废水中COD的测定微波消解法实验报告

废水中COD的测定微波消解法实验报告
废水中COD的测定微波消解法实验报告

篇一:废水中cod的测定实验报告

废水中cod的测试实验报告

一、原理

在强酸性溶液中,加入一定量重铬酸钾作氧化剂,在专用复合催化剂存在下,于165℃恒温加热消解水样10min,重铬酸钾被水中有机物质还原为三价铬,在波长610nm处,测定三价铬离子。

a=?lgt

水中的化学需氧量同消解后样品吸光度存在一定线性关系,y=b*x+a 。

二、实验步骤: 1.标准曲线的绘制

(1)取专用反应管6只做好标记,分别加入0,0.1,0.5,1.0,2.0,3.0ml邻苯二甲酸氢钾标液,相应cod理论值为0,40,200,400,800,1200mg/l

(2)用纯水将各反应管依次补足至3ml;(3)每支反应管加氧化剂1ml;

充分;

(6)取出水样,置于试管架上1-2min后放入冷水盆中冷却至室温;

(7)每支反应管加入纯水3.0ml盖塞摇匀,操作完成后,冷却至室温,准备进行光度测定; 2.待测样

注意: 1、浓硫酸使用仔细

2、氧化剂是上次配制的,不能用试剂瓶中原液。

表1.标准参考值

图1.标准曲线

表2.污水测定值

四、思考题

(1) 为什么需要做空白实验?

答:实验试剂可能存在一定的杂质且蒸馏水不可能完全为纯水,

(2) 化学需氧量测定时,有哪些影响因素?

4.水中还原性物质氯离子、亚硝酸离子、铁离子、硫离子等的存在会影响到cod的测定。

篇二:工业废水cod测定微波消解滴定法

工业废水codcr测定方法

(重铬酸钾微波消解法)

一、试剂

3、0.1n(mol/l)硫酸亚铁铵标准溶液:称取39.5g分析纯硫酸亚铁铵【feso4·(nh4)2so4·6h2o】溶于蒸馏水中,边搅拌边加入20ml浓硫酸,冷却后用水稀释至1000ml,使用前用重铬酸钾标定。标定方法:吸取5.0ml重铬酸钾标准溶液置于150ml锥形瓶中,稀释至30ml左右,缓缓加入5ml硫酸,混匀。

c

[(nh4)2fe(so4)2

式中: 0.2000—重铬酸钾溶液(消解液)浓度(mol/l)

c——硫酸亚铁铵标准溶液的浓度(mol/l)

v——硫酸亚铁铵标准溶液的用量(ml)

4、浓硫酸

5、硫酸—硫酸银溶液(催化剂):于2500ml浓硫酸中加入25g硫酸银。

二、测定方法

微波消解法:

三、待冷却后,将样液转移到150ml锥形瓶中,用20ml水分三次冲洗消解罐及盖的内壁,冲洗液并入锥形瓶中,加2~3滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定(注)至溶液由黄色经蓝绿色至红褐色(红兰色)即为终点。记录硫酸亚铁铵标准溶液ml数(v1)。同时作空白实验(步骤同样品操作)。

【计算】:

codcr(mg/l)

×1000

试中:v0 — ml)

v1 —水样消耗硫

酸亚铁铵标准液量(ml)

c —硫酸亚铁铵

标准溶液的浓度(mol/l)

8 —氧(1/20)摩

尔质量(g/mol)

v2—水样体积(ml)

注:

工业废水codcr测定方法

(重铬酸钾微波消

解法)

测定方法

三、待冷却后,将

样液转移到150ml锥形瓶中,用20ml水分三次冲洗消解罐及盖的内壁,冲洗液并入锥形瓶中,

加2~3滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定(注)至溶液由黄色经蓝绿色至红褐

色(红兰色)即为终点。记录硫酸亚铁铵标准溶液ml数(v1)。同时作空白实验(步骤同样

品操作)。

【计算】: codcr(mg/l)

×1000 试中:v0 — ml)

v1 —水样消耗硫

酸亚铁铵标准液量(ml)

c —硫酸亚铁铵

标准溶液的浓度(mol/l)

8 —氧(1/20)摩

尔质量(g/mol)

v2—水样体积(ml)

注:

篇三:微波消解法测定_cod

实验

六微波消解法测定 cod

1.实验目的

2.原理

3.仪器的主要技术

性能及结构

密封法测量范围:cod(cr):10~800mg/l, cod(cr)>800mg/l(稀释测定);

