浅谈现代大地测量学

浅谈现代大地测量学
浅谈现代大地测量学

现代大地测量

现代大地测量 题目:现代大地测量课程报告 姓名: 学号: 专业:大地测量学与测量工程

本学期通过对现代大地测量这门课程的学习,使我对经典大地测量学和现代大地测量学的发展有了一些了解,尤其是现代大地测量学的发展及在其领域的应用有了深刻的认识。 按照 F , R 赫尔默特(1980)的经典定义,大地测量学是“测定和描绘地球表面的科学”。这是赫尔默特对“Geodesy"这个词的定义,但从这个定义的内涵去理解,倒不如说它是测绘学的定义更为恰当一些。实际上"Geodesy"这个词曾经有人译成测地学。就大地测量来说,这一定义一直沿用了很长的时期,它包括测定地面点位置、地球重力场和海底表面。通常按照这一定义,大地测量学具有两大任务:一是科学任务,即测定地球形状参数(形状和大小)和外部重力场;另一是工程技术任务,即建立全球的或区域的(国家的)高精度天文大地控制网,为测绘全国范围的各种比例尺地形图服务。而传统大地测量技术和手段,由于其定位的平均极限精度只能是10-5-10-6,一般不能分辨地球的动态变化,只能以刚性均匀旋转地球假设为前提,所以在完成以上两大任务时,其成果具有静态性、相对性、局限性,这就大大限制了大地测量学深人地球科学和工程科学去扩展其科学和工程应用目标的能力。 1.现代大地测量学的特点: 1.长距离,大范围现代大地测量学所量测的范围和间距,已可以从原来的几十公里扩展到几千公里,不再受经典大地测量中“视线”长度的制约,现代大地测量学能提供协调一致的全球性大地测量数据,例如测定全球的板块运动,冰原和冰川的流动,洋流和海平面的变化等等,因此过去总在局部地域中进行的大地测量现在已扩展为洲际的、全球的和星际的。 2.高精度现代大地测量的量测精度相对于经典大地测量而言,已提高了2 到3个数量级。例如我国天文大地网是中国60年代大地测量的最高精度,其相对精度约为3ppm,而目前GPS定位的相对精度一般情况下都可以做到0.1ppm。 3.实时,快速经典大地测量的外业观测和内业数据处理是在有相当时间间隔内完成的两个不同的工序。而现代大地测量的这两个工序,几乎可以在同一时间段内完成,即实时或准实时地完成。例如对静态或动态目标的实时定位(导航),对形变的实时监测,可以准实时测定由于大气和海洋角动量的变化与地球自转的关系。

