含孔复合材料层板的力学性能研究

第25卷2006年第9期

9月

机械科学与技术

MECHANICALSCIENCEAND7IECHNOLOGY

V01.25No.9

september2006

朱西平文章编号:1003-8728(2006)09-1126JD4

含孔复合材料层板的力学性能研究

朱西平,毛坤,韩小平,岳珠峰

(西北工业大学,西安710072)

摘要:对复合材料开口缝合补强结构进行了实验研究,测试了不同缝合参数(针距、行距、边距、单重和双重缝合)补强对含孔复合材料层板的破坏强度,研究了孔边应力集中和缝合补强对强度、模量等力学性能参数的影响,分析讨论了孔边及邻近区域应变集中及应变分布的规律,通过实验结果和分析讨论,对复合材料开口缝合补强结构提出合理的设计方法。

关键词:含孔复合材料层板;缝合补强;应变集中;缝合参数

中图分类号:TB33文献标识码:A

AStudyofU舱MecllanicalPropemesofComp嬲溉L锄疵mt姻稍nIIIoles

ZhuXiping,MaoKun,HanXiaoping,YueZhufeng

(Non}1westemPolytechnicalUnivers毋,Xi’an710072)

Abs仃act:nepapercarTiedoutanexperimentalstudyofstitchingreinforcementforcompositelaIIlinateswimholes.Thedamaqgetostitching

parameters

suchasstitchingneedledistance,IDwspace,edgedis-tance,sindestitchingordoublestitchingto出ecompositel锄inateswastested.TheillnuenceofthestI-essconcentrationneartlleholeregionandthestitchingreinforcementontllemechanicalpropeniessuchasstreng山andmoduluswasstudied.Thelawsofthestressconcentrationanddistributionwereinvestiga—tedanalyticallyandexperimentally.Theexperimentalresultsshowedadistincteffbctofstitchingrein—forcementoncompositelaminateswi山holes,forwhichareasonabledesignme山odwaspresented.

KeywOrds:compositelaminatewit}lholes;stitchingreinforcement;sn.essconcen臼阻tion;stitchingpa—ranleter

工程实际中,复合材料的应用日益增多,由于结构装配或功能方面的需求,常常需要在复合材料层板上打孔或开口,承载时这些局部区域引起的应力集中对复合材料结构的承载能力、使用寿命可能会产生严重影响。因此,研究复合材料层合结构的开口处应力集中问题,具有工程实际意义。

Fu-Kuochang和LarryB.kssaId¨“o分别从理论分析、有限元数值计算和实验方面比较系统地研究了含孔洞层合板承受拉伸、压缩载荷时损伤、失效和破坏情况,提出一种损伤累积模型进行应力分析和破坏分析,并建立了噙孔洞层合板失效模型和破坏准则。kifcallsson瞪3采用三维有限元方法研究含孑L层合板的层间应力和损伤,给出沿厚度方向的法向应力分布,计算结果表明,在铺层界面和自由

收稿日期:2005—09—28

作者简介:朱西平(1957一),男(汉),陕西,副教授

E—mail:呷口甲@Tw巾u.edu.cn边缘上存在高的层间应力梯度。D.Amla和M.L.Mccain[61对含孔石墨/环氧层合板实施拉伸实验,得到含孔拉伸试件的表观应力集中因子,并采用声发射监控试件的破坏过程。Hwai-ChllIIgwll和BinMu¨’基于正交各向异性含孔板的应力集中因子计算公式,推广应用到双向加载含孔板以及受轴向载荷或内压的含孔圆柱,结合有限元数值计算,讨论了结构尺寸及其它因素对应力集中的影响。

王启智等睇“21分别采用了半解析半经验方法和有限元数值计算方法,推导出拉伸正交各向异性有限宽板偏心圆孔的应力集中系数表达式、有限域中高精度应力集中系数表达式以及带圆孔的有限宽板的动态应力集中系数表达式。