4.测试方法与步骤 4.1 试剂的选用与配置

(1)重铬酸钾溶液

c=(0.250x5.00)/v

式中:c——硫酸亚铁铵标准溶液的浓度(n);

v——硫酸亚铁铵标准溶液的滴定用量(ml)

(4)硫酸银—硫酸催化剂:于1000毫升浓硫酸中加入10克硫酸银。

4.2 测试步骤

(1)本仪器采用智能化的集成控制系统,若使用密封消解罐来消解样品,

将“方法选择”拨至“0”处;使用非密封微回流消解瓶消解样品,

选择(time)旋钮拨至“15”(密封法)处,仪器会自动地完成整个

用蒸馏水稀释至10毫升)加入消解罐中,分别加入5.00毫升重铬酸

钾消解液和10毫升硫酸银—硫酸催化剂,旋紧密封盖,使消解罐密

50mg/l的水样,可改用0.05n重铬酸钾标准溶液进行

每次滴定完毕后,若消解罐内或玻璃消解瓶内无固态残留物,应尽量避免使用洗衣粉等有机洗涤剂来冲洗消解罐或玻璃消解瓶内壁,只需要用水冲洗干净即可。

(4)消解后的滴定

消解结束后的消解罐,由于内部反应液温度较高,应置冷或水冷却后,才能打开,当打开密封消解罐后,将反应液转移到200毫升锥形瓶中,用蒸馏水冲洗消解罐帽2~3次,冲洗液并入锥形瓶中,控制体积约

5 计算

cod(mg/l)=[(v0-v1)xcx8x1000]/v2

式中:v0——空白消耗硫酸亚铁铵的量(ml)

v1——水样消耗硫酸亚铁铵标准溶液的量(ml)

v2——水样体积(ml)v2=10.00ml

c——硫酸亚铁铵标准溶液的浓度(mol/l)

8——氧(1/2)摩尔质量(g/mol)

注意:消解后,反应液中重铬酸钾剩余量应为加入量的1/5~4/5为宜。

6 仪器管理及安全注意事项

安全注意事项:

(3)若出现异常情况,请将时间按钮拨回“0”的位置,并拉断电源,

(5)使用消解罐来处理样品时,在加热过程中会产生较高的温度和

内无消解罐而被偶然启动时,可将时间拨至“0”位

篇四:废水中cod测定方法的改进

废水中cod测定方法的改进

作者:熊梅英

《科技创新与

来源:

应用》2013年第17期

关键词:化学需氧量;重铬酸钾法;cod消解器

炼油化工排出的废水中溶解大量的有机物和部分还原性无机物,有机物在水体中分解时,消耗大量的氧,破坏了水体中的氧的平衡,使鱼类等水生动物因缺氧而受到影响。而厌氧微生物的繁殖会使水体发黑发臭,对水环境造成严重损害。为了对废水进行有效治理,就需准确测算出水体中的化学需氧量,化学需氧量是评价水质有机物污染的一个重要指标。目前我们采用的是国家标准方法重铬酸钾法(gb11914-89)。

在水样中加入已知量的重铬酸钾溶液,在浓硫酸的条件下,以硫酸银作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾。

2 实验步骤

2.3 溶液冷却至室温后,加入3滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经黄绿色至红褐色即为终点。

其计算公式:

2.5 测定结果的计算:以mg/l计的水样化学需氧量

cod(mg/l)=c (v1-v2)×8000/v0

3 结果和讨论

3.1 回流的温度和时间对测定结果的影响

回流时的温度和时间对测定结果影响比较明显。实验温度可调节电炉控制试样刚好沸腾,控制好温度后对回流时间进行讨论。回流时间过长,溶液逸出损失未反应的k2cr2o7,使分析结果偏高。回流时

间过短,氧化不完全,使分析结果偏低。

3.2 采用cod消解器后回流时间的影响

3.3 不同回流时间测定结果

下面比较回流时间为90分钟和120分钟时在不同浓度cod标准溶液中的测定结果。

从表1中的测定结果看出,90分钟回流时间测定的cod值,在标准范围内,表明其有较好的准确性,满足分析测定的准确度要求。回流时间为120分钟的标准偏差为0-2.91,相对标准偏差为0-1.18,回流时间为90分钟的标准偏差为0-2.35,相对标准偏差为0-0.96。

3.4 检验回流时间改进前后废水cod测定结果:

从表2可以看出,90分钟回流时间和120分钟回流时间所测的cod的值相近,在允许误差范围内。

4 结束语

4.2 采用cod消解器代替原标准分析方法中的加热回流冷凝装置,加热回流时间能缩短为90分钟,完全可以准确测量出废水中cod。

参考文献

[1]国家环保总局,水和废水监测分析方法[m].(第四版).北京:中国环境科学出版社2002.12.