大地测量学基础(高起专) 地质大学考试题库及答案

大地测量学基础(高起专) 单选题 1. _______要求在全球范围内椭球面与大地水准面有最佳的符合,同时要求椭球中心与地球质心一致或最为接近。(A) 地心定位(B) 单点定位(C) 局部定位(D) 多点定位标准答案是::A 2. _______用于研究天体和人造卫星的定位与运动。(4分) (A) 参心坐标系(B) 空间直角坐标系C) 天球坐标系(D) 站心坐标系标准答案是::C 3. 地球坐标系分为大地坐标系和_______两种形式。(4分) (A) 天球坐标系(B) 空间直角坐标系(C) 地固坐标系(D) 站心坐标系标准答案是::B 4. 地球绕地轴旋转在日、月等天体的影响下,类似于旋转陀螺在重力场中的进行,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,旋转周期为26000年,这种运动成为_______。(4分) (A) 极移(B) 章动(C) 岁差(D) 潮汐标准答案是::C 5. 以春分点作为基本参考点,由春分点周日视运动确定的时间,称为_______。(4分) (A) 恒星时(B) 世界时(C) 协调世界时(D) 历书时标准答案是::A 多选题 6. 下列属于参心坐标系的有:_______。(4分) (A) 1954年北京坐标系(B) 1980年国家大地坐标系(C) WGS-84世界大地坐标系(D) 新1954年北京坐标系标准答案是::A,B,D 7. 下列关于大地测量学的地位和作用叙述正确的有:_______。(4分) (A) 大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 (B) 大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。 (C) 大地测量是发展空间技术和国防建设的重要保证。(D) 大地测量在当代地球科学研究中的地位显得越来越重要。 标准答案是::A,B,C,D 8. 大地测量学的发展经历了下列那几个阶段:_______。(4分) (A) 地球圆球阶段(B) 地球椭球阶段(C) 大地水准面阶段(D) 现代大地测量新阶段标准答案是::A,B,C,D 9. 地固坐标系分为_______。(4分) (A) 地心坐标系(B) 天球坐标系(C) 站心坐标系(D) 参心坐标系标准答案是::A,D 10. 大地测量学的基本体系由下列哪几个基本分支构成:_______。(4分) (A) 几何大地测量学(B) 物理大地测量学(C) 空间大地测量学(D) 重力大地测量学标准答案是::A,B,C 判断题 11. 根据椭球定位与定向原理知,在大地原点上的垂线与法线是不重合的。(4分)标准答案是::错误 12. 纬度是指某点与地球球心的连线和地球赤道面所成的线面角。(4分)标准答案是::错误13. 建立大地基准只需要求定旋转椭球的参数及其定向。(4分)标准答案是::错误 14. 1954北京坐标系与新1954北京坐标系采用的椭球参数相同,定位相近,但定向不同。标准答案是::正确 15. 椭球定位是指确定椭球旋转轴的方向。(4分)标准答案是::错误 16. 物理大地测量学的基本任务是:用全站仪或GPS技术确定地球的形状大小及确定地面点的几何位置。(4分) 标准答案是::错误 17. 利用GPS定位技术进行点位测定不受任何环境的限制。(4分)标准答案是::错误 18. 行星运动中,与太阳连线在单位时间内扫过的面积相等。(4分)标准答案是::正确 19. 黄赤交角指的是黄道与地球赤道的夹角。(4分)标准答案是::正确 20. 在大地测量学范畴内中,过地面任意两点的铅垂线彼此平行。(4分)标准答案是::错误 填空题 21. 大地测量学是关于测量和描绘地球形状及其___(1)___ 并监测其变化,为人类活动提供关于地球的空间信息。(1).标准答案 是:: 重力场 22. 北京54坐标系采用的是___(2)___ 椭球参数。(4分) (1).标准答案 是:: 克拉索夫斯基 23. 80国家大地坐标系的大地原点定在我国中部,具体选址是泾阳县永乐镇,简称为___(3)___ 。(4分) (1).标准答案 是:: 西安原点 24. 站心坐标系是以___(4)___ 为原点而建立的坐标系。(4分) (1).标准答案 是:: 测站 25. 进行不同空间直角坐标系统之间的坐标转换,需要求出坐标系统之间的___(5)___ 。 (1).标准答案 是:: 转换参数 单选题 1. 按地面各点的正常高沿垂线向下截取相应点,将许多这样的点连成的一个连续曲面称为 (A) 大地水准面(B) 水准面(C) 似大地水准面(D) 地球椭球面标准答案是::C 2. 以_______为参考面的高程系统为大地高程。(6分) (A) 水准面(B) 似大地水准面(C) 大地水准面(D) 地球椭球面标准答案是::D 3. 地面上任一点沿垂线的方向到大地水准面上的距离称为_______。(6分) (A) 正常高(B) 正高(C) 大地高(D) 力高标准答案是::B 4. 对地面点A,任取一个水准面,则A点至该水准面的垂直距离为_______。(6分) (A) 绝对高程(B) 海拔(C) 高差(D) 相对高程标准答案是::D 5. 我们把完全静止的海水面所形成的重力等位面,专称它为

大地测量学试题参考答案

《大地测量学》试题参考答案 一、名词解释: 1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。 2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。 3、椭园偏心率:第一偏心率 a b a e 2 2- =第二偏心率 b b a e 2 2- =' 4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。 P3 5、空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X 轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。 P4 6、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。 P9 7、相对法截线:设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线 和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。 P15 8、大地线:椭球面上两点之间的最短线。 9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方 向值应加的改正。 P18 10、标高差改正:由于照准点高度而引起的方向偏差改正。 P19 11、 截面差改正:将法截弧方向化为大地线方向所加的改正。 P20 12、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大 地方位角。 P22 13、勒让德尔定理:如果平面三角形和球面三角形对应边相等,则平面角等于对应球面角 减去三分之一球面角超。 P27 14、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大 地方位角。 P28 15、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地 主题解算。 P28 16、大地主题正算:已知P 1点的大地坐标,P 1 至P 2 的大地线长及其大地方位角,计算P 2 点的大地坐标和大地线在P 2 点的反方位角。 17、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。 18、地图投影 : 将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影 到平面上。P38 19、高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一 条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两 侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。 P39 20、平面子午线收敛角:直角坐标纵轴及横轴分别与子午线和平行圈投影间的夹角。 21、方向改化:将大地线的投影曲线改化成其弦线所加的改正。 22、长度比:椭球面上某点的一微分元素与其投影面上的相应微分元素的比值。 P70 23、参心坐标系:依据参考椭球所建立的坐标系(以参心为原点)。 24、地心坐标系:依据总参考椭球所建立的坐标系(以质心为原点)。 25、站心坐标系:以测站为原点,测站上的法线(垂线)为Z轴(指向天顶为正),子午线 方向为x轴(向北为正),y轴与x,z轴垂直构成左手系。

