物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义
物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型”

动量守恒定律在高中物理占有非常重要的位置,也是多年来选修3-5考查的热点.2017

年选修3-5列为必考内容后,对于力学三大观点的问题就得到了解决.模型的核心是对动量

定理和动量守恒定律的应用,可对力学知识综合考查.

一、“子弹打木块模型”

[范例1] (18分)一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为F f .试求从木块开始运动到子弹与木块相对静止的过程中:

(1)子弹、木块相对静止时的速度v ;

(2)子弹、木块发生的位移s 1、s 2以及子弹打进木块的深度l 相分别为多少? (3)系统损失的机械能、系统增加的内能分别为多少?

[解析] (1)由动量守恒得mv 0=(M +m )v (2分) 子弹与木块的共同速度v =m

M +m v 0.

(2分)

(2)对子弹利用动能定理得 -F f s 1=12mv 2-1

2mv 20

(2分)

所以s 1=Mm (M +2m )v 20

2F f (M +m )2.

(2分)

同理对木块有:F f s 2=1

2

Mv 2

(2分) 故木块发生的位移为s 2=Mm 2v 20

2F f (M +m )2

(2分) 子弹打进木块的深度为:l 相=s 1-s 2=Mmv 20

2F f (M +m ).

(2分)

(3)系统损失的机械能

ΔE k =12mv 20-12(M +m )v 2

=Mmv 202(M +m )

(2分) 系统增加的内能:Q =ΔE k =Mmv 20

2(M +m ).

(2分)

[答案] (1)m

M +m v 0

(2)Mm (M +2m )v 202F f (M +m )2 Mm 2v 202F f (M +m )2 Mmv 202F f (M +m ) (3)Mmv 202(M +m ) Mmv 202(M +m )

“子弹打木块模型”是碰撞中常见模型,其突出特征是在子弹打击木块的过程中有机械能损失,此类问题的一般解法可归纳如下:

(1)分析子弹打击木块的过程,弄清楚子弹是停留在木块中和木块一起运动还是穿透木块和木块各自运动;

(2)子弹在打击木块的过程中,由于时间较短,内力远远大于外力,故在打击的过程中动量守恒;

(3)子弹在打击木块过程中产生的机械能损失,一般有两种求解方法:一是通过计算打击前系统的机械能与打击后系统的机械能的差值得出机械能的损失;二是通过计算在子弹打击木块的过程中,子弹克服阻力做的功与阻力对木块做的功的差值进行求解. 二、“碰撞模型”

[范例2] (18分)如图所示,打桩机锤头质量为M ,从距桩顶h 高处自由下落,打在质量为m 的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为s ,试求在木桩下陷过程中泥土对木桩的平均阻力是多少?

[解析] 设锤头刚与木桩接触时的速度大小为v 0,则由运动学规律

可得:v 2

0=2gh .由于锤头与木桩碰撞时,作用时间极短,系统的内力远远大于外力,动量守

恒.设两者碰撞后的共同速度大小为v ,则由动量守恒定律可得:Mv 0=(M +m )v

(6分)

设在木桩下陷过程中泥土对木桩的平均阻力大小为F f ,则由动能定理可得: (M +m )gs -F f s =0-1

2

(M +m )v 2

(6分)

以上各式联立求解得:F f =(M +m )g +M 2gh

(M +m )s

.

(6分)

[答案] 见解析

抓住“三个原则、三个定律”速解碰撞问题

(1)判断两物体碰撞瞬间的情况:当两物体相碰时,首先要判断碰撞时间是否极短、碰撞时的相互作用(内力)是否远远大于外力.

(2)碰撞的“三个原则”:①动量守恒原则,即碰撞前后两物体组成的系统满足动量守

恒定律;②能量不增加原则,即碰撞后系统的总能量不大于碰撞前系统的总能量;③物理情境可行性原则,即两物体碰撞前后的物理情境应与实际相一致.

(3)根据两物体碰撞时遵循的物理规律,列出相对应的物理方程:如果物体间发生的是弹性碰撞,则一般是列出动量守恒方程和机械能守恒方程进行求解;如果物体间发生的不是弹性碰撞,则一般应用动量守恒定律和能量守恒定律(功能关系)进行求解.