篇五:废水中cod的测定方法

废水中cod的测定

1国标法

1.1试剂

1.1.1 硫酸银(ag2so4),化学纯;

1.1.2 硫酸汞(hg2so4),化学纯;

1.1.3 硫酸(h2so4),?=1.84 g/ml;

1.1.5 重铬酸钾标准溶液: 1浓度为c(k2cr2o7)=0.250 mol/l的重铬酸钾标准溶液:将1

2.258 g在6

11.1.6 浓度为

c(k2cr2o7)=0.0250 mol/l的重铬酸钾标准溶液:将1.1.5条的6

1.1.7 硫酸亚铁铵标准滴定溶液

b)每日临用前,必须用重铬酸钾标准溶液(1.1.5)准确标定此溶液的浓度。取10.00 ml重铬酸钾标准溶液(1.1.5)置于锥形瓶中,用水稀释至约100ml,加入30 ml硫酸(1.1.3),混匀,冷却后,加3滴(约0.15 ml)试亚铁灵指示剂,用硫酸亚铁铵滴定溶液的颜色由黄色经蓝绿色变为红褐色,即为终点。

c)硫酸亚铁铵标准滴定溶液浓度的计算:

c??nh4?2fe?so4?2?6h2o??10.00?0.2502.50? vv

1.1.8 邻苯二甲酸氢钾标准溶液,c?kc8h5o4??

2.0824 mmol/l:称取105 ℃时干燥2 h的邻苯二甲酸氢钾0.4251 g溶于水,并稀释至1000 ml,混匀。

1.2 仪器

1.2.1 回流装置

带有24号标准磨口的250 ml锥形瓶的回流冷凝管长度为300-500 mm。

1.3样品采集

1.3.1水样要采集于玻璃瓶中,尽快分析。如不能立即分析时,应加入硫酸至ph<2,置于4 ℃下保存。但保存时间不多于5天。

1.4 分析步骤

1.4.3对于污染严重的水样,可选取所需体积1/l0的试料和1/10的试剂,放入10×150 mm硬质玻璃管中,摇匀后,用酒精灯加热至沸数分钟,观察溶液是否变成蓝绿色。如呈蓝绿色,应再适当少取试料,重复以上试验,直至溶液不变蓝绿色为止。

1.4.5 空白试验:按相同步骤以20. 0 ml水代替试料进行空白试验,其余试剂和试料测定相同,记录下空白滴定时消耗硫酸亚铁钱标准溶液的毫升数v1。

将锥形瓶接到回流装置(1.2.1)冷凝管下端,接通冷凝水。从冷凝管上端缓慢加入30 ml硫酸银—硫酸试剂(1.1.4),以防止低沸点有机物的逸出,不断旋动锥形瓶使之混合均匀。

冷却后,用20—30 ml水自冷凝管上端冲洗冷凝管后,取下锥形瓶,再用

溶液冷却至室温后,加入3滴1,10—菲绕琳指示剂溶液(1.1.9),用硫酸亚铁铵标准滴定溶液滴定。溶液的颜色由黄色经蓝绿色变为红褐色即为终点。

1.5 结果计算

以mg/l计的水样1):

cod(mg/l)?c(v1?v2)?8000…………………………(1) v0

式中:

c—硫酸亚铁铵标准滴定溶液的浓度,mol/l;

v1—空白试验所消耗的硫酸亚铁铵标准溶液的体积,ml;

v2—试料测定所消耗的硫酸亚铁铵标准溶液的体积,ml;

v0—试料的体积,ml;

哈尔滨工业大学(威海)微波技术实验报告

《微波技术》实验 班级 学号 姓名

实验一ANSOFT HFSS软件的使用与魔T的仿真 一、实验内容 1.下载并且安装ANSOFT HFSS软件10.0版本 2.学习使用该软件 3.仿真魔T 4.写出仿真使用后的报告 二、验收方式 1.提交使用报告(封皮班级学号装订成册) 2.用电脑对进行实际的演示和操作 三、实验步骤 注:首先根据实验Word文档设置仿真环境变量以保证魔T仿真能正确进行。 1、建立工程文件 在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry复选框选中这样使得在复制模型时,所设置的边界一起复制。 2、设置求解类型 3、设置模型单位 将创建模型中的单位设置为毫米。 4、设置模型的默认材料 在工具栏中设置模型的默认材料为真空(Vacuum)。 5、创建魔T (1) 创建arm_1 利用Draw>Box创建。 (2) 设置激励端口 注意:在哪一个端口设置激励,就先画哪一个端口,并将端口命名为P1。 (3) 创建其他臂 利用旋转复制的方式创建arm_2,arm_3,arm_4。 (4) 组合模型 利用布尔运算将所有的arm组合成为一个模型,即魔T创建完成。

