推理与证明(教案)

推理与证明(教案)
推理与证明(教案)

富县高级中学集体备课教案

年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时

教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。

2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。

3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

重点归纳推理及方法的总结中心

发言

人王晓君

难点归纳推理的含义及其具体应用

教具课型新授课课时

安排

1课

教法讲练结合学法归纳总结个人主页

教学过程

教一、原理初探

①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

③探究:他是怎么发现“杠杆原理”的?

正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。

④思考:整个过程对你有什么启发?

⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。

二、新课学习

1、哥德巴赫猜想

哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明

归纳推理的发展过程

学过程证明,得得出了一个结论:每一个比大的偶数都可以表示为(99)。这

种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减

少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为

止,这样就证明了“哥德巴赫”。

2、数学建构

●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).

注:归纳推理的特点;简言之,归纳推理是由部分到整体、由特殊到一般

的推理。

3、师生活动

例1前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,

蜥蜴是用肺呼吸的。蛇、鳄鱼、海龟、蜥蜴都是爬行动物.

结论:所有的爬行动物都是用肺呼吸的。

例2 :前提:三角形的内角和是1800,凸四边形的内角和是3600,凸

五边形的内角和是5400,……

结论:凸n边形的内角和是(n—2)×1800。

例3:

,

3

3

3

2

3

2

,

2

3

2

2

3

2

,

1

3

1

2

3

2

+

+

<

+

+

<

+

+

<探究:述结论都成立吗?

强调:归纳推理的结果不一定成立!“一切皆有可能!”

三、课堂练习

{}

11

1,(1,2,......),

1

n

n n

n

a

a a a n

a

+

===

+

已知数列的第一项且试归纳出这个数列的通项公式。

四、课堂小结

(1)归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体

数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一

种发现一般性规律的重要方法。

(2)归纳推理的一般步骤:

通过观察个别情况发现某些相同的性质从已知的相同性质中推出

一个明确表述的一般命题(猜想)证明

五、作业:

审核人签字:

(,,)

a b m

<

b b+m

由此我们猜想:均为正实数。

a a+m

富县高级中学集体备课教案

年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 类比推理第 1 课时

教学目标1、通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,

并把它用于对问题的发现中去。

2、类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

3、正确认识合情推理在数学中的重要作用,养成从小开始认真观察事

物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问

题,探求新知识。

重点了解合情推理的含义,能利用类比进行简单的推理中心

发言

人王晓君

难点用类比进行推理,做出猜想

教具课型新授课课时

安排

1课时

教法讲练结合学法归纳总结个人主页

教学过程一.问题情境

从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.

他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的。这个推理过程是归纳推理吗?

二.新课学习

我们再看几个类似的推理实例。

例1、试根据等式的性质猜想不等式的性质。

等式的性质:猜想不等式的性质:

(1) a=b?a+c=b+c; (1) a>b?a+c>b+c;

(2) a=b? ac=bc; (2) a>b? ac>bc;

(3) a=b?a2=b2;等等。 (3) a>b?a2>b2;等等。

问:这样猜想出的结论是否一定正确?

例2、试将平面上的圆与空间的球进行类比.

圆的定义:平面内到一个定点的距离等于定长的点的集合.

球的定义:到一个定点的距离等于定长的点的集合.

圆球圆球圆球圆球

弦←→截面圆直径←→大圆周长←→表面积面积←→体积圆的性质球的性质

圆心与弦(不是直径)的中点

的连线垂直于弦

球心与截面圆(不是大圆)

的圆点的连线垂直于截面

教 学

程 与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长 与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大

圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点 球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点 经过切点且垂直于切线的直线必经过圆心

经过切点且垂直于切面的直线必经过球心

☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).

简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:

⑴ 找出两类对象之间可以确切表述的相似特征;

⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想。即 例3.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.