三、“弹簧模型”

[范例3] (18分)(2017·肇庆质检)如图所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,滑板右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,可视为质点的小木块A 质量m =1 kg ,原来静止于滑板的左端,滑板与木块A 之间的动摩擦因数μ=0.2.当滑板B 受水平向左恒力F =14 N 作用时间t 后,撤去F ,这时木块A 恰好到达弹簧自由端C 处,此后运动过程中弹簧的最大压缩量为x =5 cm.g 取10 m/s 2,求:

(1)水平恒力F 的作用时间t ;

(2)木块A 压缩弹簧过程中弹簧的最大弹性势能;

(3)当小木块A 脱离弹簧且系统达到稳定后,整个运动过程中系统所产生的热量. [解析] (1)木块A 和滑板B 均向左做匀加速直线运动,由牛顿第二定律可得:a A =μmg

m ,

a B =F -μmg M

根据题意有: s B -s A =L

(2分)

即:12a B t 2-1

2

a A t 2=L

将数据代入并联立解得:t =1s .

(2分)

(2)1 s 末木块A 和滑板B 的速度分别为: v A =a A t ,v B =a B t

当木块A 和滑板B 的速度相同时,弹簧压缩量最大,具有最大弹性势能. 根据动量守恒定律有:mv A +Mv B =(m +M )v

(2分)

由能的转化与守恒得:

12mv 2A +12Mv 2B =1

2(m +M )v 2+E p +μmgx (2分) 代入数据求得最大弹性势能E p =0.3 J .

(2分)

(3)二者同速之后,设木块相对滑板向左运动离开弹簧后系统又能达到共同速度v ′,相对滑板向左滑动距离为s ,有:mv A +Mv B =(m +M )v ′

解得:v ′=v

(2分)

由能的转化与守恒定律可得:E p =μmgs 解得:s =0.15 m

(2分)

由于x +L >s 且s >x ,故假设成立

整个过程系统产生的热量为:Q =μmg (L +s +x ) (2分) 解得:Q =1.4 J .

(2分)

[答案] (1)1 s (2)0.3 J (3)1.4 J

利用弹簧进行相互作用的碰撞模型,一般情况下均满足动量守恒定律和机械能守恒定律,此类试题的一般解法是:

(1)首先判断弹簧的初始状态是处于原长、伸长还是压缩状态;

(2)分析碰撞前后弹簧和物体的运动状态,依据动量守恒定律和机械能守恒定律列出方程;

(3)判断解出的结果是否满足“实际情境可行性原则”,如果不满足,则要舍掉该结果. 注意:(1)由于弹簧的弹力是变力,所以弹簧的弹性势能通常利用机械能守恒或能量守恒求解;

(2)要特别注意弹簧的三个状态:原长(此时弹簧的弹性势能为零)、压缩到最短或伸长到最长的状态(此时弹簧连接的两个物体具有共同的速度,弹簧具有最大的弹性势能),这往往是解决此类问题的突破点.

[预测押题]

1.如图所示,在固定的足够长的光滑水平杆上,套有一个质量

为m =0.5 kg 的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M =1.98 kg 的木块,现有一质量为m 0=20 g 的子弹以v 0=100 m/s 的水平速度射入木块并留在木块中 (不计空气阻力和子弹与木块作用的时间,g =10 m/s 2),求:

(1)圆环、木块和子弹这个系统损失的机械能; (2)木块所能达到的最大高度.

解析:(1)子弹射入木块过程,动量守恒,有 m 0v 0=(m 0+M )v

在该过程中机械能有损失,损失的机械能为 ΔE =12m 0v 20-12(m 0+M )v 2

解得:ΔE =99 J.

(2)木块(含子弹)在向上摆动过程中,木块(含子弹)和圆环在水平方向动量守恒,有 (m 0+M )v =(m 0+M +m )v ′

又木块(含子弹)在向上摆动过程中,机械能守恒,有 (m 0+M )gh =12(m 0+M )v 2-1

2(m 0+M +m )v ′2

联立解得:h =0.01 m.

