第十章 材料的强化

第十章      材料的强化
第十章      材料的强化

第十部分材料的强化

韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现;强度是材料抵抗变形和断裂的能力,塑性则表示材料断裂时总的塑变程度.材料在塑性变形和断裂全过程中吸收能量的多少表示韧性的高低.金属材料缺口试样落锤冲击试验侧得的韧性指标称为冲击韧性.高分子材料冲击试验的韧性指标通常称为冲击强度或冲击韧度.

第一节材料强化基本原理

1、固溶强化纯金属经适当的合金化后强度、硬度提高的现象

根据强化机理可分为无序固溶体和有序固溶体

固溶强化的特点:

(1)溶质原子的原子数分数越大,强化作用越大;

(2)溶质原子与基体金属原子尺寸相差越大,强化作用越大;

(3)间隙型溶质原子比置换原子有更大的固溶强化作用;

(3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显。

2、细晶强化

多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的。

霍尔-佩奇公式:σ

s =σ+K

y

d-1/2

3、位错强化

(1)晶体中的位错达到一定值后,位错间的弹性交互作用增加了位错运动的阻力。可以有效地提高金属的强度。

流变应力τ和位错密度的关系:

(2)加工硬化

定义:金属经冷加工变形后,其强度、硬度增加、塑性降低。

单晶体的典型加工硬化曲线:τ~θ曲线的斜率θ=d τ/d θ称为“加工硬化速率”

·曲线明显可分为三个阶段:

I.易滑移阶段:发生单滑移,位错移动和增殖所遇到的阻力很小,θ

I

很低,约为10-4G数量级。

II.线性硬化阶段:发生多系滑移,位错运动困难,θ

II 远大于θ

I

约为 G/100—G/300 ,并接近于

一常数。

III.抛物线硬化阶段:与位错的多滑移过程有关,θ

III

随应变增加而降低,应力应变曲线变为抛物线。

4、沉淀相颗粒强化

当第二相以细小弥散的微粒均匀分布在基体相中时,将产生显著的强化作用,通常将微粒分成不可变形的和可变形的两类。

(1)可变形微粒的强化作用——切割机制

·适用于第二相粒子较软并与基体共格的情形

强化作用主要决定于粒子本身的性质以及其与基体的联系,主要有以下几方面的作用:

A.位错切过粒子后产生新的界面,提高了界面能。

B.若共格的粒子是一种有序结构,位错切过之后,沿滑移面产生反相畴,使位错切过粒子时需要附加应力。

C.由于粒子的点阵常数与基体不一样,粒子周围产生共格畸变,存在弹性应变场,阻碍位错运动。

D.由于粒子的层错能与基体的不同,扩展位错切过粒子时,其宽度会产生变化,引起能量升高,从而强化。E.由于基体和粒子中滑移面的取向不一致,螺型位错线切过粒子时必然产生一割阶,而割阶会妨碍整个位错线的移动。

在实际合金中,起主要作用的往往是1~2种。

·增大粒子尺寸或增加体积分数有利于提高强度。

(2)不可变形微粒的强化作用——奥罗万机制(位错绕过机制)

·适用于第二相粒子较硬并与基体界面为非共格的情形。

使位错线弯曲到曲率半径为R时,所需的切应力为τ=Gb/(2R)

=λ/2

设颗粒间距为λ,则τ=Gb/ λ,∴ R

min

只有当外力大于Gb/ λ时,位错线才能绕过粒子。

减小粒子尺寸(在同样的体积分数时,粒子越小则粒子间距也越小)或提高粒子的体积分数,都使合金的强度提高。

(3)粗大的沉淀相群体的强化作用

由两个相混合组成的组织的强化主要是由于:①纤维强化;

②—个相对另一个相起阻碍塑性变形的作用,从而导致另一个相更大的塑性形变和加工硬化,

直到末形变的相开始形变为止;

③在沉淀相之间颗粒可由不同的位错增殖机制效应引入新的位错.