直角三角形

3个面两两垂直的四面体

∠C =90°

3个边的长度a ,b ,c

2条直角边a ,b 和1条斜边c

∠PDF =∠PDE =∠EDF =90° 4个面的面积S 1,S 2,S 3和S

3个“直角面” S 1,S 2,S 3和1个“斜面

三、课堂小结

1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。2.类比推理的一般步骤: 四、作业布置

教 后 反 思

审核人签字:

观察、比较

联想、类推

猜想新结论

富县高级中学集体备课教案

年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§2.1直接证明--综合法第 1 课时

教学目标1、结合已学过的数学实例,了解直接证明的两种基本方法之一综合法;

2、能够运用综合法证明数学问题

3、通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯。

重点了解综合法的思考过程、特点中心

发言

人王晓君

难点用综合法证明时的解题过程

教具课型新授课课时

安排

1课

教法讲练结合学法归纳总结个人主页

教学过程一、新课引入

1、比较222

a b ab

+与的大小关系.

生:ab

b

a2

2

2≥

+。

2、

2222

,0,:((4

a b a b c b c a abc

>++≥

已知:求证)+)

生:讨论、交流完成,对比解答

二、新课学习

1、综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。(也形象地称为“顺推证法”或“由因导果法”)

例2、若实数1

x,求证:.)

1(

)

1(32

2

4

2x

x

x

x+

+

>

+

+

证明:采用差值比较法:

2422

3(1)(1)

x x x x

++-++=

3

2

4

2

4

22

2

2

1

3

3

3x

x

x

x

x

x

x-

-

-

-

-

-

+

+

)1

(23

4+

-

-x

x

x=)1

(

)1

(22

2+

+

-x

x

x

22

13

2(1)[()].

24

x x

=-++

程 ,

04

3

)21(,0)1(,122>++>-≠x x x 且从而 ,

0]43

)21[()1(222>++-x x

.)1()1(32

242x x x x ++>++ 例3、已知,,+∈R b a 求证

.a b b a b a b a ≥ 本题可以尝试使用差值比较和商值比较两种方法进行。 证明:1) 差值比较法:注意到要证的不等式关于b a ,对称, 不妨设.0>≥b a

0)(0

≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a

从而原不等式得证

2)商值比较法:设,0>≥b a

,0,1≥-≥b a b a

.

1)(≥=∴-b a a b b a b a b a b a 故原不等式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不

等式的步骤是:作差(或作商)、变形、判断符号。

三、课堂练习

四、课堂小结

综合法的一般思路:

五、作业布置

教 后 反 思

审核人签字:

富县高级中学集体备课教案

年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§2.1直接证明—分析法第 1课时

教学目标1、结合已经学过的数学实例,了解直接证明的基本方法之二分析法;

2、了解分析法的思考过程、特点。

3、多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

重点了解分析法的思考过程、特点中心

发言

人王晓君

难点分析法的思考过程、特点

教具课型新授课课时

安排

1课

教法讲练结合学法归纳总结个人主页

教学过程一.新课引入

证明数学命题时,还经常从要证的结论Q 出发,反推回去,寻求保证Q 成立的条件,明确M成立,再去寻求M 成立的充分条件(利用定理、定义、公理等);……直到找到一个明显成立的事实。

二.新课学习

1、分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法叫做分析法

2、用分析法证明不等式的逻辑关系是:

()()

1121

().....()

n n n

Q P P P P P P P

-

?←?←?←?