6、设置求解频率即扫频范围 (1) 设置求解频率。解设置窗口中做以下设置:Solution Frequency :4GHz;Maximum Number of Passes:5;Maximum Delta S per Pass :0.02。 (2) 设置扫频。在扫频窗口中做以下设置:Sweep Type:Fast;Frequency Setup Type:Linear Count;Start :3.4GHz;Stop:4GHz;Count:1001;将Save Field复选框选中。 实验仿真图如下: 图1 电场E分布 说明:图1以正z轴方向为激励端口1,负y轴端口2,正x轴端口3,正y轴端口4。 可知:(1)端口1作为激励端口,端口2和端口4有等幅反向波输出。 (2)端口3为隔离口。

微波电路S参数测量实验报告

微波电路S参数测量实验报告 一、实验目的 掌握微波电路S参数的基本概念、测试的原理和方法。 二、实验内容 用矢量网络分析仪测试微波滤波器的二端口S参数。 三、基本原理 网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。矢量网络分析仪的原理如图1所示。 图1 矢量网络分析仪的原理图 上图中各部分的功能如下: A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。 B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。 C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。 D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。而对于双端口测量,则还可以测量传输参数。 图2 利用网络分析仪测微波电路的S参数 微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。 滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。(4)带阻滤波器:抑制ω1至ω2频率范围内的信号,而此频率范围外的信号可以通过。 测试前需要特别注意的一点是,如果待测件是有源器件,连接待测件前一定先将网络分析仪的两个端口的输出功率降到-25dBm以下。否则不但不会得到正确的测试结果,而且还有可能将网络分析仪损坏。这一点是测量有源器件时需要特别注意的一点。 四、微波滤波器技术指标 工作频率:9.36GHz; 电压驻波比:<1.3; 插入损耗:< 1dB。 五、实验步骤 1、矢量网络分析仪开机; 2、矢量网络分析仪校准; 3、连接矢量网络分析仪与被测器件; 4、按下“PRESET”键,准备进行设置,并设置监视的频率范围:按下“FREQ”键,按下“CENTER”软键,使用数字键输入扫频段的中心频率,例如9360,然后按下“MHz”软键。同时按下“SPAN”软键,输入测量带宽,使用数字键输入“500”,然后按下“MHz”软键。

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

微波技术基础实验指导书讲解

微波技术基础实验报告 所在学院: 专业班级: 学生姓名: 学生学号: 指导教师: 2016年5月13日

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:必做 开课单位:学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2.学习使用测量线 四、基本原理: 图1。1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器

当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。 实验二驻波系数的测量

实验报告_COD

重铬酸钾法 一、实验目的和要求 (1)了解COD 测定的意义与方法。 (2)掌握重铬酸钾法测定COD 的原理和操作技术。 (3)熟悉密封消解分光光度法测定COD 的原理及操作流程。 二、基本原理 在强酸性溶液中,用K 2Cr 2O 7氧化水样中的还原性物质,过量的K 2Cr 2O 7以试亚铁灵做指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。 反应式如下: Cr 2O 72- + 14H + + 6e = 2Cr 3+ + 7H 2O (橙红色) (蓝绿色) Cr 2O 7 2- + 14H + + 6Fe 2+ = 6Fe 3+ + 2Cr 3+ + 7H 2O 三、实验仪器 1、500mL 全玻璃回流装置。 2、电炉 3、酸式滴定管、锥形瓶、移液管、容量瓶 四、试剂 (1)重铬酸钾标准溶液)/2500.0(7 226/1L mol c O Cr K =:称取预先在120℃烘干2h 的基 准或优级纯重铬酸钾12.2580g 溶于水中,移入1000mL 容量瓶中,稀释至刻线,摇匀。 (2)亚铁灵指示液:称取 1.485g 邻啡啰啉(C12H8N2·H2O)、0.695g 硫酸亚铁(FeSO4·7H2O )溶于水中,稀释至100mL ,贮存于棕色瓶中。 (3)硫酸亚铁铵标准溶液(约0.1mol/L ):称取39.5g 硫酸亚铁铵溶于水中,边搅拌近缓慢加入20mL 浓硫酸,冷却后移入1000mL 容量瓶中,加水稀释至标线,摇匀。临用前用重铬酸钾标准溶液标定,标定方法如下: 准确吸取10.00mL 重铬酸钾标准溶液于500mL 锥形瓶中,缓慢加入30mL 浓硫酸,混匀。冷却后,加入3滴试亚铁灵指示剂(约0.15mL ),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。按照下式计算硫酸亚铁铵的浓度: 式中:c —硫酸亚铁铵标准溶液的浓度(mol/L ); V —硫酸亚铁铵标准溶液的用量(mL )。 表1-3 硫酸亚铁铵的标定结果 要求: 平行测定3份。 V c 00 .102500.0?=

