )5+(1+x )6+(1+x )7展开式中含x 4项的系数是

C 45·

11+C 46·12+C 47·13

=5+15+35=55,∴由3n -5=55得n =20,故选D.

9.若n 为正奇数,则7n +C 1n ·7n -1+C 2n ·

7n -2+…+C n -1

n ·7被9除所得的余数是( )

A .0

B .2

C .7

D .8

[答案] C

[解析]原式=(7+1)n-C n n=8n-1=(9-1)n-1=9n-C1n·9n-1+

C2n·9n-2-…+C n-1

n

·9(-1)n-1+(-1)n-1,n为正奇数,(-1)n-1=-2=-9+7,则余数为7.

10.(2010·江西理,6)(2-x)8展开式中不含

..x4项的系数的和为()

A.-1 B.0

C.1 D.2

[答案] B

[解析](2-x)8的通项式为T r+1=C r828-r(-x)r=(-1)r·28-r C r8

x r

2

,则x4项的系数为1,展开式中所有项的系数之和为(2-1)8=1,

故不含x4项的系数之和为0,故选B.

二、填空题

11.若(1-2x)2011=a0+a1x+a2x2+…+a2010x2010+a2011x2011(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)=________.(用数字作答)

[答案]2009

[解析]令x=0,则a0=1.

令x=1,则a0+a1+a2+…+a2010+a2011=(1-2)2011=-1.

∴(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)

=2010a0+(a0+a1+a2+a3+…+a2011)

=2010-1=2009.

12.(2008·北京·11)若? ??

??x 2+1x 3n

展开式的各项系数之和为32,则n

=________,其展开式中的常数项为________(用数字作答).

[答案] 5 10

[解析] 令x =1,得2n

=32,得n =5,则

T r +1=C r 5·(x 2)5-r ·? ??

??1x

3r

=C r 5·x 10-5r

,令10-5r =0,r =2.故常数项为T 3=10.

13.(2010·全国Ⅱ理,14)若? ?

???x -a x 9的展开式中x 3的系数是-84,则a =________.

[答案] 1 [解析] 由

T r +1=C r 9x 9-r ?

??

??-a x r =(-a )r C r 9x

9-2r

得 9-2r =3,得r =3,x 3的系数为(-a )3C 3

9=-84,

解得a =1.

14.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0—1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第______行;第61行中1的个数是______.

[答案] 2n -1 32

[解析] 用不完全归纳法,猜想得出. 三、解答题

15.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0.求:

(1)a 8+a 7+…+a 1; (2)a 8+a 6+a 4+a 2+a 0. [解析] 令x =0,得a 0=1. (1)令x =1得

(3-1)8=a 8+a 7+…+a 1+a 0,①

∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得

(-3-1)8=a 8-a 7+a 6-…-a 1+a 0.② ①+②得28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=1

2(28+48)=32 896.

16.设(1-2x )2010=a 0+a 1x +a 2x 2+…+a 2010x 2010(x ∈R ). (1)求a 0+a 1+a 2+…+a 2010的值. (2)求a 1+a 3+a 5+…+a 2009的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2010|的值. [分析] 分析题意→令x =1求(1)式的值→ 令x =-1求(2)式的值→令x =-1求(3)式的值 [解析] (1)令x =1,得:

a 0+a 1+a 2+…+a 2010=(-1)2010=1①

(2)令x =-1,得:a 0-a 1+a 2-…+a 2010=32010② 与①式联立,①-②得:

2(a 1+a 3+…+a 2009)=1-32010, ∴a 1+a 3+a 5+…+a 2009=1-32010

2.

(3)∵T r +1=C r 2010

·12010-r ·(-2x )r

=(-1)r ·C r 2010·

(2x )r , ∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N *). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2010| =a 0-a 1+a 2-a 3+…+a 2010,

所以令x =-1得:a 0-a 1+a 2-a 3+…+a 2010=32010.

17.证明:(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2=C n 2n .

[证明] ∵(1+x )n (1+x )n =(1+x )2n ,

∴(C 0n +C 1n x +C 2n x 2+…+C n n x n )·(C 0n +C 1n x +C 2n x 2+…+C n n x n )=(1+

x )2n ,

而C n 2n 是(1+x )2n 的展开式中x n 的系数,

由多项式的恒等定理得

C 0n C n n +C 1n C n -1n +…+C n n C 0n =C n 2n . ∵C m n =C n -m n

(0≤m ≤n ), ∴(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2=C n 2n .

18.求(1+x -2x 2)5展开式中含x 4的项. [分析] 由题目可获取以下主要信息:

①n =5;②三项的和与差.

解答本题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法则,由组合数的定义求解.