答案:见解析

2.(2017·湖北八校联考)如图所示,质量为m

3=2 kg 的滑道静止在光滑的水平面上,滑道的AB 部分是半径为R =0.3 m 的四分之一圆弧,圆弧底部与滑道水平部分相切,滑道水平部分右端固定一个轻弹簧.滑道CD 部分粗糙,其他部分均光滑.质

量为m 2=3 kg 的物体2(可视为质点)放在滑道的B 点,现让质量为m 1=1 kg 的物体1(可视为质点)自A 点由静止释放.两物体在滑道上的C 点相碰后粘在一起(g =10 m/s 2).

(1)求物体1从释放到与物体2相碰的过程中,滑道向左运动的距离.

(2)若CD =0.2 m ,两物体与滑道的CD 部分的动摩擦因数都为μ=0.15,求在整个运动过程中,弹簧具有的最大弹性势能.

(3)在(2)的条件下,物体1、2最终停在何处?

解析:(1)物体1从释放到与物体2碰撞的过程中,物体1和滑道组成的系统在水平方向上动量守恒,设物体1水平位移大小为s 1,滑道的水平位移大小为s 3,有0=m 1s 1-m 3s 3,s 1=R

解得s 3=m 1s 1

m 3

=0.15 m.

(2)设物体1、物体2刚要相碰时物体1的速度大小为v 1,滑道的速度大小为v 3,由机械能守恒定律有

m 1gR =12m 1v 21+12m 3v 2

3

由动量守恒定律有0=m 1v 1-m 3v 3

物体1和物体2相碰后的共同速度大小设为v 2,由动量守恒定律有 m 1v 1=(m 1+m 2)v 2

弹簧第一次压缩至最短时由动量守恒定律可知物体1、2和滑道速度为零,此时弹性势能最大,设为E pm .从物体1、2碰撞后到弹簧第一次压缩至最短的过程中,由能量守恒定律有

12(m 1+m 2)v 22+12m 3v 23-μ(m 1+m 2)g ·CD =E pm 联立以上方程,代入数据解得E pm =0.3 J.

(3)分析可知物体1、2和滑道最终将静止,设物体1、2相对滑道CD 部分运动的路程为s ,由能量守恒定律有

12(m 1+m 2)v 22+12m 3v 23=μ(m 1+m 2)gs 代入数据可得s =0.25 m

所以物体1、物体2最终停在C 点和D 点之间与D 点间的距离为0.05 m 处. 答案:见解析

动量守恒之滑块子弹打木块模型

动量守恒定律的应用1――子弹打木块模型 模型:质量为M 长为I 的木块静止在光滑水平面上,现有一质量为 m 的子弹以水平初速V 。 射入木块,穿出时子弹速度为 V ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为 f ,突出时木块速度为 V,位移为S,则子弹位移 为(S+I)。水平方向不受外力, 由动量守恒定律得:mv=mv+MV ① I 二 十 ” , O —* 二二二二 * 4 4 v 0 v ? I 由动能定理,对子弹-f(S+ I )= 1 mv^l mv 2 ② 公 对木块fs= *MV 2_0 ③ 由①式得 v= m (v o —v)代入③式有fs= 1 M *器(v o _v)2 ④ ② + ④得 f I =lmv (f -- mv^— MV mv 。2 -{- mv 2 - - M [— (v o -v)]2 } 2 2 2 2 2 2 M 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘 积。即Q=A E 系统=fS 相 问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件? ②作出作用过程中二者的速度-时间图像,你会有什么规律发现? 例题:一木块置于光滑水平地面上,一子弹以初速 v o 射入静止的木块,子弹的质量为 m 打 入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能 的能量为 滑块、子弹打木块模型练习 1.在光滑水平面上并排放两个相同的木板,长度均为 L=1.00m, —质量与木板相同的金属 块,以v o =2.OOm/s 的初速度向右滑上木板 A,金属块与木板间动摩擦因数为 卩=0.1,g 取 10m/s 2 。求两木板的最后速度。 —A B I 2.如图示,一质量为 M 长为I 的长方形木块B 放在光滑水平面上,在其右端放一质量为 m 的小木块A , m< M 现以地面为参照物,给 A 和B 以大小相等、方向相反的初速度使 A 开始 向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为V 。,求它们最后速度的大小和方向; v .o A _____________________________ o ⑵若初速度的大小未知,求小木块 A 向左运动到最远处(从地面上看-)''1 二* -m(v 。2 -v o v) B. mv o (v o -v) C. m(v 。. v)vd ~2s - D. m(v ° …v) __S__ vd