哈工大 微波技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 微波技术 实验报告 院系:电子与信息工程学院班级: 姓名: 学号: 同组成员: 指导老师: 实验时间:2014年12月18日 哈尔滨工业大学

目录 实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。 二、实验原理 S 参量 网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。微波频段 通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量, 例如[Y]、[Z] 图1-1 一个二端口微波元件用二端口网络来表示,如图1-1所示。图中,a1,a2分 别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口 “2”向外的反射波。对于线性网络,可用线性代数方程表示: b1=S11a1+S12a2 b2=S21a1+S22a2 (1-1) 写成矩阵形式: ?? ??????????????=????? ???a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为 S11=11 a b 02=a “2”端口外接匹配负载时, “1”端口的反射系数 S21=12 a b 02=a “2”端口外接匹配负载时, “1”端口至“2”端口的传输系数 S12=21 a b 01=a “1”端口外接匹配负载时, “2”端口至“1”端口的传输系数

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

重庆大学移动通信系统实验报告

ADS系统级仿真 ——发射机、零中频接收机与外差式接收机 课程名称:移动通信系统 院系:通信工程学院 专业:通信01班 年级: 2013级 姓名:叶汉霆 学号: 指导教师:李明玉 实验时间: 重庆大学

一、实验目的: 1. 熟悉ADS软件的使用、能用该软件进行原理图设计和原理图仿真。 2. 了解发射机、接收机的结构及工作原理; 3. 掌握利用ADS中行为级模块进行系统级仿真的方法,使用如滤波器、放大器、混频器等行为级的功能模块搭建收发信机系统。 4.运用S参数仿真、交流仿真、谐波平衡仿真、瞬态响应仿真等仿真器对收发信机系统的各种性能参数进行模拟检测。 二、实验原理: 1.接收机 接收机将通过信道传播的信号进行接收,提取出有用信号。接收机一般具有接收灵敏度、选择性、交调抑制、噪声系数等性能参数。 接收机的实现架构可分为:超外差、零中频和数字中频等。 接收机各部分的作用和要求如下: ①射频滤波器1(FP Filter1) 选择信号频段、限制输入信号带宽、减小互调失真。 抑制杂散信号,避免杂散响应。 减少本振泄漏,在频分系统中作为频域相关器。 ②低噪声放大器(LNA) 在不使接收机线性度恶化的前提下提供一定的增益。 抑制后续电路的噪声,降低系统的噪声系数。 ③射频滤波器2(FP Filter2) 抑制由低噪声放大器放大或产生的镜频干扰。 进一步抑制其他杂散信号。 减少本振泄漏。 ④混频器(Mixer) 将射频信号下变频为中频信号。 是接收机中输入射频信号最强的模块,其线性度极为重要,同时要求较低 的噪声系数。 ⑤本振滤波器(Injection Filter) 滤除来自本振的杂散信号。

人工智能实验报告-产生式系统推理-动物识别

人工智能第二次实验报告 产生式系统推理 班级:姓名:学号: 一、实验目的 1. 理解并掌握产生式系统的基本原理; 2. 掌握产生式系统的组成部分,以及正向推理和逆向推理过程。 二、实验要求 1. 结合课本内容, 以动物识别系统为例,实现小型产生式系统; 2. 要求: 正向推理中能根据输入的初始事实,正确地识别所能识别的动物;逆向推理中 能根据所给的动物给出动物的特征。 三、实验算法 1. 如何表示事实和特征的知识; 在本程序中,我将动物的特征写入data.txt,将规则记入rules.txt,将动物种类记为goal.txt。

通过函数void readFiles() { readGoal(); readCod(); readRule(); }读入所有数据分别存放于goal[],rule[],cod[]自定义数组中。 2. 指出综合数据库和规则库分别使用哪些函数实现的? 综合数据库(包括特征和目标) typedef struct { int xuh;//存放编号 char valu[50];//存放具体内容 }Node; Node goal[20]; Node cod[50];