空间大地测量学试卷

空间大地测量学 1、试述VLBI原理及其应用。(VLBI,very long baseline interferometry)缩写甚长基线干涉测量技术。 简单来说,VLBI就是把几个小望远镜联合起来,达到一架大望远镜的观测效果。这是因为,虽然射电望远镜能“看到”光学望远镜无法看到的电磁辐射,从而进行远距离和异常天体的观测,但如果要达到足够清晰的分辨率,就得把望远镜的天线做成几百公里,甚至地球那么大。上世纪50年代,剑桥大学的天文学家马丁〃赖尔建成了第一台射电干涉仪,使不同望远镜接收到的电磁波可以叠加成像,在此基础上 ,VLBI得以发展。1974年,赖尔以此获得了诺贝尔奖。 原理:射电源辐射出的电磁波﹐通过地球大气到达地面﹐由基线两端的天线接收。由于地球自转﹐电磁波的波前到达两个天线的几何程差(除以光速就是时间延迟差)是不断改变的。两路信号相关的结果就得到干涉条纹。天线输出的信号﹐进行低噪声高频放大后﹐经变频相继转换为中频信号和视频信号。在要求较高的工作中﹐使用频率稳定度达10 的氢原子钟﹐控制本振系统﹐并提供精密的时间信号,由处理机对两个“数据流”作相关处理﹐用寻找最大相关幅度的方法﹐求出两路信号的相对时间延迟和干涉条纹率。如果进行多源多次观测﹐则从求出的延迟和延迟率可得到射电源位置和基线的距离﹐以及根据基线的变化推算出的极移和世界时等参数。参数的精度主要取决于延迟时间的测量精度。因为﹐理想的干涉条纹仅与两路信号几何程差产生的延迟有关﹐而实际测得的延迟还包含有传播介质(大气对流层﹑电离层等)﹑接收机﹑处理机以及钟的同步误差产生的随机

延迟﹐这就要作大气延迟和仪器延迟等项改正﹐改正的精度则关系到延迟的测量精度。目前延迟测量精度约为0.1毫微秒。 中国科学院的VLBI网是测轨系统的一个分系统,它目前由北京、上海、昆明和乌鲁木齐的四个望远镜以及位于上海的天文台的数据处理中心组成。这样一个网所构成的望远镜分辨率相当于口径为3000多公里的巨大的综合望远镜,测角精度可以达到百分之几角秒,甚至更高。 VLBI测轨分系统的具体任务是获得卫星的VLBI测量数据,包括时延、延迟率和卫星的角位置,并参与轨道的确定和预报。具体的任务,比如说完成卫星在24小时、48小时周期的调相轨道段的测轨任务。完成卫星在地月转移轨道段、月球捕获轨道段以及环月轨道段的测轨任务。并且还要参加调相轨道、地月转移轨道、月球捕获轨道段的准实时轨道的确定和预报。 VLBI测轨分系统从2007年10月27日起,即卫星24小时的调相轨道段的第一天正式实施对嫦娥一号卫星的测量任务。现在已经完成了24小时、48小时调相轨道、地月转移轨道段和月球捕获轨道段的第一天总共十天的测量任务。 其他应用 VLBI分系统的各测站数据处理中心设备工作正常,VLBI测量数据及时传输到北京的航天飞控中心,数据资料很好,满足了工程的要求,为嫦娥一号卫星的精确定轨作出了贡献。

大地测量学基础

大地测量学基础 一、大地测量的基本概念 1、大地测量学的定义 它是一门量测和描绘地球表面的科学。它也包括确定地球重力场和海底地形。也就是研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。测绘学的一个分支。 主要任务是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。是一门地球信息学科。是一切测绘科学技术的基础。 测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。 大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。 大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。 内容和分支学科解决大地测量学所提出的任务,传统上有两种方法:几何法和物理法。随着20世纪50年代末人造地球卫星的出现,又产生了卫星法。所以现代大地测量学包括几何大地测量学、物理大地测量学和卫星大地测量学3个主要部分。 几何法是用一个同地球外形最为接近的几何体(即旋转椭球,称为参考椭球)代表地球形状,用天文大地测量方法测定这个椭球的形状和大小,并以它的表面为基础推算地面点的几何位置。 物理法是从物理学观点出发研究地球形状的理论。用一个同全球平均海水面位能相等的重力等位面(大地水准面)代表地球的实际形状,用地面重力测量数据研究大地水准面相对于地球椭球面的起伏。 卫星法是利用卫星在地球引力场中的轨道运动,从尽可能均匀分布在整个地球表面上的十几个至几十个跟踪站,观测至卫星瞬间位置的方向、距离或距离差。积累对不同高度和不同倾角的卫星的长期(数年)观测资料,可以综合解算地球的几何参数和物理参数,以及地面跟踪站相对于地球质心的几何位置。 2、大地测量学的任务 ·确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。 ·研究月球及太阳系行星的形状及其重力场。 ·建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。 ·研究为获得高精度测量成果的仪器和方法等。 ·研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。 ·研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。