3、分析法的思维特点是:执果索因

4、分析法的书写格式:要证明命题B为真,

只需要证明命题

1

B为真,从而有……

这只需要证明命题

2

B为真,从而又有……

这只需要证明命题A为真而已知A为真,故命题B必为真

三、例题分析

例1、求证5

2

7

3<

+

证明:因为5

2

7

3和

+都是正数,所以为了证明5

2

7

3<

+只需证明2

2)5

2(

)7

3

(<

+展开得20

21

2

10<

+

即25

21

,

10

21

2<

<因为25

21<成立,所以

2

2)5

2(

)7

3

(<

+成立即证明了5

2

7

3<

+

学 过 程

说明:①分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法

②分析法论证“若A 则B ”这个命题的模式是:为了证明命题B 为真, 这只需要证明命题B 1为真,从而有…… 这只需要证明命题B 2为真,从而又有…… 这只需要证明命题A 为真 而已知A 为真,故B 必真

在本例中,如果我们从“21<25 ”出发,逐步倒推回去,就可以用综合法证出结论。但由于我们很难想到从“21<25”入手,所以用综合法比较困难。

事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:

根据条件的结构特点去转化结论,得到中间结论Q ‘

;根据结论的结构特点

去转化条件,得到中间结论 P ‘.若由P ‘可以推出Q ‘

成立,就可以证明结论成立.下面来看一个例子.

例4 已知,()2

k k Z π

αβπ≠+

∈,且 sin cos 2sin θθα+= ① 2sin cos sin θθβ= ②

求证:2222

1tan 1tan 1tan 2(1tan )

αβαβ--=++。 证明:因为2

(sin cos )2sin cos 1θθθθ+-=,所以将 ① ② 代入,

可得

224sin 2sin 1αβ-=. ③

另一方面,要证2222

1tan 1tan 1tan 2(1tan )

αβ

αβ--=++ 即证222222

22

sin sin 11cos cos sin sin 12(1)cos cos βαβααβαβ

--=++ , 即证22221

s sin (s sin )2co co ααββ-=-,

即证221

12sin (12sin )2

αβ-=-,

即证22

4sin 2sin 1αβ-=。

由于上式与③相同,于是问题得证。 三、课堂练习 四、课堂小结

综合法的一般思路: 五、作业布置

教 后 反 思

审核人签字:

富县高级中学集体备课教案

年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§3间接证明—反证法第 1 课时

教学目标1、结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

2、多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、通过学生的参与,激发学生学习数学的兴趣。

重点了解反证法的思考过程、特点中心

发言

人王晓君

难点反证法的思考过程、特点

教具课型新授课课时

安排

1课

教法讲练结合学法归纳总结个人主页

教学过程一.新课引入

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:

(1)反设;(2)归谬;(3)结论。

二、新课学习

1、反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

2、归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

三、例题分析

例1、已知直线,a b和平面,如果,

a b

αα

??,且||

a b,求证||

aα。

下面用反证法证明直线a与平面

α没有公共点.假设直线a 与平面α

有公共点P,则P b

αβ

∈=,即点P

是直线 a 与b的公共点,这与||

a b

矛盾.所以||

aα.

点评:线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.

推理模式:,,////a b a b a ααα???.

例2、求证:2不是有理数

证明:假设2不是无理数,那么它就是有理数.于是,存在互质的正整数,m n ,使得2m

n =,从而有2m n =,

因此,222m n =,

所以 m 为偶数.于是可设2m k = ( k 是正整数),从而有 2242k n =,即222n k =

所以n 也为偶数.这与 m , n 互质矛盾! 由上述矛盾可知假设错误,从而2是无理数.

正是2的发现,使人们认识到在有理数之外,还有一类数

与 1 是不可公度的,这就是无理数;从而引发了数学史上的第一次危机,大大推动了数学前进的步伐。

例3、已知0>>b a ,求证:n n b a >(N n ∈且1>n )

证明:假设n a 不大于n b ,即n n a b <或n n a b =.

∵a >0,b >0

∴由n n a b

(注:应由学生讨论回答上述步骤转化的目的是什么?) ?a <b(推理利用了不等式的传递性). 又由n n a b =?a b = 但这些都与已知条件,a >b >0相矛盾. ∴n n b a >成立. 例4、设233=+b a ,求证.2≤+b a

证明:假设2>+b a ,则有b a ->2,从而 .