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:2032mv E P =

【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。 【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M=3kg 的小车A 静止在水平面上,小车上有一质量m=lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习 , 吊着重为180N的物体,不计摩

例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为 ( ) A. mg B. 33mg C. 21mg D. 4 1 mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( ) A .必定是OA B.必定是OB C .必定是OC D.可能是OB ,也可能是OC 变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围. 变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时 A .绳OA 的拉力逐渐增大 B .绳OA 的拉力逐渐减小 C .绳OA 的拉力先增大后减小 D .绳OA 的拉力先减小后增大 变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1 = 4Kg 和m 2 = 2Kg 的物体,如图所示。在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。

高中物理问题详解弹簧类模型中的最值问题

弹簧类模型中的最值问题 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。求此过程中所加外力的最大和最小值。 图1 解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量?l mg k m ==025.,末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,??l l m '.==025,故对A 物体有212 2?l at =,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有 F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度问题 例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。 、

有弹簧的碰撞模型

高三物理有弹簧的碰撞模型 1.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物 体B 以速度v 向A 静运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 A .A 开始运动时 B .A 的速度等于v 时 C .B 的速度等于零时 D .A 和B 的速度相等时 2.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等。Q 与轻弹簧相连。设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。 在整个碰撞过程中,弹簧具有的最大弹性势能等于( ) A .P 的初动能 B .P 的初动能的12 C .P 的初动能的13 D .P 的初动能的14 3.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如下页左图所示.在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法中正确的是 (A)物体从A 下降到B 的过程中,动能不断变小 (B)物体从B 上升到A 的过程中,动能不断变大 (C)物体从A 下降到B,以及从B 上升到A 的过程中,速率都是先增大,后减小 (D)物体在B 点时,所受合力为零 4、(2013新课标)(10分)如图,光滑水平直轨道上有三个质量均为m 的物块A、 B 、 C 。 B 的左 侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v0朝B 运动,压缩弹簧; 当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。假设B 和C 碰撞过 程时间极短。求从A开始压缩弹簧直至与弹簧分离的过程中, (i) 整个系统损失的机械能; (ii) 弹簧被压缩到最短时的弹性势能。 5、(2011安徽)(9分)如图,A 、B 、C 三个木块的质量均为m 。置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触可不固连。将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体。现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起。以后细线突然断开, 弹簧伸展,从而使C 与A 、B 分离。已知C 离开弹簧后的速度恰为 v 0。求弹簧释放的势能。 6.(2009重庆)(18 分)探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,

子弹打木块、弹簧模型学案

动量守恒、能量守恒定律的综合应用 “子弹打木块、弹簧”模型 学习目标 1.动量守恒与能量守恒的综合运用 2.物理模型的建立 学习重点:能用动量守恒与能量守恒解决一些问题 一、 子弹打木块模型 引入:子弹质量为m ,以速度水平打穿质量为M 、厚为d 的放在光滑水平面上的木块,子弹的速度变为v ,求此过程木块获得的速度及动能。 例1、一质量为m 的子弹,以水平初速度v 0 射向静止在光滑水平面上的质量为M 的木块内,设木块对子弹的阻力恒为f ,且子弹并未穿出,求: (1)子弹、木块相对静止时的速度v (2)子弹在木块内运动的时间 (3)子弹、木块发生的位移以及子弹打进木块的深度 (4)系统损失的机械能、系统增加的内能 (5)要使子弹不穿出木块,木块至少多长? 总结求解方法: 1、 动量守恒——关键看系统的合外力是否为零 2、 受力分析,“子弹打木块”模型实质是两个物体在一对作用力和反作用力(认为是恒力)作用下的运动,物体做匀变速运动,可用动力学规律求解 3、 求时间——单个物体运用动量定理或牛顿运动定律和运动学关系 4、 求位移——单个物体运用动能定理或牛顿运动定律和运动学关系 5、 涉及相对位移——有机械能向内能转化 E 损=Q =fS 相 6、 匀变速运动---可利用v-t 图像(定性分析时多用到) 二、 弹簧模型的特点与方法 1. 注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化 2. 弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力 不连接:只表现为压力。 3. 动量问题:动量守恒。 4. 能量问题:机械能守恒(弹性碰撞)。 动能和弹性势能之间的转化 0V 1图1s M 相S 2S