[解析] 方法一:(1+x -2x 2)5=[1+(x -2x 2)]5,

则T r +1=C r 5·(x -2x 2)r ·(x -2x 2)r 展开式中第k +1项为T k +1=C k r x r

-k ·(-2x 2)k =(-2)k ·C k r ·

x x +k . 令r +k =4,则k =4-r .

∵0≤k ≤r,0≤r ≤5,且k 、r ∈N ,

∴??? r =2k =2

或??? r =3k =1

或???

r =4k =0

.

∴展开式中含x 4的项为[C 25·(-2)2·C 22+C 35·(-2)·C 13+C 4

5·(-2)0·C 0

4]·x 4=-15x 4.

方法二:(1+x -2x 2)5=(1-x )5·(1+2x )5, 则展开式中含x 4的项为

C 05·C 45·(2x )4+C 15·(-x )·C 35·(2x )3+C 25·(-x )2·C 25(2x )2+C 3

5·(-x )3·C 15·(2x )+C 45·(-x )4·C 05·(2x )0=-15x 4

.

高二数学杨辉三角综合测试题

选修2-3 1.3.2 杨辉三角与二项式系数的性质 一、选择题 1.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1 B .2n -1 C .2n +1-1 D .2n [答案] C [解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1 =2n +1-1. 解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C. 2.(x -y )7的展开式中,系数绝对值最大的是( ) A .第4项 B .第4、5两项 C .第5项 D .第3、4两项 [答案] B [解析] (x -y )n 的展开式,当n 为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n 为奇数时,展开式有n +1项,中间两项的二项式系数最大,而(x -y )7的展开式中,系数绝对值最大的是中间两项,即第4、5两项. 3.若? ?? ??x 3+1x 2n 展开式中的第6项的系数最大,则不含x 的项等于 ( ) A .210 B .120

C .461 D .416 [答案] A [解析] 由已知得,第6项应为中间项,则n =10. T r +1=C r 10·(x 3)10-r ·? ?? ??1x 2r =C r 10·x 30-5r . 令30-5r =0,得r =6.∴T 7=C 6 10=210. 4.(2008·安徽·6)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( ) A .2 B .3 C .4 D .5 [答案] A [解析] ∵a 0=a 8=C 08=1,a 1=a 7=C 18=8,a 2=a 6=C 28=28,a 3 =a 5=C 38=56,a 4=C 4 8=70,∴奇数的个数是2,故选A. 5.设n 为自然数,则C 0n 2n -C 1n 2 n -1+…+(-1)k C k n 2n -k +…+(-1)n C n n =( ) A .2n B .0 C .-1 D .1 [答案] D [解析] 原式=(2-1)n =1,故选D. 6.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57· 32+1,则A -B =( ) A .128 B .129 C .47 D .0 [答案] A

人教版高二数学必修5解三角形测试卷培优提高题(含答案解析)

高中数学必修5第一章单元测试题 一 选择题:(共12小题,每题5分,共60分,四个选项中只有一个符合要求) 1.在ABC ?中,若b 2 + c 2 = a 2 + bc , 则A =( ) A .30? B .45? C .60? D .120? 2.在ABC ?中,若20sin A sin B cosC -=,则ABC ?必定是 ( ) A 、钝角三角形 B 、等腰三角形 C 、直角三角形 D 、锐角三角形 3.在△ABC 中,已知5cos 13A =,3 sin 5 B =,则cos C 的值为( ) A 、1665 B 、5665 C 、1665或5665 D 、16 65- 4.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 5.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为 A .5000米 B . 米 C .4000米 D . 6.已知ABC △ 中,a = b =60B = ,那么角A 等于 A .135 B .90 C .45 D .45 或135 7.在△ABC 中,60A ∠=?,2AB =,且△ABC 的面积ABC S ?=,则边BC 的长为( ) A B .3 C D .7 8.已知△ABC 中,2cos c b A =,则△ABC 一定是 A 、等边三角形 B 、等腰三角形 C 、直角三角形 D 、等腰直角三角形 9.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a + =,则c B a c o s 的值为( ) A.41 B. 45 C. 85 D.8 3 10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C 等于( ) (A) π3 错误!未找到引用源。(B) 2π3 错误!未找到引用源。 (C)错误!未