规则库 typedef struct { int rslt; int codNum;//记载前提的个数 int cod[10];//记载前提的序号 int used;//记载是否已匹配成功 }Nrule; Nrule rule[50]; void readRule() { FILE *fp; int i; int tempxuh,tempcodn; char ch; if((fp=fopen("rules.txt","r"))==NULL) { printf("cannot open data\n"); exit(0); } i=0; rule[i].codNum=0; while((ch=fgetc(fp))!=EOF) { if(i==14) i=i; tempcodn=0; while(ch!='\n'&&ch!=EOF) //每一条规则 { tempxuh=0; while(ch<='9'&&ch>='0') { tempxuh=tempxuh*10+ch-'0';

微波技术实验报告

微波技术实验指导书目录 实验一微波测量仪器认识及功率测量 实验二测量线的调整与晶体检波器校准 实验三微波驻波、阻抗特性测量 实验一微波测量仪器认识及功率测量 实验目的 (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 实验内容 一、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。 图 1-1 微波测量系统 二、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件: (1)检波器(2)E-T接头(3)H-T接头(4)双T接头 (5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载 (9)吸收式衰减器(10)定向耦合器(11)隔离器 三、功率测量 在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。 微波元器件的认识 螺钉调配器 E-T分支与匹配双T 波导扭转 匹配负载 波导扭转 实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。 实验二测量线的调整与晶体检波器校准 实验目的 (1)学会微波测量线的调整; (2)学会校准晶体检波器特性的方法; (3)学会测量微波波导波长和信号源频率。 实验原理

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告 班级学号班序号亚东2011211116 2011210466 22

实验二微带分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 实验原理 1.支节匹配器 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+YY形式,即Y=Y0+YY,其中Y0=1/Y0 。并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为Y0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为?YY,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。 双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 2.微带线 微带线是有介质Y Y(Y Y>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质Y Y,可以近似等效为均匀介质填充的传输线,等效介质电常数为Y Y,介于1和Y Y之间,依赖于基片厚度H和导体宽度W。而微带线的特性阻抗与其等效介质电常数为Y Y、基片厚度H和导体宽度W有关。 实验容 已知:输入阻抗Zin=75Ω 负载阻抗Zl=(64+j35)Ω 特性阻抗Z0=75Ω 介质基片εr=2.55,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

《现代通信技术》实验报告一

《现代通信技术》实验报告一

现代通信之我见 一、通信的基本含义 “通信”二字在通信原理课本上的定义是——互通信息,简短却又蕴含了很深的含义。我自己对通信的理解:“互”字即互相,即通信是双方的通信;“通”字即建立了通道,处于连通的状态,信息能够在通道里传递;而“信息”则就有广泛的含义了,是通信传递的内容,人们通过获取信息来了解、认识事物。简单的“通信”二字蕴含了丰富的内容,让我们有深刻的思考。 二、现代通信的发展和技术 近现代的通信发展历史,大致可以分为两个阶段。第一阶段是电通信阶段,第二阶段是电子信息通信阶段。第一阶段包括莫尔斯发明电报机、贝尔发明电话,开启了电路交换的时代;第二阶段主要包括通信系统和通信网技术的快速发展,其主要应用的通信技术有移动通信技术、程控交换技术、传输技术、数据交换与数据网技术、接入网与接入技术。 现代通信网络采用分层的结构形式,其垂直描述,即为了实现端到端之间的业务通信,从功能上将网络分为业务与终端、交换与路由和接入与传送。“业务与终端”表示面向用户的各种通信业务与通信终端的类型和服务类型,“交换与路由”表示支持各种业务的提供手段与网络装备,“接入与传送”表示支持所接入业务的传送媒质和技术设施。每一层都有不同的支撑技术,表现出不同的功能与技术特征,使得通信技术与通信网络有机的融合。 在我们学习现代通信技术的过程中,老师一直要求我们从“大通信、大网络”的层面来学习思考,而不是单单注重某一门技术的研究。现代的网络时代,涌现出许许多多高端前沿的技术,如数字通信、程控交换、宽带IP等,如果将这些技术分别开设课程独立学习,则课程量很大,而且不利于我们对这个大网络的整体的关联性进行思考。在技术飞快的更新换代的今天,我们能做的就是尽快赶上信息的更新速度,从大的方面整体地观测信息时代的发展。