二、高聚物的强化原理

高聚物的强化方法:

(1)引入极性基链上极性部分越多,极性越强,键间作用力越大;

(2)链段交联随着交联程度的增加,交联键的平均距离缩短,使材料的强度增加;

(3)结晶度和取向高聚物在高压下结晶或高度拉伸结晶性高聚物,可使材料的强度增加;

(4)定向聚合。

第二节材料的韧化基本原理

一、金属材料的韧化原理

改善金属材料韧性断裂的途径是:

①减少诱发微孔的组成相,如减少沉淀相数量

②提高基体塑性,从面可增大在基体上裂纹扩展的能量消耗;

③增加组织的塑性形变均匀性,这主要为了减少应力集中;

④避免晶界的弱化,防止裂纹沿晶界的形核与扩展;

⑤金属材料的各种强化

二、高聚物的韧化原理

1、增塑剂与冲击韧性添加增塑剂使分子间作用力减小,链段以至大分子易于运动,则使得高分子材料的冲击韧性提高。但某些增塑剂在添加量较少时,有反增塑作用,反使冲击韧性下降

2、分子结构、相对分子量与冲击韧性

热塑性塑料的大分子结构及分于间力是决定材料性能的主要因素,这两个因素若使堆砌密度小。玻璃化温度低时,则冲击韧性就高,大分子链的柔顺

性好,可提高结

晶性高分子材料

的结晶能力,而

结晶度高常使冲

击韧性下降。

提高相对分子质量对高聚物冲击韧性的作用会因长分子链的缠结而削弱,因为分子链的缠结、交联会降低其柔性,在温度和拉仲速率一定的条件下,高聚物的相对分子质量有一临界值Mc,当相

对分子质量大

于Mc时高聚物

为韧件,反之

为脆性.

三、无机非金属材料的韧化机理

陶瓷的主要增韧机制有相变增韧和微裂纹增韧: 1、相变增韧

处于陶瓷基体内的ZrO

2存在着m- ZrO

2

与 t- ZrO

2

的可逆相变特性,晶体结构的转变伴有3%一5%

的体积膨胀. ZrO

2颗粒弥散分布于陶瓷基体内,当材料受到外力作用时,基体对ZrO

2

的压抑作用得到松驰,

ZrO

2

颗粒即发生四方相到单斜相的转变,并在基体内引发微裂纹,从而吸收了主裂纹扩展的能量,达到提高断裂韧性的效果。

2、微裂纹增韧

基体内的微裂纹使主裂纹的应力场发生改变,使主裂纹的方向发生改变,增加裂纹的途径,从而消耗更多的能量,达到增韧的目的。

吉林大学,考研,材料科学 金属材料的强化方法

1 固溶强化 纯金属由于强度低, 很少用作结构材料, 在工业上合金的应用远比纯金属广泛。合金组元溶入基体金属的晶格形成的均匀相称为固溶体。形成固溶体后基体金属的晶格将发生程度不等的畸变, 但晶体结构的基本类型不变。固溶体按合金组元原子的位置可分为替代固溶体和间隙固溶体; 按溶解度可分为有限固溶体和无限固溶体; 按合金组元和基体金属的原子分布方式可分为有序固溶体和无序固溶体。绝大多数固溶体都属于替代固溶体、有限固溶体和无序固溶体。替代固溶体的溶解度取决于合金组元和基体金属的晶体结构差异、原子大小差异、电化学性差异和电子浓度因素。间隙固溶体的溶解度则取决于基体金属的晶体结构类型、晶体间隙的大小和形状以及合金组元的原子尺寸。纯金属一旦加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。畸变产生的应力场与位错周围的弹性应力场交互作用, 使合金组元的原子聚集在位错线周围形成“气团”。位错滑移时必须克服气团的钉扎作用, 带着气团一起滑移或从气团里挣脱出来, 使位错滑移所需的切应力增大。此外, 合金组元的溶入还将改变基体金属的弹性模量、扩散系数、内聚力和晶体缺陷, 使位错线弯曲, 从而使位错滑移的阻力增大。在合金组元的原子和位错之间还会产生电交互作用和化学交互作用, 也是固溶强化的原因之一。固溶强化遵循下列规律: 第一, 对同一合金系, 固溶体浓度越大, 则强化效果越好。表1 列出了几种普通黄铜的强度值, 它们的显微组织都是单相固溶体, 但含锌量不同, 强度有很大差异。在以固溶强化作为主要强化方法时, 应选择在基体金属中溶解度较大的组元作为合金元素, 例如在铝合金中加入铜、镁; 在镁合金中加入铝、锌; 在铜合金中加入锌、铝、锡、镍; 在钛合金中加入铝、钒等。第二, 合金组元与基体金属的 表1 几种普通黄铜的强度(退火状态)