大地测量学知识点整理

第一章 大地测量学定义 广义:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 狭义:大地测量学是测量和描绘地球表面的科学。包含测定地球形状与大小,测定地面点几何位置,确定地球重力场,以及在地球上进行必须顾及地球曲率的那些测量工作。 大地测量学最基本的任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。 P1 P4 P6(了解几个阶段、了解展望) 大地测量学的地位和作用: 1、大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用 2、大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用 3、大地测量是发展空间技术和国防建设的重要保障 4、大地测量在当代地球科学研究中的地位显得越来越重要 5、大地测量学是测绘学科的各分支学科(其中包括大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础科学 现代大地测量学三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学 第二章 开普勒三大行星运动定律: 1、行星轨道是一个椭圆,太阳位于椭圆的一个焦点上 2、行星运动中,与太阳连线哎单位时间内扫过的面积相等 3、行星绕轨道运动周期的平方与轨道长半轴的立方之比为常数 地轴方向相对于空间的变化(岁差和章动)(可出简答题) 地轴相对于地球本体内部结构的相对位置变化(极移) 历元:对于卫星系统或天文学,某一事件相应的时刻。 对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式。 任何一个周期运动,如果满足如下三项要求,就可以作为计量时间的方法: 1、运动是连续的 2、运动的周期具有足够的稳定性 3、运动是可观测的 多种时间系统 以地球自转运动为基础:恒星时和世界时 以地球公转运动为基础:历书时→太阳系质心力学时、地球质心力学时 以物质内部原子运动特征为基础:原子时 协调世界时(P23) 大地基准:建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转

应用大地测量学

第二章大地测量基础知识 一、大地水准面:设想海洋处于静止平衡状态时,将它延伸到大陆下面且保持处处与铅垂线正交的包围整个地球的封闭的水准面,我们称它为大地水准面。 二、大地体:由大地水准面所包围的整个形体称为大地体。 三、参考椭球面 把形状和大小与大地体相近,且两者之间相对位置确定的旋转椭球称为参考椭球。参考椭球面是测量计算的基准面,椭球面法线则是测量计算的基准线。定义:是一个长半轴为a,短半轴为b的椭圆绕轴旋转而成的旋转体。定位:定中心.即质心与中心是否重合定向:地球自转轴与短轴平行或重合参考椭球:一个形状、大小和定位、定向都已经确定的地球椭球叫参考椭球。参考椭球一旦确定,则标志着大地坐标系已经建成。参考椭球不是惟一的,有多个。 四、总地球椭球满足条件1、椭球质量等于地球质量,两者的旋转角速度相等。2、椭球体积与大地体体积相等,它的表面与大地水准面之间的差距平方和为最小。3、椭球中心与地心重合,椭球短轴与地球平自转轴重合,大地起始子午面与天文起始子午面平行。 五、垂线偏差:同一测站点上铅垂线与椭球面法线不会重合两者之间的夹角u称为垂线偏差大地水准面差距:大地水准面与椭球面在某一点上的高差称为大地水准面差距用N 表示垂线偏差和大地水准面差距对确定天文坐标与大地坐标的关系、地球椭球的定位以及研究地球的形状和大小等问题有着重要的意义。六、常用大地测量坐标系统天球坐标系、地球坐标系(天文坐标系、大地坐标系、空间大地直角坐标系、地心坐标系)站心坐标系、高斯平面直角坐标系。七、恒星时(Sidereal Time):恒星时是以春分点为参照点的时间系统(ST)。春分点(或除太阳以外的任一恒星)连续两次经过测站子午圈的时间间隔为一恒星日。世界时(Universal Time):格林尼治的平太阳时(从半夜零点算起)定义为世界时(UT)。协调世界时(Coodinated Universal Time):以原子时秒长定义的世界时为协调世界时(UTC)。协调世界时秒长为原子时,但表示时间的年月日时分秒仍是世界时。由于原子时快于世界时,UTC每年要跳秒,才能保证时分秒与世界时一致。GPS时间系统:秒长为IAT,时间起算点为1980.1.6.UTC 0时,启动后不跳秒,连续运行的时间系统。GPS时=原子时IAT-19s 八、重力场相关知识1、力位是力场空间位置的一个标量函数,此标量函数称为力的位函数,而力是力位的梯度。对重力场则有重力位。重力位W———引力位V与离心力位Q之和。2、重力位水准面和大地水准面重力位对任意方向l的偏导数等于重力在该方向上的分力 两个特殊方向:①当g与l垂直时;②当g与l夹角为π时①时:dw=0 ,即w=常数为重力等位面。又叫重力位水准面②时: 负号同时说明重力g是沿铅垂线向下,而l则沿铅垂线向上3、正常重力位:不涉及地球形状和密度的函数较为简单的可直接计算得到的近似的地球重力位。地球的重力位被分成正常重力位和扰动位。知道正常重力位U,再求出它与地球重力位的差异—扰动位T 重力异常△g:地面点实测重力加速度g与相应正常重力加速度γ的差值△g=g-γ。 九、高程系统1、水准面的不平行性是由两部分原因造成的:①地面上一点的重力加速度分为正常重力加速度与重力异常②地面上一点的重力加速度分为正常重力加速度与重力异常两部分2、水准测量理论闭合差:水准测量所经的路线不同,测得的高差也不同,造成的水准测量结果的多值性,在闭合环形水准路线中,由于水准面不平行所产生的闭合差为理论闭合差。3、正高系统——以大地水准面为高程基准面的高程系统。地面一点的正