本文对复合材料开口缝合补强结构进行了实验研究,测试了不同缝合参数(针距、行距、边距、单重和双重缝合)补强的含孔复合材料层板的拉伸强度,研究了孔边应力集

中和缝合补强对强度、模量等力学性能参数的影响,分析讨 万方数据

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学性能

《材料力学性能[焊]》课程简介 课程编号:02044014 课程名称:材料力学性能[焊] / The mechanical property of materials 学分: 2.5 学时:40(实验: 8 上机: ) 适用专业:焊接技术与工程 建议修读学期:5 开课单位:材料科学与工程学院,材料加工工程系 课程负责人:陈汪林 先修课程:工程力学、材料科学基础、材料热处理 考核方式与成绩评定标准:闭卷考试,期末考试成绩70%,平时(包括实验)成绩30%。 教材与主要参考书目: 主要教材: 1.工程材料力学性能. 束德林. 机械工业出版社, 2007 参考书目: 1.材料力学性能. 郑修麟. 西北工业大学出版社, 1991 2.金属力学性能. 黄明志. 西安交通大学出版社, 1986 3. 材料力学性能. 刘春廷. 化学工业出版社, 2009 内容概述: 《材料力学性能》是焊接技术与工程专业学生必修的专业学位课程。通过学习本课程,使学生掌握金属变形和断裂的规律,掌握各种力学性能指标的本质、意义、相互关系及变化规律,以及测试技术。了解提高力学性能的方向和途径,并为时效分析提供一定基础。强调课堂讲授与实践教学紧密结合,将最新科研成果用于课程教学和人才培养的各个环节,最终使学生能够独立地进行材料的分析和研究工作。 The mechanical property of materials is a core and basic course for the students of specialty of welding. By the study on this course, the studies should be master the deformation and fracture mechanisms of metals, and understand the essence and significance of each mechanical property of metal materials, as well as their correlations, the laws of variation and corresponding test methods of each mechanical property of materials. In addition, the studies should understand how to improve the mechanical properties of materials, and provide relevant basis for the failure analysis of materials. This course emphasizes the close combination of classroom teaching and practice teaching, and the latest research results will be applied in the course of teaching and personnel training in all aspects. Finally, this course will make the students acquired the capability on conducting research by adopting reasonable technologies by oneself.

复合材料细观力学答案

一、知识部分 1、计算面心立方、体心立方结构的(100)、(110)、(111)等晶面的面密度,计算密排六方结构的(0001)、(1010)晶面的面密度(面密度定义为原子数/单位面积)。 解:设立方结构的晶胞棱长为a 、密排六方结构晶胞轴长为a 和c 。 (1)体心立方:在一个晶胞中的(001)面的面积是2a ,在这个面积上有1个原子,所以其面密度为21a ;在一个晶胞中的(110)面的面积是22a ,在这个面积上有2个原子,所以其面密度为22 a ;在一个晶胞中的(111)面的面积是223a ,在这个面积上有2个原子,所以其面密度为223a 。 (2)面心立方:在一个晶胞中的(001)面的面积是2a ,在这个面积上有2个原子,所以其面密度为22a ;在一个晶胞中的(110)面的面积是22a ,在这个面积上有2个原子,所以其面密度为22 a ;在一个晶胞中的(111)面的面积是223a ,在这个面积上有1.5个原子,所以其面密度为23a 。 (3)密排六方:在一个晶胞中的(0001)面的面积是22 3a ,在这个面积上有1个原子,所以其面密度为2332a ;在一个晶胞中的(1010)面的面积是c a 2,在这个面积上有次个原子,所以其面密度为 c a 21;

2、纯铁在912℃由bcc 结构转变为fcc 结构,体积减少1.06%,根据fcc 结构的原子半径计算bcc 结构的原子半径。它们的相对变化为多少?如果假定转变前后原子半径不变,计算转变后的体积变化。这些结果说明了什么? 解:设bcc 结构的点阵常数为a b ,fcc 结构的点阵常数为a f ,由bcc 结构转变 为fcc 结构时体积减少1.06%,因bcc 单胞含2个原子,fcc 单胞含4个原子,所以2个bcc 单胞转变为1个fcc 单胞。则 10006.122333=-b b f a a a 即 b b f a a a 264.110006.10121=??? ???= bcc 结构的原子半径b b a r 43=,fcc 结构的原子半径f f a r 4 2=,把上面计算的a f 和a b 的关系代入,并以r f 表示r b ,则 f f f b b r r a a r 9689.02264.1443264.14343=???=?== 它们的相对变化为 0311.019689.0-=-=-b f b r r r 如果假定转变前后原子半径不变,转变后的体积变化为 ()()()1.8342342242233 3333-=-=-b b f b b f r r r a a a % 从上面的计算结果可以看出,如果转变前后的原子半径不变,则转变后的体积变化很大,和实际测得的结果不符,也和金属键的性质不符。所以,同一种金属,不同结构的原子半径改变,尽量使其体积变化最小。 3、根据Fe-C 相图 ①计算)(C w 为0.1%以及1.2%的铁碳合金在室温时平衡状态下相的相对量,计算共析体(珠光体)的相对量。 ②计算)(C w 为 3.4%的铁碳合金在室温时平衡状态下相的相对量,计算刚凝固完毕时初生γ相(奥氏体)和共晶体的相对量。计算

缓冲材料力学性能的测试方法研究

缓冲材料力学性能的测试方法研究 摘要 缓冲材料一直伴随着人类社会的进步而在不断地发展着,从以前的碎纸屑、木屑、泡沫塑料发展到现在的很多绿色的缓冲包装材料,比如有蜂窝纸板、玉米秸秆缓冲材料、瓦楞纸板、纸浆模塑制品、珍珠棉以及发泡聚乙烯缓冲材料等,这些新型环保缓冲材料的出现,大大促进了包装工业的发展。 为了能在日常生活中更好的利用缓冲包装材料,所以对缓冲材料力学性能的测试是非常必要的。本文介绍了缓冲材料的主要力学性能包括:压缩性能、拉伸性能、弯曲性能、剪切性能、缓冲性能等,并对各力学性能的测试方法进行了对比分析,尤其是对正交试验、曲线拟合法、计算机仿真设计以及数字相关测量方法等等进行了详细地介绍,为现代缓冲包装材料的开发和研究提出了新的方向。 关键词:缓冲材料,力学性能,测试方法研究