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

高二数学三角函数化简及证明测试题

a 2sin 4-a 2cos 4a 2cos 2a 2sin ,21tan +-=则252 5-14114 1-a 4asin 2sin 41a 8sin -a 8cos +]sin )a 2[sin(2 1)cosa sin(a βββ-+-+§3.2.2 三角函数化简及证明 编者:任传军 【学习目标 细解考纲】 1. 能正确运用三角公式,进行简单三角函数式的化简和恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆); 2. 掌握三角函数式的化简和证明的方法及步骤。 【知识梳理、双基再现】 1.cosαcosβ= ;sinαcosβ= 2.sinθ+sinφ= ; sinθ-sinφ= ; cos θ+cos φ= ; cos θ-cos φ= 【小试身手、轻松过关】 1.已知 的值是( ) A. B. C. D. 2. 4cos 22sin 2+-等于 ( ) A. 2sin B. 2cos - C. 2cos 3 D. 2cos 3- 3. 等于( ) A. cosa B. cos2a C. sina D a 2sin 4.化简4cos 224sin 12+++的结果是 。 【基本训练、锋芒初显】 5. 可化简为( ) A. ββsin )a 2sin(++- B. )a 2sin(β+-

)2 x 4tan()4x x tan(--+ππ2x tan 2 x tan 20 70sin 020sin -010cos 22123a a -1tan =θ=++θθθθcos -a 2sin cos a 2sin =-+2a 4sin 82a 2sin 6a 2cos =-+)cos(a )sin(a ββa)4 (2a)sin 4tan(21 a 2cos 2+--ππsina sin )cos(a 2sina )a 2sin(βββ=+-+ C. βsin D. 0 6.化简 等于 A. tanx B. 2tanx C. D. . 7. 的值是( ) A. B. C.3 D. 2 8. )1020tan 3( 010cos 070tan -?等于( ) 9. 若 (其中0

解三角形题型汇总.docx

《解三角形》知识点归纳及题型汇总 1、①三角形三角关系: A+B+C=180°; C=180°— (A+B); ② . 角平分线性质 : 角平分线分对边所得两段线段的比等于角两边之比. ③ . 锐角三角形性质:若A>B>C则60 A 90 ,0 C 60 . 2、三角形三边关系: a+b>c; a-b

的外接圆的半径,则有 a b c 2R .sin sin sin C 5、正弦定理的变形公式: ①化角为边: a2Rsin, b2Rsin, c2Rsin C ; ②化边为角: sin a, sin b, sin C c ; 2R2R2R ③ a : b : c sin:sin:sin C ; ④a b c a b c=2R sin sin sin C sin sin sin C 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角. 7、三角形面积公式: S C1 bc sin1 ab sin C1 ac sin.=2RsinAsinBsinC=abc 2 2224R = r (a b c) =p( p a)( p b)( p c) ( 海伦公式 ) 2 8、余弦定理:在 C 中, a2b2c22bc cos,b2a2c22ac cos , c2a2b22ab cosC .9、余弦定理的推论: cos b2c2 a 2, cos a2c2b2, cosC a2b2c2. 2bc2ac2ab 10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角

高中高二数学必修三《三角函数公式》整理.doc

高二数学必修三《三角函数公式》整理【倍角公式】 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 【半角公式】 sin(A/2)= √((1-cosA)/2)sin(A/2)=- √((1-cosA)/2) cos(A/2)= √((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)= √((1-cosA)/((1+cosA))tan(A/2)=- √((1-cosA)/((1+cosA)) ctg(A/2)= √((1+cosA)/((1-cosA))ctg(A/2)=- √((1+cosA)/((1-cosA)) 【两角和公式】 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 【积化和差公式】 sin α· cosβ=1/2[sin(α+β-β)+sin()]α cosα· sin β=1/2[sin(-sin(α+αβ)-)] cosα· cosβ=1/2[cos( α+β-)+cos(β)] α sin α· sin-1/2[cos(β= α+-β)cos( α-β)] 【和差化积公式】 sin α+sin β=2sin( α+β)/2-β·)/2cos( α sin α-sin β=2cos( α+β)/2 ·-βsin()/2 α cosα+cosβ=2cos( α+β)/2 ·-βcos()/2 α cosα-cosβ=-2sin( α+β)/2 ·-sin(β)/2α

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形公式

解三角形公式

海伦-秦九韶公式 假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: 而公式里的p为半周长(周长的一半): 注1:"Metrica"(《度量论》)手抄本中用s 作为半周长,所以 和 两种写法都是可以的,但多用p作为半周长。cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2) (2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2

b^2=a^2+c^2-2ac cos B c^2=a^2+b^2-2ab cos C 注:勾股定理其实是余弦定理的一种特殊情况。 变形公式 cos C=(a^2+b^2-c^2)/2ab cos B=(a^2+c^2-b^2)/2ac cos A=(c^2+b^2-a^2)/2bc 海伦-秦九韶公式 p=(a+b+c)/2(公式里的p为半周长) 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 高中数学基本不用。 已知三条中线求面积 方法一:已知三条中线Ma,Mb,Mc, 则 S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb) *(Ma+Mb-Mc)]/3 ; 方法二:已知三边a,b,c ;

高二数学--解三角形---单元测试(精品文档)