绝密-空间大地测量学复习

第一章概论 1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学 空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立大地基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统大地测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。 4. 时代对大地测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法。 5. 空间大地测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间大地测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间大地测量学。7. 空间大地测量的主要任务 一类是建立和维持各种坐标框架:

大地测量学基础

该书全面地讨论了测绘基准与大地控制网、大地水准面与高程系统、参考椭球面与大地坐标系、高斯投影与高斯平面坐标系、大地坐标系的建立等测绘学的基本问题,介绍了与之相关的各类大地测量数据采集技术。 《大地测量学基础》是测绘学科的专业核心课程,在测绘工程专业的课程体系中占有重要地位,本课程以现代大地测量学的新成就和发展为着眼点,着重阐述大地测量学的基础理论、主要技术与方法,这是测绘工程专业学生必须掌握的基本知识与技能,通过该课程的学习,使学生掌握扎实的大地测量理论基础和基本技能,培养学生创新思维和灵活运用能力,具备大地坐标系、大地参考框架、高程基准、大地网建立等方面的系统知识。 该课程重点要求学生掌握以下知识: 1、熟悉现代大地测量学科现状和发展趋势、大地测量学的科学内涵及其在地学研究和工程建设中的作用,了解深空大地测量基本概念。 2、掌握大地测量基本技术与方法:大地控制网的布设方案,利用卫星定位接收机、电子全站仪、数字水准仪等观测技术建立大地控制网的观测与数据处理技术。 3、重点掌握大地测量基本概念与基础理论:包括大地测量坐标系统、时间系统、高程系统,地球重力场的基本概念,地球椭球的基本参数、椭球面上的常用坐标系及其相互关系、椭球面上的大地测量计算、将地面观测值归算至椭球面、地图数学投影变换的基本概念、高斯平面直角坐标系。

4、了解大地控制网的相关规范:全球定位系统测量规范GB/T 18314-2009,国家一、二等水准测量规范GB12897-2006。 5、具备初步的大地测量工程实践能力:通过课间实习掌握精密水准测量工作流程;通过编程实现各种坐标转换、高斯投影正反算、椭球面上大地线长度和大地方位角及曲面面积计算、大地网概算与平差等大地测量计算项目,掌握大地网数据处理的工作过程。 目录 第一章绪论 1.1 大地测量学的定义和作用 1.2 大地测量学的基本体系和内容 1.3 大地测量学的发展简史及展望 第二章坐标系统与时间系统 2.1 地球的运转 2.2 时间系统 2.3 坐标系统 第三章地球重力场及地球形状的基本理论 3.1 地球形状 3.2 地球重力场的基本原理 3.3 高程系统 3.4 关于测定垂线偏差和大地水准面差距的概念 3.5关于确定地球形状的基本概念

大地测量学习题

大地测量学习题 1.地球参考框架北京54 西安80 WGS-84 和地球参考框架的定义(由一 定量的已知精确坐标的基准点及四个基本参数决定的正常地球椭球, 并实现它的定位和定向。) 2.现代大地测量学的新特征 ⑴ 研究范围大(全球:如地球两极、海洋) ⑵ 从静态到动态,从地球内部结构到动力过程。 ⑶ 观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫 米。 ⑷ 测量与数据处理周期短,但数据处理越来越复杂。 3.大地测量学的基本内容(6点)。 (1)确定地球形状及外部重力场及其随时间的变化,建立统一的大 地测量坐标系,研究地壳变形,测定极移以及海洋水面地形及其变 化。 (2)研究月球及太阳系行星的形状及重力场。 (3)建立和维持具有高科技水平的国家和全球的天文大地水平控制 网和精密水准网以及海洋大地控制网。 (4)研究为获得高精度测量成果的仪器和方法。 (5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测 量计算。 (6)研究大规模、高精度和多类别的地面网、空间网及其联合网的 数据处理的理论和方法,测量数据库建立及应用。 4.黄道:过天球中心与地球公转的平均轨道面平行的平面与天球相交 的大圆。 5.岁差:因地球自转轴的空间指向和黄道平面的长期变化而引起的春 分点移动现象 6.章动:地球瞬时自转轴在惯性空间不断改变方向的周期性运动 7.历元:所获数据对应的时刻也称为历元 8.协调世界时(UTC):以国际制秒(SI)为基准,用正负闰秒的方法保 持与世界时相差在一秒以内的一种时间 9.恒星时的计量依据以春分点为参考点计时 10.世界时的计量依据以真太阳为参考点计时 11.卫星定位系统时间计量依据是源自谐振信号周期 12.世界协调时的计量依据原子时秒长 13.大地基准:用于大地坐标计算的起算数据,包括参考椭球的大小、形状及其定位、定向参数 14.天球:天文学中引进的,以选定点(常为地球)为中心,以任意长为