哈工大材料力学性能大作业-铁碳马氏体的强化机制

铁碳马氏体的强化机制 摘要:钢中铁碳马氏体的最主要特性是高强度、高硬度,其硬度随碳含量的增加而升高。马氏体的强化机制是多种强化机制共同作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和综合强化等。本文介绍了铁碳马氏体及其金相组织和力学特性,着重深入分析马氏体的强化机制。 关键词:铁碳马氏体强化机制 1.马氏体的概念,组织及力学特性 1.1马氏体的概念 马氏体,也有称为麻田散铁,是纯金属或合金从某一固相转变成另一固相时的产物;在转变过程中,原子不扩散,化学成分不改变,但晶格发生变化,同时新旧相间维持一定的位向关系并且具有切变共格的特征。 马氏体最先在淬火钢中发现,是由奥氏体转变成的,是碳在α铁中的过饱和固溶体。以德国冶金学家阿道夫·马登斯(A.Martens)的名字命名;现在马氏体型相变的产物统称为“马氏体”。马氏体的开始和终止温度,分别称为M始点和M终点;钢中的马氏体在显微镜下常呈针状,并伴有未经转变的奥氏体(残留奥氏体);钢中的马氏体的硬度随碳量增加而增高;高碳钢的马氏体的硬度高而脆,而低碳钢的马氏体具有较高的韧性。 1.3马氏体的力学特性 铁碳马氏体最主要的性质就是高硬度、高强度,其硬度随碳含量的增加而增加。但是当碳含量达到6%时,淬火钢的硬度达到最大值,这是因为碳含量进一步提高,虽然马氏体的硬度会提高但是由于残余奥氏体量的增加,使钢的硬度反而下降。 2.铁碳马氏体的晶体学特性和金相形貌 钢经马氏体转变形成的产物。绝大多数工业用钢中马氏体属于铁碳马氏体,是碳在体心立方结构铁中的过饱和固溶体。 铁碳合金的奥氏体具有很宽的碳含量范围,所形成的马氏体在晶体学特性、亚结构和金相形貌方面差别很大。可以把铁碳马氏体按碳含量分为5个组别(见表)【1】。

金属材料的强化方法

第五章金属材料的强化方法 一、金属材料的基本强化途径 许多离子晶体和共价晶体受力后直到断裂,其变形都属于弹性变形。 而金属材料的应力与应变关系如图5-1所示。 它在断裂前通常有大量塑性变形。它是晶体的一部分相对于另一部分沿一定晶面晶向的相对滑动。但是,晶体的实际滑移过程并不是晶体的一部分相对于另一部分的刚性滑移。 如果是刚性的滑移,则滑移所需的切应力极大,其数值远高于实际测定值。如,使铜单晶刚性滑移的最小切应力(计算值)为1540MPa, 而实际测定值仅为1MPa。各种金属的这种理论强度与实际测定值均相差3~4个数量级。这样的结果,迫使人们去探求滑移的机理问题,即金属晶体滑移的机理是什么?20世纪20年代,泰勒等人提出的位错理论解释了这种差异。 位错是实际晶体中存在的真实缺陷。现已可以直接观察到位错。 图5-2 位错结构

图5-3 位错参与的滑移过程 位错在力τ的作用下向右的滑移,最终移出表面而消失。由于只需沿滑移面A —A 改变近邻原子的位置即可实现滑移,因此,所需的力很小,上述过程很易进行。 由上述的分析可知,金属晶体中的位错数量愈少,则其强度愈高。现已能制造出位错数量极少的金属晶体,其实测强度值接近理论强度值。这种晶体的直径在1μm 数量级,称之为晶须。 由位错参与的塑性变形过程似乎可得到另一结论,即金属中位错愈多,滑移过程愈易于进行,其强度也愈低。事实并不是这样。如图5-4所示。 图5-4 强度和位错与其它畸变 可见,仅仅是在位错密度增加的初期,金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。这是因为位错密度继续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从一个位错源中产生并且在某个强障碍面前停止的时候就构成了位错的塞积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交截过程中在一位错上产生短位错);4)割阶运动引起的阻力。 金属受力变形达到断裂之前,其最大强度由两部分构成:一是未变形金属的流变应力σl ,即宏观上为产生微量塑性变形所需要的应力。流变应力的大小决定于位错的易动性:晶体内部滑移面上的位错源越容易动作,运动位错在扫过晶体滑移面时所受的阻力越小,则流变应力越低;其二是因应变硬化产生的附加强度,它由塑性变形过程中应变硬化速率 εσd d 和塑性变形量l f εε-来决定。所以,在断裂前的最大强度大致可按下式计算: ?+=f l d d d l εεεε σσσ)(max 工程结构材料主要是在弹性范围内使用的,因此,在构件的设计和使用中,流变应力的重要性更为突出。 对流变应力有贡献的阻力主要是两类:

工程材料强化方法综述

工程材料强化方法综述 xxx 【摘要】本文主要包括金属固溶体强化,第二项强化,形变强化,细化晶粒强化,热处理强化以及表面热处理和化学热处理等。 【关键词】固溶体位错细化晶粒退火正火淬火回火 【作者简介】李洪民机制本科班 引言 随着现代科技的发展,越来越多的材料被运用到日常的生活生产之中,这就使得强化和处理材料成为工程材料应用的重要问题之一,通过各类强化和处理手段,既可以提高材料的力学性能,充分发挥材料的潜力又可以获得一些特殊要求的性能,以满足各种各样使用条件下对材料的要求。 1.固溶体强化 1.1固溶体定义及表示方法 合金组元通过溶解形成一种成分和性能均匀的、且结构与组元之一相同的固相称为固溶体。与固溶体晶格相同的组元为溶剂,一般在合金中含量较多;另一组元为溶质,含量较少。固溶体用α、β、γ等符号表示。A、B组元组成的固溶体也可表示为A(B), 其中A为溶剂, B为溶质。例如铜锌合金中锌溶入铜中形成的固溶体一般用α表示, 亦可表示为Cu(Zn)。 1.2.固溶体的分类 按溶质原子在溶剂晶格中的位置, 固溶体可分为置换固溶体与间隙固溶体两种。置换固溶体中溶质原子代换了溶剂晶格某些结点上的原子; 间隙固溶体中溶质原子进入溶剂晶格的间隙之中。 1.3.固溶体强化机理 固溶体随着溶质原子的溶入晶格发生畸变。晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。这种通过形成固溶体使金属强度和硬度提高的现象称为固溶强化。固溶强化是金属强化的一种重要形式。在溶质含量适当时,可显著提高材料的强度和硬度,而塑性和韧性没有明显降低。 2.金属化合物强化(第二相强化) 复相合金与单相合金相比,除基体相以外,还有第二相得存在。当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。这种强化作用称为第二相强化。第二相强化的主要原因是它们与位错间的交互作用,阻碍了位错运动,提高了合金的变形抗力。使得合金强度、硬度和耐磨性都有所提高。对于位错的运动来说,合金所含的第二相有以下两种情况:(1)、不可变形微粒的强化作用。(2)、可变形微粒的强化作用。 弥散强化和沉淀强化均属于第二相强化的特殊情形。 3.形变强化 金属在冷变形过程由于位错使得强度和硬度提高但塑性下降,该现象被称为加工硬化。多用于不可热处理强化的金属材料。 4.细化晶粒强化 金属结晶后,获得由许多晶粒组成的多晶体组织,晶粒的大小对金属的力学性能物理性能和化学性能均有很大影响细晶组织的金属不仅强度高,而且塑性和韧性也好。这是因为,晶粒越细一定体积中的晶粒数目越多,在同样的变形条件下,变形量被分散到更多的晶粒内进行,各晶粒的变形比较均匀不致产生应力集中的现象。此外,晶粒细化,晶界就越多,越曲折,越不利于裂纹的传播,从而使其在断裂前能承受较大的塑性变形,表现较高的塑性和韧性。常见细化晶粒方法如下:

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

钢铁材料的强化手段与应用

钢铁材料的强化手段及其应用 赵刚领 (化学工程学院化学工程与工艺1143084077) 摘要:随着现代工业和科学技术的不断发展,人们对钢铁材料的性能提出了越来越高的要求。特别是在航空、国防以及高科技领域,一般的金属材料已不能满足它们的要求。因此,对钢铁材料进行强化应用已变得刻不容缓。本文主要概述了人们目前对钢铁材料强化的方法,并介绍了强化钢在不同领域的应用。 关键词:钢铁材料强化手段应用 金属是通过合金化、塑性变形和热处理等手段提高材料的强度。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。 钢铁材料的强度是其抵抗变形和断裂的能力,而要满足钢铁材料高强度的要求,就必须对它进行强化处理。强化钢铁材料的手段,一般可加入合金元素(加入微量元素如V、Nb、Ti 等)通过调质处理使其析出强化、控制轧制及冷却方法等 对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、分散强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的,强化一般伴随着韧性、塑性的降低,但有时也不会降低甚至有所提高。而在工程上更加切实有效的方法是在晶体中引入大量缺陷及阻止位错的运动来提高金属的强度。 由于各种强化方法对钢铁材料强度的不同影响,采用不同强化手段后可使铁的强度提高,这些手段包括固溶强化、细晶强化、冷变形强化、马氏体强化、形变一相变强化、形变强化和脱溶强化等多种强化方法,形变热处理和冷拔高碳钢丝的强度已接近晶须的强度。 1、固溶强化 固溶强化是将合金元素加入到钢铁材料基体金属中形成固溶体以达到强化金属的方法。一般来说,固溶体总是比组成基体的纯金属有更高的强度和硬度,随着合金元素含量的增加,钢的强度和硬度提高。但是当合金元素的含量适当时,固溶体不仅具有高的强度和硬度,而且有良好的塑性和韧性。它是利用固溶的置换式溶质原子或间隙式溶质原子来提高基体金属的屈服强度的方法。绝大多数钢材的基体铁都免不了用固溶强化方法强化。 2、分散强化

金属材料的强化方法和位错的关系

陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。另外,位错对晶体的扩散和相变等过程也有较大影响。 首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。 其次,滑移赋予了金属材料的延性。如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。 第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。如板条状马氏体钢( F12钢)等。 第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。 第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。 金属的强化 strengthening of metals 通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。一种手段对提高某一强度指标可能是有效的,而对另一强度指标

最新(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

金属材料的强化与韧化

金属材料的强化与韧化 机械工程学院机械工程1班刘文龙2011201120 对于金属材料来讲,最重要的性能指标包括了材料的强度和韧性等。简单的说,强度是指材料抵抗变形和断裂的能力,而韧性指的是材料变形和断裂过程中吸收能量的能力。 随着制造业及材料工业的快速发展,人们对高性能材料的需求已经越来越迫切,从目前角度来看,在不更改加工方式与行业整体现状的情况下,高性能材料主要由制备新型高性能材料与对原有材料进行改性以提高其性能两种方法,显然的,第二种方法更易实现,也更接近工程实际。在现有的研究中,提高材料的强度主要有以下两种途径: 1、完全消除材料内部的位错以及其他的缺陷,使它的强度接近于理论强度,例如金属晶须等,但实际应用难度较大; 2、在金属中引入大量缺陷,以此阻碍位错的运动,如加工硬化、固溶强化、细晶强化、沉淀强化等。 其中金属材料的强化主要有以下几种放法: 1、固溶强化此方法是利用点缺陷对位错运动的阻力使金属基体获得强化的一种方法,一般通过在金属基体中溶入一种或数种溶质元素形成固溶体而使其强度和硬度升高。 2、细晶强化此方法通过细化晶粒以增加晶界对位错的阻滞效应来提高金属强度。 3、第二相粒子强化此法按获得粒子的工艺可分为析出强化与弥散强化。 4、形变强化金属在塑性变形过程中,位错密度会逐渐增加,使得弹性应力场不断变大,位错间交互作用增强,使得位错困难增强金属强度。 这里以金属的细晶强化方式举例,在王艳林[1]等人关于热轧钢材晶粒细化的文章中指出,在保证相同变形量、变形温度以及化学成分的前提下,对22mm棒材进行热轧制后通过强制冷去的方式进行细化晶粒组织,将晶粒度的等级由7.5级提高到8.0级,见图1。通过试验发现,轧后强制冷却的热轧钢材延伸率为22.68%,与空冷状态下的24.30%基本相等,但是其屈服强度由空冷状态下的358.03MPa提高到了498.37MPa,提高了大约39.20%,抗拉强度由空冷状态下的508.33MPa提高到了626.44Mpa,提高了23.23%,可见通过此种方法对热轧钢材进行细晶强化对提高其综合性能效果十分明显,适宜推广;而目前首钢、水城钢铁公司等单位都进行了细晶钢螺纹钢的研究开发,均实现了细晶钢棒线材的工业化生产,并进行了推广应用。