高二数学 解三角形单元测试 班级_________ 姓名_______ 学号__________ 一、选择题: 1、已知△ABC 中,a =4,b =4 ,∠A=30°,则∠B 等于 ( ) A .30° B .30°或150° C .60° D .60°或120° 2、已知△ABC 中,AB =6,∠A=30°,∠B=120°,则△ABC 的面积( ) A .9 B .18 C .93 D .18 3、在△ABC 中,根据下列条件解三角形,其中有一解的是 ( ) A .b =7,c =3,C =30° B .b =5,c =4 ,B =45° C .a =6,b =6 ,B =60° D .a =20,b =30,A =30° 4、在△ABC 中,已知三边a 、b 、c 满足(a +b +c)(a +b -c)=3ab ,则∠C 等于 ( ) A .15° B .30° C .45° D .60° 5、已知在△ABC 中:,sinA: sinB: sinC =3: 5 :7,那么这个三角形的最大角是 ( ) A .135° B .90° C .120° D .150° 6、海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( ) A.10 海里 B.5海里 C. 56 海里 D.53 海里 7.在△ABC 中,A 为锐角,lg b +lg( c 1 )=lgsin A =-lg 2, 则△ABC 为 ( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 8.在三角形ABC 中,已知A 60? =,b=1,其面积为3,则 sin sin sin a b c A B c ++++为 ( ) A.33 B. 2393 C. 2633 D. 39 2 9.在△ABC 中,若2 2tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .等腰三角形 D .不能确定 10. 已知锐角三角形三边分别为3,4,a ,则a 的取值范围为( ) A .15a << B .17a << C .75a << D .77a << 二、填空题: 11、在△ABC 中,cos A = 135,sin B =5 3 ,则cos C 的值为______ 12、在△ABC 中,若sin A sin B =cos 2 2C ,则△ABC 为_____ _. 13、某舰艇在A 处测得遇险渔船在北偏东45°距离为10海里的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是______ 14.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =______ 15. (1)在ABC ?中,若22=b ,2=a ,且三角形有解,则A ∠的取值范围为 (2)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 . 三、解答题: 16 (本小题共14分)在?ABC 中,设,2tan tan b b c B A -=,求A 的值。

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

高二解三角形综合练习题

解三角形 一、选择题 1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( ) A.1 B.3 C.2 D.3 2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l2:bx-sin B·y+sin C=0的位置关系是( ) A.平行B.重合 C.垂直D.相交但不垂直 3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( ) A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形 4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( ) A.1 3 B. 1 2 C.3 4D.0 5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( ) A. 3 2 B. 33 2 C.3+6 2 D. 3+39 4 6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( ) A.1

C.7

高二数学三角函数知识点

高二数学三角函数知识点 归纳 1. 终边与终边相同的终边在终边所在射线上 . 终边与终边共线的终边在终边所在直线上 . 终边与终边关于轴对称 . 终边与终边关于轴对称 . 终边与终边关于原点对称 . 一般地:终边与终边关于角的终边对称 . 与的终边关系由“两等分各象限、一二三四”确定. 2.弧长公式:,扇形面积公式:,1弧度1rad . 3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正. 4.三角函数线的特征是:正弦线“站在轴上起点在轴上”、余弦线“躺在轴上起 点是原点”、正切线“站在点处起点是”.务必重视“三角函数值的大小与单位圆上相 应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵 坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系. 为 锐角 . 5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函 数的取值,精确确定角的范围,并进行定号”; 6.三角函数诱导公式的本质是:奇变偶不变,符号看象限. 7.三角函数变换主要是:角、函数名、次数、系数常值的变换,其核心是“角的变 换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 常值变换主要指“1”的变换: 等. 三角式变换主要有:三角函数名互化切割化弦、三角函数次数的降升降次、升次、运 算结构的转化和式与积式的互化.解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和差角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次升次公式中 的符号特征.“正余弦‘三兄妹—’的联系”常和三角换元法联系在一起 . 辅助角公式中辅助角的确定:其中角所在的象限由a, b的符号确定,角的值由 确定在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为的情形. 有实数解 . 8.三角函数性质、图像及其变换: 1三角函数的定义域、值域、单调性、奇偶性、有界性和周期性 注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来, 某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是 偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是 , 但的周期为,y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗? 2三角函数图像及其几何性质: 3三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换. 4三角函数图像的作法:三角函数线法、五点法五点横坐标成等差数列和变换法. 9.三角形中的三角函数: 1内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是 钝角任意两边的平方和大于第三边的平方. 2正弦定理: R为三角形外接圆的半径. 注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有 两解. 3余弦定理:等,常选用余弦定理鉴定三角形的类型. 感谢您的阅读,祝您生活愉快。

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

高二数学三角函数知识点总结

高二数学三角函数知识点总结 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα

cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

相关文档
最新文档