大地测量学课程设计 -1#(精选.)

应用大地测量课程设计灯湖矿区控制网设计 班级:测绘12—1 姓名:王亚亚 学号:07122825

目录 一、目的要求及任务范围 (2) 二、测区的自然地理条件 (3) 三、测区有关测绘资料 (3) 四、测区已有地形图 (4) 五、平面坐标系统和高程系统 (5) 六、导线网的建立 (6) 七、高程控制测量 (8) 八、埋标与经费预算 (11) 九、工作量综合计算及工作进程计划表 (12) 十、控制网相关参数与平差结果 (13) 十一、水准高程控制网布设方案 (40) 十二、上交资料清单 (46)

应用大地测量学课程设计 一、目的要求及任务范围 1、目的: 1.总结和检验大地测量学基础基本知识的学习情况。工程控制网分测 图控制网、施工控制网、变形监测控制网等。通过设计控制网的技术 实践,深化已有知识,拓宽新的知识,掌握控制网设计的方法。 2.将大地测量学基础课程中涉及到的大量的、零散的、独立的观点和 资料,按照设计任务通知书的要求,进行分析归纳综合,完成技术设 计任务,达到培养和提高学生的逻辑思维和创造性思维能力的目的。 3.技术设计说明书是对工程设计进行解释与说明的书面材料,是一种 技术性文件。设计者通过技术设计,编写技术设计书,是进行科技写 作的锻炼,培养科技写作的实际能力。 2、目的要求: 1.设计的项目和内容应该齐全并符合大纲和规范的要求。设计分为几 个步骤:学习领会技术任务书、图上设计构网、做出精度估算、制定 观测方案、绘制控制网图、编写技术设计说明书。 2.设计的论点应该正确,明确表达设计者的主张、意见和看法。论据 力求做到真实、充分、新颖。公式推导正确,推理符合逻辑。 3.认真编写技术设计说明书。在使用专业词语、布局、谋篇及至行款 格式等方面,都要加强训练。 3、任务要求: 1.阅读领会任务通知书 2.熟悉测区地理环境及原有测绘成果等情况;对原有控制测量成果进 行分析和评定,确定其利用程度。 3.根据任务书要求,选择平面坐标系统和高程系统,拟定起始数据的

大地测量学发展概况简述

大地测量学发展概况简述 摘要:本文主要介简述了大地测量学的发展简史,概述了大地测量学的基本任务,并简要阐述了现代大地测量学的特点,最后对我国大地测量的未来发展进行了简单的展望。 关键字:大地测量学现代大地测量学重力场 1 大地测量学的发展简史 大地测量学是地球科学中的一个分支,具有悠久的历史。公元前3世纪,亚历山大的埃拉托色尼利用在两地观测日影的方法,首次推算出地球子午圈的周长,也是弧度测量的初始形式。724年,中国唐代的南宫说等人在张遂的指导下在今河南省境内实测了一条长约300千米的子午弧,并测同一时刻南北两点的日影长度,推算出纬度1°的子午弧长。这是世界上第一次实测弧度测量。其他国家也相继进行过类似的工作。17世纪以前,由于工具简单,技术水平低,所得结果精度不高。 1617年荷兰的斯涅耳首创三角测量法,克服了直接丈量距离的困难。随后又有望远镜、水准器、测微器等的发明,测量仪器制造逐渐完善,精度提高,为大地测量学的发展奠定了技术基础。17世纪末,英国牛顿和荷兰惠更斯从力学观点研究地球形状,提出地球是两极略扁的椭球体。1735~1741年法国科学院派两支测量队分别在赤道附近的秘鲁和北极圈附近的拉普兰进行弧度测量,证实地球是两极略扁的椭球体。中国清代康熙年间为编制《皇舆全图》,实施了大规模天文大地测量。在这次测量中,发现高纬度的东北地区每度子午弧比低纬度的河北地区的要长,这个发现比法国早。1730年英国西森发明经纬仪,促进了三角测量的发展。 1743年法国克莱罗发表了《地球形状理论》,指出用重力测量精确求定地球扁率的方法。1806年法国的勒让德和1809年德国的高斯分别发表了最小二乘法理论,产生了测量平差法。1849年英国斯托克斯创立用重力测量成果研究水准面形状的理论。 1880年瑞典耶德林提出悬链线状基线尺测量方法,继而法国制成因瓦基线尺,使丈量距离的精度明显提高。19世纪末和20世纪30年代,先后出现了摆仪和重力仪,使重力点数量大量增加,为研究地球形状和地球重力场提供大量重力数据。 20世纪40年代,电磁波测距仪的发明,克服了量距的困难,使导线测量、三边测量得到重视和发展。1957年第一颗人造地球卫星发射成功后,产生了卫星大地测量学,使大地测量学发展到一个新阶段。20世纪70年代以后,随着空间技术、计算机技术和信息技术的飞跃发展,为大地测量学注入了新的内容,形成了现代大地测量。