材料的强化

1. 材料强化的类型:主要有晶界强化、固溶强化、位错强化、沉淀强化和 弥散强化、相变强化等。 2. 强化机制: (1) 晶界强化: 晶界分为大角度晶界(位向差大于10o)和小角度晶界(亚晶界,位向差1~2o)。晶界 两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸 变状态。晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界 处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也 困难。因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也 越高。 方法: 根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒 或碳化物相,使晶粒度细化到十级以上。由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力 增加,反映在力学性能方面其金属强韧性大大提高。 如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技 术方法有以下三种。 ①利用极高加热速度的能量密度进行快速加热的热处理。 由于极高的加热能量密度,使加热速度大大提高,在10-2 ~1s 的时间内,钢件便可加热到奥氏体(A)状 态,此时A 的起始晶粒度很小,继之以自冷淬火(冷速达104 ℃/s 以上),可得极细的马氏体(M)组织,与一 般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。 ②利用奥氏体(A)的逆转变 钢件加热到 A 后,淬火成M,然后快速(20s)内重新加热到 A 状态,如此反复3~4 次,晶粒可细化到 13~14级。 ③采用A-F两相区交替加淬火 采用亚温淬火(F+A 双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。 在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。 (2) 固溶强化: 是利用金属材料内部点缺陷(间隙原子置换原子)对金属基体(溶剂金属) 进行强化。它分为两类:间隙式固溶强化和置换式固溶强化。 a. 间隙式固溶强化:原子直径很小的元素如C、N、O、B 等,作为溶质元素溶入 溶剂金属时,形成间隙式固溶体。C、N 等间隙原子在基体中与“位错”产生弹性 交互作用,当进入刃型位错附近并沿位错线呈统计分布,形成“柯氏气团”。当在螺 型位错应力场作用下,C、N 原子在位错线附近有规则排列就形成“snock”气团。 7这些在位错附近形成的“气团”对位错的移动起阻碍和钉扎作用,对金属基体产生 强化效应。

金属材料的强化方法

金属材料的强化方法 金属材料的强化途径,主要有以下几个方面; (1)结晶强化。结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: 1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。在损坏的构件中,常可发现有大量的夹杂物。采用真空冶炼等方法,可以获得高纯度的金属材料。 (2)形变强化。金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。 (3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。 (4)相变强化。含金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构.使金属材料得到强化,称为相变强化。相变强化可以分为两类: 1)沉淀强化(或称弥散强化)。在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。一是立方晶系,如TiC、V4C3.NbC 等,二是六方晶系,如M02、W2C、wc等,三是正菱形,如Fe3C。对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。 2)马氏体强化。金属材料经过淬火和随后同火的热处理工艺后,可获得马氏体组织,使材料强化。但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。 (5)晶界强化。晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身:世在高温时,沿晶界的扩散速度比晶内扩敞速度大得多,晶界强度显著降低。因此强化品界对提高钢的热强性是很有效的。硼对晶界的强化作用,足由于硼偏集于晶界上,使晶界区域的品格缺位和空穴减少,晶界自由能降低;B还减缓了合金元素沿晶界的扩放过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。 (6)综合强化。在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。例如: 1)固溶强化十形变强化,常用于固溶体系合金的强化。 2)结晶强化+沉淀强化,用于铸件强化。 3)马氏体强化+表面形变强化。对一些承受疲劳裁荷的构件,常存调质处理后再进行喷丸或滚压处理。 4)固溶强化+沉淀强化。对于高温承压元件常采用这种方法,以提高材料的高温性能。有时还采用硼的强化晶界作用.进一步提高材料的高温强度。