废水中COD的测定微波消解法实验报告

篇一:废水中cod的测定实验报告 废水中cod的测试实验报告 一、原理 在强酸性溶液中,加入一定量重铬酸钾作氧化剂,在专用复合催化剂存在下,于165℃恒温加热消解水样10min,重铬酸钾被水中有机物质还原为三价铬,在波长610nm处,测定三价铬离子。 a=?lgt 水中的化学需氧量同消解后样品吸光度存在一定线性关系,y=b*x+a 。 二、实验步骤: 1.标准曲线的绘制 (1)取专用反应管6只做好标记,分别加入0,0.1,0.5,1.0,2.0,3.0ml邻苯二甲酸氢钾标液,相应cod理论值为0,40,200,400,800,1200mg/l (2)用纯水将各反应管依次补足至3ml;(3)每支反应管加氧化剂1ml; 充分; (6)取出水样,置于试管架上1-2min后放入冷水盆中冷却至室温; (7)每支反应管加入纯水3.0ml盖塞摇匀,操作完成后,冷却至室温,准备进行光度测定; 2.待测样 注意: 1、浓硫酸使用仔细 2、氧化剂是上次配制的,不能用试剂瓶中原液。 表1.标准参考值 图1.标准曲线 表2.污水测定值 四、思考题 (1) 为什么需要做空白实验? 答:实验试剂可能存在一定的杂质且蒸馏水不可能完全为纯水, (2) 化学需氧量测定时,有哪些影响因素?

4.水中还原性物质氯离子、亚硝酸离子、铁离子、硫离子等的存在会影响到cod的测定。 篇二:工业废水cod测定微波消解滴定法 工业废水codcr测定方法 (重铬酸钾微波消解法) 一、试剂 3、0.1n(mol/l)硫酸亚铁铵标准溶液:称取39.5g分析纯硫酸亚铁铵【feso4·(nh4)2so4·6h2o】溶于蒸馏水中,边搅拌边加入20ml浓硫酸,冷却后用水稀释至1000ml,使用前用重铬酸钾标定。标定方法:吸取5.0ml重铬酸钾标准溶液置于150ml锥形瓶中,稀释至30ml左右,缓缓加入5ml硫酸,混匀。 c [(nh4)2fe(so4)2 式中: 0.2000—重铬酸钾溶液(消解液)浓度(mol/l) c——硫酸亚铁铵标准溶液的浓度(mol/l) v——硫酸亚铁铵标准溶液的用量(ml) 4、浓硫酸 5、硫酸—硫酸银溶液(催化剂):于2500ml浓硫酸中加入25g硫酸银。 二、测定方法 微波消解法: 三、待冷却后,将样液转移到150ml锥形瓶中,用20ml水分三次冲洗消解罐及盖的内壁,冲洗液并入锥形瓶中,加2~3滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定(注)至溶液由黄色经蓝绿色至红褐色(红兰色)即为终点。记录硫酸亚铁铵标准溶液ml数(v1)。同时作空白实验(步骤同样品操作)。 【计算】: codcr(mg/l)

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

综合课程设计实验报告 课程名称:微波方向综合课程设计 实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院 专业班级: 姓名: 学号: 指导教师: 2011年12月22日

一、实验目的和要求 1、目的: 通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。 2、要求: 从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se 将其绘制成电路版图(PCB)。(器件的工作频率和学号相关) 1)3dB微带功率分配器; 2)微带短截线滤波器 3)3dB微带定向耦合器 PCB板采用介电常数为4.5,厚度为1mm的FR4基片; 电路尺寸必须按照自己相应的MWO设计结果绘制; 电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm; 每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。 二、实验内容和原理 1、内容: 在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。 2、原理:

(1)Richards 变换: 集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。如图1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。 图1 (2)Kuroda 规则: 采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图2所示。其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。