2)1(68126,

61282

233323+-=+->+-+->b b b b a b b b a 因为22)1(62≥+-b ,所以233>+b a ,这与题设条件233=+b a 矛盾,所以,原不等式2≤+b a 成立。 四、课堂练习

1.设0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a , (2 - c )b ,不可能同时大于1

2.若x , y > 0,且x + y >2,则

x

y +1和y x

+1中至少有一个小于2。

教 后 反 思

审核人签字:

高中数学选修2-2推理与证明教案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

命题与证明教学设计与反思(供参考)

教学设计与反思

想一想,议一议判断对错: 1、要证明假命题很简单,只要 举出一个反例就可以了。 2、证明真命题也很简单哪,只要 举一个正确的例子就可以了。 同学们,那句话是正确的?怎样 才能确定一个命题是真命题呢? 得出“证明”的定义: 一个命题的真假,常常需要进行 有理有据的推理才能作出正确 的判断,这个推理的过程叫做命 题的证明。 思考这两个问题的对 错,讨论各自的想法 并初步总结:如何判 断一个命题是真命题 呢? 由此引出“证明” 使学生通过思考 问题、互相讨论总结 出“证明”的定义, 加强前后知识的衔 接,使学生更清晰的 认识“证明”。 做一做归纳总结出示幻灯片: 例1 证明:平行于同一条直线 的两条直线平行。 证明一个命题的步骤是什么? (1)依据题意画图,将文字语 言转换为符号(图形)语言。 (2)根据图形写出已知、求证。 (3)根据基本事实、已有定理 等进行证明。 例2:求证:邻补角的平分线互 相垂直。 思考后互相讨论,总 结归纳出证明一个命 题的步骤,然后按照 步骤完成例2。 通过例题教学, 突出和落实“证明” 的两方面特征,并引 导学生充分认识并掌 握“证明过程”是如 何进行的。 练习1、已知:如图,∠1=∠2, 求证:AB∥CD 2、已知,如图,直线AB,CD 被EF、GH所截, ∠1=∠2 。 求证:∠3=∠4 要求学生自己动手, 实践“证明”,在练 习中使学生规范做题 步骤。 学生做题时可以 自行选择不同的证明 方法,使学生对证明 步骤熟悉的同时,培 养学生的灵活能力。 检测学生对证明步骤 的掌握情况。 课堂小结 以问题的形式引导学生自 主总结本节课所学内容:这节课 你们学到了什么?有何收获? 学生各自发表自己的 收获,总结本节课的 知识点 引导学生思考、 交流、梳理所学知识, “勤于思考,收获快 乐”,使学生的积极 情感体验得到升华。

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

5.3.2 命题、定理、证明(教案)

5.3.2 命题、定理、证明 【知识与技能】 1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理. 2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式. 【过程与方法】 通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理. 【情感态度】 通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用. 【教学重点】 命题的定义,命题的组成. 【教学难点】 命题的判断,真假命题的判断,命题的题设和结论的区分. 一、情境导入,初步认识 问题1 分析下列判断事情的语句,指出它们的题设和结论. (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行. (2)两条平行线被第三条直线所截,同旁内角互补. (3)对顶角相等. (4)等式两边加同一个数,结果仍是等式. 问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题. (1)画线段AB=5cm. (2)两条直线相交,有几个交点? (3)如果直线a∥b,b∥c,那么a∥c. (4)直角都相等. (5)相等的角是对顶角.

【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案. 二、思考探究,获取新知 思考 1.真命题与定理有什么样的关系. 2.对题设和结论不明显的命题,怎样找出它们的题设和结论. 【归纳结论】1.命题:判断一件事情的语句,叫做命题. 2.命题由题设和结论两部分组成 3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题. 4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理. 对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了. 三、运用新知,深化理解 判断下列命题是真命题还是假命题,如果是假命题.举出一个反例. (1)若a>b,则a2>b2. (2)两个锐角的和是钝角. (3)同位角相等. (4)两点之间,线段最短. 【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断. 【答案】略. 四、师生互动,课堂小结 请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上. 1.布置作业:从教材“习题5.3”中选取. 2.完成练习册中本课时的练习.