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

材料强化

金属的强化 strengthening of metals 通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。一种手段对提高某一强度指标可能是有效的,而对另一强度指标未必有效。影响强度的因素很多。最重要的是材料本身的成分、组织结构和表面状态;其次是受力状态,如加力快慢、加载方式,是简单拉伸还是反复受力,都会表现出不同的强度;此外,试样几何形状和尺寸及试验介质也都有很大的影响,有时甚至是决定性的,如超高强度钢在氢气氛中的拉伸强度可能成倍地下降(见应力腐蚀断裂和氢脆)。 在本文中,强化一般是指金属材料的室温流变强度,即光滑试样在大气中、按给定的变形速率、室温下拉伸时所能承受应力的提高。应强调指出:提高强度并不是改善金属材料性能惟一的目标,即使对金属结构材料来说,除了不断提高强度以外,也还必须注意材料的综合性能,即根据使用条件,要有足够的塑性和韧性以及对环境与介质的适应性。 强化的理论基础从根本上讲,金属强度来源于原子间结合力。如果一个理想晶体,在切应力作用下沿一定晶面和晶向发生滑移形变,根据计算,此时金属的理论切变强度一般是其切变模量的1/10~1/30。而金属的实际强度只是这个理论强度的几十分之一,甚至几千分之一。例如,纯铁单晶的室温切变强度约为 5kgf/mm2,而按铁的切变模量(5900kgf/mm2)来估算,其理论切变强度应达 650kgf/mm2。造成这样大差异的原因曾是人们长期关注的课题。直到1934年,奥罗万(E.Orowan)、波拉尼(M.Polanyi)和泰勒(G.I.Taylor)分别提出晶体位错的概念;位错理论的发展揭示了晶体实际切变强度(和屈服强度)低于理论切变强度的本质。在有位错存在的情况下,切变滑移是通过位错的运动来实现的,所涉及的是位错线附近的几列原子。而对于无位错的近完整晶体,切变时滑移面上的所有原子将同时滑移,这时需克服的滑移面上下原子之间的键合力无疑要大得多。金属的理论强度与实际强度之间的巨大差别,为金属的强化提供了可能性和必要性(见形变和断裂)。可以认为实测的纯金属单晶体在退火状态下的临界分切应力表示了金属的基础强度,是材料强度的下限值;而估算的金属的理论强度是经过强化之后所能期望达到的强度的上限。 强化途径金属材料的强化途径不外两个,一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。可惜当晶须的直径较大时(如大于5μm),强度会急剧下降。有人解释为大直径晶须在生长过程中引入了可动位错,一旦有可动位错存在,强度就急剧下降了。从自前来看,只有少数几种晶须作为结构材料得到了应用。另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高金属强度。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通

材料科学基础重点总结 5材料的强化途径

材料的强化 强韧化意义 希望材料既有足够的强度,又有较好的韧性,通常的材料二者不可兼得。提高材料的强度和韧性,节约材料,降低成本,增加材料在使用过程中的可靠性和延长服役寿命 提高金属材料强度途径 强度是指材料抵抗变形和断裂的能力,提高强度可通过以下两种途径: 1 完全消除内部的缺陷,使它的强度接近于理论强度 2 大量增加材料内部的缺陷,提高强度 增加材料内部缺陷,提高强度,即在金属中引入大量缺陷,以阻碍位错的运动 四种强化方式: 固溶强化 细晶强化 形变强化(加工硬化) 第二相粒子强化 实际上,金属材料的强化常常是多种强化方式共同作用的结果。 材料强度 缺陷数量 冷加工状态 退火状态 无缺陷的理论强度 材料强度与缺陷数量的关系

固溶强化:当溶质原子溶入溶剂原子形成固溶体时,使材料强度硬度提高,塑性韧性下降的现象。 强化本质:利用点缺陷(间隙原子和置换原子)对位错运动的阻力使金属基体获得强化 强化机理:1溶质原子的溶入使固溶体的晶格发生畸变,对在滑移面上的运动的位错有阻碍作用;2位错线上偏聚的溶质原子对位错的钉扎作用。 影响因素 不同溶质原子所引起的固溶强化效果存在很大差别,影响因素主要有: 1 溶质原子的原子数分数越高,强化作用也越大。 2溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。 3间隙溶质原子比置换原子具有较大的固溶强化效果。 4溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。 固溶强化效果与溶质原子的质量分数成正比关系。大多数溶质原子在室温的溶解度比较小,为了提高固溶度从而提高固溶强化的效果,可以将其加热到较高温度,经过保温后快速冷却到室温,使溶质原子来不及析出而得到过饱和固溶体,这就是固溶处理。 经过固溶处理后还可以经过时效处理进一步提高其强度。对过饱和固溶体在适当温度下进行加热保温,析出第二相,使强度硬度升高的热处理工艺称为时效。时效硬化的本质是从过饱和固溶体中析出弥散第二相,属于第二相强化途径。 固溶和时效广泛用于有色金属的强化,如铜合金,铝合金,镁合金,钛合金等。

金属材料的四种强化方式

金属材料的四种强化方式 一.细晶强化 通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,工业上将通过细化晶粒以提高材料强度。 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 晶粒越细小,位错集群中位错个数(n)越小,根据τ=nτ0,应力集中越小,所以材料的强度越高; 细晶强化的强化规律,晶界越多,晶粒越细,根据霍尔-配奇关系式,晶粒的平均值(d)越小,材料的屈服强度就越高。 细化晶粒的方法 1,增加过冷度; 2,变质处理; 3,振动与搅拌; 4,对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。二.固溶强化 定义:合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。 原理:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。 影响因素 (1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。 (2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。 (3)间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。 (4)溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随着价电子浓度的增加而提高。 编辑本段程度固溶强化的程度主要取决于两个因素:1. 原始原子和添加原子之间的尺寸差别。尺寸差别越大,原始晶体结构受到的干扰就越大,位错滑移就越困难。2. 合金元素的量。加入的合金元素越多,强化效果越大。如果加入过多