高中物理复习教案专题复习2—弹簧类问题分析

弹簧类系列问题 [P3.] 复习精要 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视. (一)弹簧类问题的分类 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k?△x来求解。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4、弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [P5.] (二)弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:

动量-含弹簧的碰撞模型祥解

A B C 水平弹簧 1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? (1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(2 1C C B v m m +②,对C 由动能定理得W = 2 2 1C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +2 21C B v m = 2 1 m A v A ’ 2 + 2 1 m B v C ’2 , 当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s . 2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时 A 、 B 以共同速度v 0运动, C 静止。某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。求B 与C 碰撞前B 的速度。 解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量 守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为09 5 B v v = 。考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。B 与C 碰撞后二者会粘在一起运动。求在以后的运动中: (1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少? 解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分) 解得 (22)6 /3/224 ABC v m s m s +?= =++ (2分) (2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v = 4 262+? (2分) v

动量守恒之滑块、子弹打木块模型

l v 0 v S 动量守恒定律的应用1—— 子弹打木块模型 模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力, 由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022 121mv mv - ② 对木块 fs=02 1 2-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212121212022 02220v v M m M mv mv MV mv mv -+-=-- 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件? ②作出作用过程中二者的速度-时间图像,你会有什么规律发现? 例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为 A .)(2102 0v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vd S v v m )(0-

v 0 A B v 0 A B v 0 l A 2v 0 v 0 B C 滑块、子弹打木块模型练习 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看) 到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板C 两端相向水平地滑上长木板。如图示。设物块A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。 ⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在C 上为止,B 通过的总路程多大?经历的时间多长? ⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长?

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 车晓红 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=

高中物理弹簧专题

高中物理弹簧专题 在我们的日常生活中,弹簧形态各异,处处都在为我们服务。常见的弹簧是螺旋形的,叫螺旋弹簧。做力学实验用的弹簧秤、扩胸器的弹簧等都是螺旋弹簧。螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧秤的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。有的弹簧制成片形的或板形的,叫簧片或板簧。在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。它们在弯曲时会产生恢复原来形状的倾向,弯曲得越厉害,这种倾向越强。有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流计、电压计)内,机械钟表中都安装了这种弹簧。这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。 形形色色的弹簧在不同场合下发挥着不同的功能: 1. 测量功能 我们知道,在弹性限度内,弹簧的伸长(或压缩)跟外力成正比。利用弹簧这一性质可制成弹簧秤。 2. 紧压功能 观察各种电器开关会发现,开关的两个触头中,必然有一个触头装有弹簧,以保证两个触头紧密接触,使导通良好。如果接触不良,接触处的电阻变大,电流通过时产生的热量变大,严重的还会使接触处的金属熔化。卡口灯头的两个金属柱都装有弹簧也是为了接触良好;至于螺口灯头的中心金属片以及所有插座的接插金属片都是簧片,其功能都是使双方紧密接触,以保证导通良好。在盒式磁带中,有一块用磷青铜制成的簧片,利用它弯曲形变时产生的弹力使磁头与磁带密切接触。在钉书机中有一个长螺旋弹簧它的作用一方面是顶紧钉书钉,另一方面是当最前面的钉被推出后,可以将后面的钉送到最前面以备钉书时推出,这样,