2018届一轮复习北师大版第六章不等式推理与证明第五节合情推理与演绎推理教案

第五节合情推理与演绎推理 ☆☆☆2017考纲考题考情☆☆☆ 自|主|排|查 1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理。

②特点:是由部分到整体、由个别到一般的推理。 (2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理。 ②特点:是由特殊到特殊的推理。 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。 (2)“三段论”是演绎推理的一般模式 ①大前提——已知的一般原理。 ②小前提——所研究的特殊情况。 ③结论——根据一般原理,对特殊情况做出的判断。 微点提醒 1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明。 2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误。

3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的。若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的。 小|题|快|练 一、走进教材 1.(选修2-2P77练习T1改编)已知数列{an}中,a1=1,n≥2时,an=an -1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是( ) A.an=3n-1 B.an=4n-3 C.an=n2 D.an=3n-1 【解析】a1=1,a2=4,a3=9,a4=16,猜想an=n2。故选C。 【答案】 C 2.(选修2-2P84A组T5改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,且n∈N*)成立。类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________。 【解析】根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…bn=b1b2…b17-n(n<17,且n∈N*)。 【答案】b1b2…bn=b1b2…b17-n(n<17,且n∈N*) 二、双基查验 1.数列2,5,11,20,x,47,…中的x等于( )

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

推理与证明教案

推理与证明合情推理(一) 教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用. 教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入: 1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”. 二、讲授新课: 1. 教学概念: ①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理. ②归纳推理的几个特点; 1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上 归纳推理的一般步骤: ⑴对有限的资料进行观察、分析、归纳整理; ⑵提出带有规律性的结论,即猜想; ⑶检验猜想。

归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论? (ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? (iii )观察等式:2221342,13593,13579164 +==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题: ① [例1] 观察图,可以发现:1=12,1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, … 由上述具体事实能得出怎样的结论? ② 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n n a a n a += =+ ,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构 造新数列)

命题定理与证明教案完整版

命题定理与证明教案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

《命题、定理与证明》教案 教学目标 知识与技能: 1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法; 2、了解命题、公理、定理的含义;理解证明的必要性. 过程与方法: 1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识. 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 难点 命题概念的理解; 理解证明的必要性. 教学过程 【一】 一、复习引入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180 度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. D C B A

1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题. 教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论. 有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.” (二)实例讲解 1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论. 学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”. 2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等; (2)如果a>b,b>c,那么a=c;

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

命题、定理、证明教学设计

课题 5.3.2命题、定理、证明授课人 教学目标知识技能 掌握命题、定理的概念,并能分清命 题的题设和结论,判定真命题和假命题; 能根据已知条件对简单问题进行证明.数学思考 通过讨论、探究、交流等形式,使学 生在辩论中获得知识体验. 问题解决 用类比的方法,经历自主学习、合作 探究,领悟命题的有关概念. 情感态度 在学习过程中培养学生敢于怀疑、大 胆探究的品质,培养合作、交流的能力, 从活动中体会学习的快乐. (续表) 教学 重点 掌握命题、定理的概念,并能分清命题的组成. 教学 难点 分清命题的组成,并能把一个命题改写成“如果……那么……”的形式. 授课 类型 新授课课时教具 教学活动 教学 步骤 师生活动设计意图 活动一:创设情境导入新课【课堂引入】 以下6个句子,有什么不同?你能对它们进行分类 吗?如果你能分类,分类的依据是什么? (1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线 都和第三条直线平行,那么这两条直线也互相平行; (4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空 气;(7)不许讲话. 指出像这样判断一件事情的语句,叫做命题. 既复习了已学 知识,又让学生认识 了命题的多种表现 形式. 活动二:实践探究交流新知 【探究1】命题的概念 下列句子中,哪些是命题? ①直角三角形中的两个锐角互余; ②正数都大于0; ③如果∠1+∠2=180°,那么∠1与∠2互补; ④太阳不是行星; ⑤对顶角相等吗? ⑥作一个角等于已知角. 1.通过各类型 的语句探究命题的 概念.