工程材料强化方法综述

工程材料强化方法综述 机制本科1101 杨清波 摘要:从工程材料强化本质和工业上工程材料强化的工艺两方面综合介绍了工程材料的强化方法。详细介绍了工程材料的强化本质方法和工业生产中的材料强化工艺。分析了在工业生产中各种强化方法的特点、效果及应用范围。介绍了一些强化工艺中的新技术。 关键词:细化晶粒,位错,固溶体,晶格畸变,强化,硬化,金属碳化物,热处理,相变0.引语 强度是材料在外力作用作用下抵抗永久变形和断裂的能力。在特定的工作环境中,某些构件需要承受较大的载荷或受到较大的冲击力等,那么这些构件需要有较高的力学性能,尤其需要有较高的强度。如何强化材料是工业生产中的一个非常重要的问题。强化材料方法在工业生产中有广泛应用。对材料进行强化可以扩大材料的应用范围,增加材料种类,降低生产成本。从材料的组织结构分析可得到多种强化原理,根据强化原理可制定多种强化工艺。下面,我对强化方法进行了初步的系统的总结。 1.工程材料强化方法原理 1.1晶界强化 1)界强化作用的直接体现者——细晶强化。金属的晶粒越细,则晶界数量越多,这样,由取向差效应和晶界原子排列不规则造成的强化效果越明显。多晶体的晶粒变形时,要求其周围的晶粒协同运动。多晶体滑移是多系滑移,以自身变形的同时,协调、配合相邻晶粒变形。造成位错发生交割,增大滑移变形阻力,从而使金属表现出高强度。 2)添加或减少微量元素含量,改善晶界状态。晶界的晶体结构不规则,原子排列混乱,晶格歪扭,又存在各种晶体缺陷(如位错、空洞等),因此晶界在高温变形时是一个薄弱环节。在高温蠕变时,晶界形变量占总形变量的50%,因此强化晶界就成为高温合金强化的一个重要部分。一些有害杂质元素的溶解度很小且往往偏析于晶界,生成低熔点共晶化合物。硫在γ—Fe中的溶解度只有0.015%。因此合金中所含的硫在铁中易形成熔点为988C的Fe+FeS 低熔点共晶。硫在镍中会形成熔点只有644℃的Ni+Ni3S2共晶。这些低熔点共晶在晶界的形成会大大恶化合金的热加工性能和高温热强性。通常高温合金中的硫含量控制在0.015%以下,优质高温合金控制在0.005%~0.007%以下。 1.2固溶强化 固溶体的晶体结构和溶剂的相同,但因溶质原子的溶入引起晶格常数改变,形成点缺陷并导致晶格畸变,使位错移动阻力增加,合金的强度、硬度、电阻增高,塑性、耐腐蚀性降低。这种通过加入溶质元素形成固溶体,使合金强度、硬度提高的方法称为固溶强化。适当控制溶质元素的量,可以在显著提高合金强度的同时,又保持较高的塑性、韧性。因此,对综合力学性能要求高的零件材料,大都采用以固溶强化为基体的合金。 1.3分散强化 由弥散分布于基体中的细小第二相质点引起的强化称为分散强化。分散强化分为时效强化(也称沉淀强化)和弥散强化(又称第二相强化)。

金属强化的主要方法

一、金属强化的主要方法。 从金属材料的强化途径来看,金属材料的强化方法主要有两大类: 一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。这种强化方法只有在几种特殊的金属中才得到应用。 另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界等,这些缺陷阻碍位错运动,也会明显地提高金属强度。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的。下面简要的予以介绍: 1、结晶强化 结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: (1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 (2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。采用真空冶炼等方法,可以获得高纯度的金属材料。 2、形变强化 也叫加工硬化,金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。如铜合金。 3、固溶强化 通过合金化(加入合金元素)组成固溶体,使得融入固溶体中的原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使塑性变形更加困难,从而使合金固溶体的强度与硬度增加的现象。 4、相变强化

论述四种强化的强化机理、强化规律及强化方法。

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大; ②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。 ①网状特别是沿晶界析出的连续网状Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降; ②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。符合σs=σ0 +KS 0-1/2的规律,S 片层间距。

相关文档
最新文档