高中物理中“轻绳”“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧” 的问题分析 中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。 一、三个模型的正确理解 1. 轻绳模型 轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。②内部张力大小处处相等,且与运动状态无关。③轻绳的弹力大小可发生突变。 2. 轻杆模型 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。

3. 轻弹簧模型 轻弹簧的质量可忽略不计,可以被压缩或拉伸。其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量。 二、三种模型的主要区别及应用 下面结合例题分析它们的区别及应用: 1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。 【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向? 解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。因为细绳只能被拉伸,则绳的弹力只能是沿绳方向的拉力,设绳与竖直方向的夹角为α。 则有 可见轻绳对小球的作用力大小随着加速度a的改变而改变,但它的方向一定是在绳子的方向上。

高中物理模型-水平方向上的碰撞弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220 )2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这 类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由

经典高中物理模型--打木块模型之一

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022 121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121202202220v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。

高中物理复习弹簧专题

一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即1 2 F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】1 2 F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M =,取 弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为: 【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接 触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为 研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =. 以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时, 图 图 3-7-1 图 3-7-3

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:203 2mv E P = 【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状

态及弹簧弹开过程的能量转化。

【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M =3kg 的小车A 静止在水平面上,小车上有一质量m =lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为 3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求: ①滑块a 、b 的质量之比;

专题:子弹打木块模型

专题:子弹打木块模型 例题: 【例1】光滑水平面上 静置着一质量为M 的小车一颗质量为m 的木块以速度V 0水平滑向小车.木块滑出后,木块速度减为V 1, 小车的速度增为V 2.将此过程中下列说法补全完整: A. 木块克服阻力做功为 。 B. 木块对小车做的功为 。 C. 木块减少的动能 小车增加的动能. D 系统产生的热量为 。 【例2】在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d 。设冲击过程中木块的运动位移为s ,子弹所受阻力恒定。试证明:s

【练习】 1.如图6-13所示,木块与水平弹簧相连放在光滑水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,尔后木块将弹簧压缩到最短,关于子弹和木块组成的系统,下列说法正确的是:( ) A .从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒 B .子弹射入木块的过程中,系统动量守恒 C .子弹射入木块的过程中,系统动量不守恒 D .木块压缩弹簧过程中,系统动量守恒 2、物块A 、B 用一根轻质弹簧连接起来,放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力使弹簧压缩,如图7-25所示,当撤去此力后,下列说法正确的是:( ) A.A 尚未离开墙壁前,弹簧和B 的机械能守恒 B.A 尚未离开墙壁前,A 和B 的总动量守恒 C.A 离开墙壁后,A 和B 的系统的总动量守恒 D.A 离开墙壁后,弹簧和A 、B 系统的机械能守恒 3.如图6-14,光滑水平面上有A.B 两物体,其中带有轻质弹簧的B 静止,质量为m 的A 以速度v o 向着B 运动,A 通过弹簧与B 发生相互作用的过程中:( ) (1)弹簧恢复原长时A 的速度一定最小 (2)两物体速度相等时弹簧压缩量最大 (3)任意时刻系统总动量均为mv o (4)任一时刻B 的动量大小总小于mv o A .(1)(3) B .(2)(3) C .(1) (3) (4) D .(2) (4) 4.如图7-17所示,质量为M 的木板B 放在光滑水平面上,有一质量为m 的滑块A 以水平向右的初速度v 0滑上木板B ,A 与木板之间的动摩擦因数为μ,且滑块A 可看做质点,那么要使A 不从B 的上表面滑出,木板B 至少应多长? 5.如图6-28所所示,abc 是光滑的轨道,其中ab 是水平的,bc 为ab 与相切的位于竖直平面内的半圆,半径R=0.30m ,质量m=0.20Kg 的小球A 静止在轨道上,另一质量M=0.60Kg ,速度v 0=5.5m/s 的小球B 与小 球A 正碰。已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为L=处,重力加速度g=10 m/ s 2, 求: (1)碰撞结束时,小球A和B的速度大小; (2)试论证小球B是否能沿着半圆轨道到达c 点。 A B 图6-14 图6-28

相关文档
最新文档