分析:①②③是命题,它们都对事情作出了肯定回 答;④是命题,它对事情作出了否定回答;⑤不是 命题,只表示疑问,并未作出判断;⑥不是命题, 只是描述了一个作图的过程,设有做出判断. 解:①②③④是命题,⑤⑥不是命题. 师生共同总结判断命题的依据:对事件做出了肯定 或否定的判断的句子为命题,否则不是命题. 【探究2】命题的题设和结论 命题由题设和结论两部分组成,其中“题设”是已 知事项,即命题中的已知条件;“结论”是由已知 事项推出的事项,即结论是在已知条件的前提下可 得到的结果.命题的表述形式有标准形式:“如 果……那么……”,另外还有“若……则……”等, 一般地,“如果……”和“若……”是题设部分,“那 么……”和“则……”是结论部分.一些命题前面 的“附加部分”属题设.要准确找出一个命题的题 设和结论,特别是一些没有关联词语、题设和结论 不明显的命题. (续表) 活动二:实践探究交流新知 例2判断下列语句是不是命题,是命题的 指出命题的题设和结论,并判断此命题是否是 真命题. (1)画射线AC; (2)同位角相等吗? (3)两条直线被第三条直线所截,如果同旁内角 互补,那么这两条直线平行; (4)任意两个直角都相等; (5)如果两条直线相交,那么它们只有一个交点; (6)若|x|=|y|,则x=y. 解:(1)(2)不是命题; (3)题设是两条直线被第三条直线所截,同旁内 角互补,结论是这两条直线平行,是真命题; (4)题设是两个角是直角,结论是这两个角相等, 2.师生通过例 题共同探究命题的 题设和结论的确定 方法. 3.引导学生区分命 题与定理的关系,且 体会数学命题证明 的必要性.

推理与证明教学设计范本(高中数学)

教学设计说明 一、本节课数学内容的本质、地位和作用的分析 推理是根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式. 数学、哲学和心理学等学科对其都有研究,它更是人类思维的基本形式. 人们在日常活动和科学研究中经常使用的推理有合情推理和演绎推理. 合情推理是人 类发现新知的一个重要途径. 它既有猜测和发现结论的作用,又有探索和启发思路的作用. 本节课所学习的归纳推理是合情推理的一种. 归纳推理是由部分到整体、由特殊到一般的思维过程,通过归纳推理可以发现新知识,获得新结论. 推理与证明的内容属于数学思维方法的范畴,贯穿数学教学的始终,遍布数学知识的每个领域. 旧教材将其渗透在具体的数学内容中分散处理,如:综合法和分析法放在“不等式”一章,“反证法”作为“简易逻辑”的一部分,“合情推理”更是很少涉及. 新课程将其统一纳入教材,集中讲授,我认为这对学生系统掌握其方法是很有必要的. 尤其是“合情推理”这一新加入内容,有助于学生从单纯的解答现成的问题,扩展到能够独立的提出一些问题. 很多大数学家(比如拉格朗日,波利亚)都强调合情推理是他们发现新问题的重要手段,波利亚更是在其名著《数学与猜想》中拿出很多章节对合情推理的模式进行一一总结. 如果学生掌握了这些方法,并能够在今后有意识的使用它们,不仅能培养其言之有据,论证有理的思维习惯,而且对开发学生创新性思维,为社会培养创新型人才都有很强的现实意义. 二、教学目标分析 新课程中,合情推理分为归纳推理和类比推理两讲,本节课是第一部分,对它是初步了解. 所以我把教学重点放在对归纳推理的概念理解和应用上.而提高学生从特 殊到一般的归纳能力则是本节课的教学难点,教学的关键是引导学生自己探索、观察、发现、归纳. 归纳推理作为发现新知的一种途径,有时探索的过程是漫长而曲折的,课堂上设置了有一定难度的“汉诺塔问题”,正是希望学生通过一番“辛苦”的努力才能得到结论. 这样的安排有利于提高学生的数学素养和锻炼学生的意志品质. 根据以上想法,结合我校学生的实际情况,我制定了如下教学目标: (1)了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