绝密-空间大地测量学复习

第一章概论 1.测量学的基本体系:几何测量学、物理测量学、空间测量学 空间测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设控制网,陆地只能区域测量,建立区域参考椭球与区域水准面吻合;无法建立全球参考椭球。 4. 时代对测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)水准面差距:GNSS等空间定位技术逐步取代传统的经典测量技术成为布设全球性或区域性的控制网的主要手段;人们对高精度的、高分辨率的水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的测量方法。 5. 空间测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间测量学。 7. 空间测量的主要任务 一类是建立和维持各种坐标框架:

大地测量学基础习题

第一章绪论 1.简述大地测量发展现状。 2.大地测量学的定义及作用。 (1)大地测量学的定义:大地测量学是地球科学的一个分支学科,是研究和测定地球的形状、大小、重力 场、整体与局部运动和测定地面点的几何位置以及它们的变化的理论和技术的学科。 (2)大地测量学作用主要有四方面: a 大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 b 大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风格的特殊作用。 c 大地测量是发展空间技术和国防建设的重要保障。 d 大地测量在当代地球科学研究中的地位显得越来越重要。 3.简述大地测量学的分类,包括哪些基本内容、基本体系。 三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学 1.几何大地测量学也就是天文大地测量学。其基本任务是确定地球的形状和大小及确定地面点的几何 位置。 2.物理大地测量学也有称为理论大地测量学。其基本任务是用物理的方法(重力测量)确定地球形状 及其外部重力场。 3.空间大地测量学主要研究以人造卫星及其它空间探测器为代表的空间大地测量学的理论、技术和方 法。 4.简述大地测量学的四个阶段。 地球圆球阶段:17世纪以前.地球地心说 地球椭球阶段:17-19世纪.椭球时期地球为均匀流体 大地水准面阶段:19-20世纪40年代参考椭球时期 现代大地测量阶段:以卫星观测空间为基础,测量外部重力场和运动 第二章坐标系统和时间系统 1.地球有哪几类运转?描述地球自转的规律。 地球的运转分为四类:(1) 与银河系一起在宇宙中运动 (2) 在银河系内与太阳系一起运转 (3) 与其他行 星一起绕太阳旋转(公转或周年视运动)(太阳除参与因地球自转引起的周日视运动外﹐还存在因地球公转引起的在恒星 背景上的相对运动﹐即周年视运动) (4)绕其瞬时旋转轴旋转(自转或周日视运动) (由于地球自转﹐地面上的观测者看到天体自东向西沿着与赤道平行的小圆转过一周。这种直观的运动称为天体的周日视运动)

大地测量学思考题集及答案(2019)共22页word资料

大地测量学思考题集 1.解释大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用? 大地测量学----是测绘学科的分支,是测绘学科的各学科的基础科学,是研究地球的形状、大小及地球重力场的理论、技术和方法的学科。 大地测量学由以下三个分支构成:几何大地测量学,物理大地测量学及空间大地测量学。 几何大地测量学的基本任务是确定地球的形状和大小及确定地面点的几何位置。作用:可以用来精密的测量角度,距离,水准测量,地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型 物理大地测量学的基本任务是用物理方法确定地球形状及其外部重力场。主要内容包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法等。 空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。 2、大地测量学的发展经历了哪些简短,简述各阶段的主要贡献和特点。 分为一下几个阶段:地球圆球阶段,地球椭球阶段,大地水准面阶段,现代大地测量新时期 地球圆球阶段,首次用子午圈弧长测量法来估算地球半径。这是人类应用弧度测量概念对地球大小的第一次估算。 地球椭球阶段,在这阶段,几何大地测量在验证了牛顿的万有引力定律和证实地球为椭球学说之后,开始走向成熟发展的道路,取得的成绩主要体现在一下几个方面: 1)长度单位的建立 2)最小二乘法的提出 3)椭球大地测量学的形成 4)