《现代通信技术》实验报告一

现代通信之我见 一、通信的基本含义 “通信”二字在通信原理课本上的定义是——互通信息,简短却又蕴含了很深的含义。我自己对通信的理解:“互”字即互相,即通信是双方的通信;“通”字即建立了通道,处于连通的状态,信息能够在通道里传递;而“信息”则就有广泛的含义了,是通信传递的内容,人们通过获取信息来了解、认识事物。简单的“通信”二字蕴含了丰富的内容,让我们有深刻的思考。 二、现代通信的发展和技术 近现代的通信发展历史,大致可以分为两个阶段。第一阶段是电通信阶段,第二阶段是电子信息通信阶段。第一阶段包括莫尔斯发明电报机、贝尔发明电话,开启了电路交换的时代;第二阶段主要包括通信系统和通信网技术的快速发展,其主要应用的通信技术有移动通信技术、程控交换技术、传输技术、数据交换与数据网技术、接入网与接入技术。 现代通信网络采用分层的结构形式,其垂直描述,即为了实现端到端之间的业务通信,从功能上将网络分为业务与终端、交换与路由和接入与传送。“业务与终端”表示面向用户的各种通信业务与通信终端的类型和服务类型,“交换与路由”表示支持各种业务的提供手段与网络装备,“接入与传送”表示支持所接入业务的传送媒质和技术设施。每一层都有不同的支撑技术,表现出不同的功能与技术特征,使得通信技术与通信网络有机的融合。 在我们学习现代通信技术的过程中,老师一直要求我们从“大通信、大网络”的层面来学习思考,而不是单单注重某一门技术的研究。现代的网络时代,涌现出许许多多高端前沿的技术,如数字通信、程控交换、宽带IP等,如果将这些技术分别开设课程独立学习,则课程量很大,而且不利于我们对这个大网络的整体的关联性进行思考。在技术飞快的更新换代的今天,我们能做的就是尽快赶上信息的更新速度,从大的方面整体地观测信息时代的发展。

COD实验报告

内江市环境保护监测站 实验报告 分析人员:熊杰 质量负责人: 技术负责人: 报告日期:二00九年四月九日报告单位:内江市环境保护监测站

1.1题目:重铬酸钾法测定考核样品中化学需氧量的实验报告 1.2样品名称:化学需氧量 编号:化学需氧量考核 任务来源:四川省环保局资质考核组 实验目的:四川省监测人员持证上岗考核 实验日期:2009年4月 6 日 报告日期:2009年4月 9 日 1.3实验方法原理: 水样的化学需氧量可由于加入氧化剂的种类和浓度,反应溶液的酸度、温度和时间以及催化剂的有无而获得不同的结果。对于污水,我国规定用重铬酸钾法,其测得的值称为化学需氧量。 在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵为指示剂,用硫酸亚铁铵回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。 1.4实验仪器、试剂: 1.4.1仪器: 1.4.1.1回流装置:全玻璃磨口回流装置 1.4.1.2加热装置:COD恒温加热器 1.4.1.3 25ml酸式滴定管 1.4.1.4250ml容量瓶 1.4.2实验试剂 1.4. 2.1 重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h 的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 1.4. 2.2重铬酸钾标准溶液(1/6 =0.02500mol/L:)称取预先在120℃烘干2h 的基准或优级纯重铬酸钾1.2258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 1.4. 2.3试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。

微波技术基础 简答题整理

第一章传输线理论 1-1.什么叫传输线?何谓长线和短线? 一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。(界限可认为是l/λ>=0.05) 1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类? 按传输波形分类: (1)TEM(横电磁)波传输线 例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统; (2)TE(横电)波和TM(横磁)波传输线 例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统; (3)表面波传输线 例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加) 按损耗特性分类: (1)分米波或米波传输线(双导线、同轴线) (2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) (3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线) (4)光频波段传输线(介质光波导、光纤) 1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么? 传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。其数值只和传输线的结构,材料和电磁波频率有关。 阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。 1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?

(1)行波状态: 0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。 终端负载吸收全部的入射功率而不产生反射波。在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。 (2)驻波状态: 终端开路,或短路,或终端接纯抗性负载。 电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。 (3)行驻波状态: 终端负载为复数或实数阻抗(L L L X R Z ±=或L L R Z =)。 信号源传输的能量,一部分被负载吸收,一部分反射回去。反射波功率小于入射波功率。 1-5.何谓分布参数电路?何谓集总参数电路? 集总参数电路由集总参数元件组成,连接元件的导线没有分布参数效应,导线沿线电压、电流的大小与相位,与空间位置无关。分布参数电路中,沿传输线电压、电流的大小与相位随空间位置变化,传输线存在分布参数效应。 1-6.微波传输系统的阻抗匹配分为两种:共轭匹配和无反射匹配,阻抗匹配的方法中最基本的是采用λ/4阻抗匹配器和支节匹配器作为匹配网络。 1-7.传输线某参考面的输入阻抗定义为该参考面的总电压和总电流的比值;传输线的特征阻抗等于入射电压和入射电流的比值;传输线的波阻抗定义为传输线内横向电场和横向磁场的比值。 1-8.传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差λ/4,在这些位置输入阻抗共同的特点是纯电阻。 第二章 微波传输线 2-1.什么叫模式或波形?有哪几种模式?

相关文档
最新文档