命题、定理、证明1-人教版七年级数学下册优秀教案设计

5.3.2命题、定理、证明 1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点) 2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点) 一、情境导入 2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义? 二、合作探究 探究点一:命题的定义与结构 【类型一】命题的判断 下列语句中,不是命题的是() A.两点之间线段最短 B.对顶角相等 C.不是对顶角不相等 D.过直线AB外一点P作直线AB的垂线 解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D. 方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”. 【类型二】把命题写成“如果……那么……”的形式 把下列命题写成“如果……那么……”的形式. (1)内错角相等,两直线平行; (2)等角的余角相等. 解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行; (2)如果两个角是相等的角,那么它们的余角相等. 方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺. 【类型三】命题的条件和结论

勾股定理地证明方法67327

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状, 使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE F . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()2 2214c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】(爽证明) 以a 、b 为直角边(b>a ), 以c 为斜

边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面 积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴ ()2 2212122 1 c ab b a +?=+. ∴ 2 22c b a =+. 【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,

直接证明和间接证明(4个课时)课程教案

2.2直接证明与间接证明 教学目标: (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法证明简单的不等式; (3)能根据实际题目灵活地选择适当地证明方法; (4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议: 1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用) 2.重点、难点分析 重点:不等式证明的主要方法的意义和应用; 难点:①理解分析法与综合法在推理方向上是相反的; ②综合性问题证明方法的选择. (1)不等式证明的意义 不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立. (2)比较法证明不等式的分析 ①在证明不等式的各种方法中,比较法是最基本、最重要的方法. ②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的 a-b>0.这种证法就是求差比较法. 由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件. ③求差比较法的基本步骤是:“作差→变形→断号”. 其中,作差是依据,变形是手段,判断符号才是目的. 变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可. ④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析 ①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法. ②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式. ③综合法证明不等式的逻辑关系是: (已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析

《命题 定理与证明》优秀教案

5.3.2《命题、定理、证明》第一课时教案教学目标 知识与技能: 1、了解命题、定理的含义;对命题的概念有正确的理解;会区分命题的条件和结论; 2、知道判断一个命题是假命题的方法;理解证明的必要性. 过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 教学重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 教学难点

命题概念的理解; 理解证明的必要性. 教学过程 一、复习导入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. 1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行;

(2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式. 像这样判断一件事情的语句,叫做命题。 问题2 判断下列语句是不是命题? (1)两点之间,线段最短;() (2)请画出两条互相平行的直线;() (3)过直线外一点作已知直线的垂线;() (4)如果两个角的和是90o,那么这两个角互余.()问题3 你能举出一些命题的例子吗? 问题4 请同学们观察一组命题,并思考命题是由几部分组成的? (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)如果两个角的和是90o,那么这两个角互余; (4)等式两边都加同一个数,结果仍是等式.

2017_2018学年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2_2

2.3 数学归纳法 预习课本P92~95,思考并完成下列问题 (1)数学归纳法的概念是什么?适用范围是什么? (2)数学归纳法的证题步骤是什么? [新知初探] 1.数学归纳法的定义 一般地,证明一个与正整数n有关的命题,可按下列步骤进行 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法. 2.数学归纳法的框图表示

[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项. (3)利用假设是核心 在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√ 2.如果命题p (n )对所有正偶数n 都成立,则用数学归纳法证明时须先证n =________成立. 答案:2 3.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52 ,f (16)>3,f (32)>72 ,由此推测,当n >2时,有______________.

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

相关文档
最新文档