弧度测量大规模展开 5)推算了不同的地球椭球参数 这个阶段为物理大地测量学奠定了基础理论。 大地水准面阶段,几何大地测量学的发展:1)天文大地网的布设有了重大发展,2)因瓦基线尺出现 物理大地测量学的发展 1)大地测量边值问题理论的提出 2)提出了新的椭球参数现代大地测量新时期:以地磁波测距、人造地球卫星定位系统及其长基线干涉测量等为代表的新的测量技术的出现,使大地测量定位、确定地球参数及重力场,构筑数字地球等基本测绘任务都以崭新的理论和方法来进行。由于高精度绝对重力仪和相对重力仪的研究成功和使用,有些国家建立了自己的高精度重力网,大地控制网优化设计理论和最小二乘法的配置法的提出和应用。 5.在精密水准测量概算中包括哪些计算工作? 答:水准测量概算主要计算工作: (1)水准标尺每米长度误差的改正数计算(2)正常水准面不平行的改正数计算 (3)水准路线闭合差计算(4)高差改正数的计算 6.什么是水准测量理论闭合差?试阐述产生理论闭合差的原因? 答:如果不考虑仪器本身的误差与观测误差,由同一起始水准点出发,由几何水准测量经不同的水准线路测量同一未知点的高程是不相同的,换句话说,由同一起始点测量水准闭合环线的高程闭合差不等与零,其闭合差称为水准理论闭合差。水准理论闭合差是由于水准面不平行的原因所引起的,因此在精密水准测量中,为了消除水准面不平行对水准测量的影响,一般要在几何水准观测高差中加入水准面不平行改正计算。

大地测量学基础-第二版 武汉大学出版社 复习

2015级地信班方游游 第一章 大地测量学定义 在一定时间空间的参考系统中,测量和描绘地球以及其他行星体的一门学科。 大地测量学作用 1.在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 2.在防灾减灾救灾以及环境监测、评价和保护中发挥着独具风貌的特殊作用 3.是发展空间技术和国防建设的重要保证 4.在当代地球科学研究中地位越来越重要 5.是测绘学科各分支学科的基础科学 现代大地测量学的特点 1.测量范围大 2.从静态发展到动态,从表面深入到地球内部构造及动力过程 3.观测精度高 4.测量周期短 大地测量学基本内容 1.确定地球形状以及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研 究地球形变,测定极移以及海洋水面地形及其变化等 2.研究月球及太阳系行星的形状及重力场 3.建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准为以 及海洋大地控制网,以满足国民经济和国防建设的需要 4.研究为获得高精度测量成果的仪器和方法等 5.研究地球表面向托球迷或平面投影数学变换及有关的大地测量计算 6.研究大规模高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法, 测量数据库建立及应用等 大地测量学发展简史 1.地球圆球阶段 2.地球椭球阶段 3.大地水准面阶段 4.现代大地测量新时期 大地测量的展望 1.GNSS,SLR,VLBI是主导本学科发展的主要的空间大地测量技术 2.空间大地网是实现本学科科学技术任务的主要技术方案 3.精化地球重力场模型是大地测量学的主要发展目标 4.新一代国家测绘基准建设工程已经启动 第二章

开普勒三大行星运动定律 1.行星轨道是一个椭圆,太阳位于椭圆的一个焦点上。 2.行星运动中,与太阳连线在单位时间内扫过的面积相等 3.行星绕轨道运动周期的平方与轨道长半轴立方之比为常数。 岁差 由于日月等天体影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动。 章动 地球旋转轴在岁差的基础上叠加18.6年的短周期圆周运动,振幅为9.21″。 极移 地轴相对于地球本体内部结构的相对位置变化。 国际协议原点CIO 国际上五个ILS站以1900~1905年的平均纬度所确定的平极作为基准点。 时间的计量包括哪两大元素 1.时间原点。 2.度量单位。 计量时间的方法满足的条件(3点) 1.运动是连续的; 2.运动的周期具有足够的稳定性; 3.运动是可观测的。 春分点 当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点。 什么是大地测量基准? 用以描述地球形状的参考椭球的参数、参考椭球在空间中的定位及定向、描述这些位置时所采用的单位长度的定义。包括:平面基准、高程基准、重力基准等。 什么是大地测量参考系统与参考框架,两者有何关系? 大地测量系统包括坐标系统、高程/深度基准和重力参考系统。 大地测量参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。是大地测量参考系统的具体实现。 什么是椭球定位与定向? 椭球定位指确定椭球中心的位置,分为局部定位和地心定位; 椭球定向指确定椭球旋转轴的方向。

相关文档
最新文档