BUFFER MATERIAL MECHANICS PERFORMANCE TESTING METHOD ABSTRACT Buffer material has been accompanied by the progress of human society and developing, and from the previous paper, broken wood, foam development of many green until now, for instance a cushion packaging material of honeycomb paperboard, corn straw cushioning material, corrugated, paper pulp molding products, pearl cotton and foaming polyethylene buffer material, these new environmental buffer material greatly promoted the development of packaging industry. In daily life, in order to better use and so on cushion packaging material buffer material mechanics performance test is very necessary. The paper introduces the main buffer material mechanics properties including compression performance, tensile properties, bending, cutting performance and buffering properties, and the performance of the mechanical properties test methods were analyzed, especially the orthogonal experiment, curve-fitting method of computer simulation, the design and digital correlation method etc. Carried on the detailed introduction to modern cushion packaging material, for the development and research of new direction. KEYWORDS: cushioning materials, mechanical properties, test methods

材料的力学性能.

第五章材料的力学性能 §5.1 概述 前一章讨论变形体静力学时,研究、分析与解决问题主要是利用了力的平衡条件、变形的几何协调条件和力与变形间的物理关系。物体系统处于平衡状态,则系统中任一物体均应处于平衡状态,物体中的任一部分亦应处于平衡状态。力的平衡问题,与作用在所选取研究对象上的力系有关;在弹性小变形条件下,变形对于力系中各力作用位置的影响可以不计,故力的平衡与材料无关;用第二章所讨论的平衡方程描述。变形的几何协调条件,是在材料均匀连续的假设及结构不发生破坏的前题下,结构或构件变形后所应当满足的几何关系,主要是几何分析,也不涉及材料的性能。 因此,研究变形体静力学问题,主要是要研究力与变形间的物理关系。力与变形间的物理关系显然是与材料有关的。不同的材料,在不同的载荷、环境作用下,表现出不同的力学性能(或称材料的力学行为)。前一章中,我们以最简单的线性弹性应力-应变关系—虎克定律,来描述力与变形间的物理关系,讨论了变形体力学问题的基本分析方法。这一章将对材料的力学性能进行进一步的研究。 材料的力学性能,对于工程结构和构件的设计十分重要。例如,所设计的构件必须足够“强”,而不至于在可能出现的载荷下发生破坏;还必须保持构件足够“刚硬”,不至于因变形过大而影响其正常工作。因此需要了解材料在力的作用下变形的情况,了解什么条件下会发生破坏。由力与变形直至破坏的行为研究中确定若干指标来控制设计,以保证结构和构件的安全和正常工作。 材料的力学性能是由试验确定的。试验条件(温度、湿度、环境)、试件几何(形状和尺寸)、试验装置(试验机、夹具、测量装置等)、加载方式(拉、压、扭转、弯曲;加载速率、加载持续时间、重复加载等)、试验结果的分析和描述等,都应按照规定的标准规范进行,以保证试验结果的正确性、通用性和可比性。

材料力学性能 (1)

工程材料力学性能复习重点 选择:20 填空:20 名词解释:10 简答计算:50 一.选择题(10道从下面抽,10道英语出题) 1.材料力学性能研究的问题不涉及(物理问题)。 2.工程材料在使用过程中(弹性变形)是不可避免的。 3.工程构件生产过程(提高)塑性,(降低)强度。 4.工程构件使用过程(降低)塑性,(提高)强度。 5.断裂力学解决(含缺陷材料)抗断裂方面的问题。 6.拉伸试样直径一定,标距越长则测出的抗拉强度值(越低)。 7.拉伸试样直径一定,标距越长则测出的延伸率(越低) 8.拉伸试样直径一定,标距越长则测出的断面收缩率(不变)。 9.拉伸试样的标距长度I 0应满足关系式(I 0=5.650A 或I 0=10d 0)。 10.均匀变形阶段,金属的伸长率与截面收缩率通常满足关系式(δ=ψ/(1-ψ))。 11.长材料甲δ10=18%,短材料乙δ5=18%,则两种材料的塑性(甲>乙)。 12.表征脆性材料的力学性能的参量是(E )、(σb )。 13.在设计时用来确定构件截面大小的机械性能指标(σb ,σ0.2) 14.10mm 直径淬火钢球,加压3000kg ,保持30s ,测得布氏硬度为150的正确表达方式为(150HBS10/3000/30)。 15.(韧窝断口)是非脆性断裂。 16.裂纹体变形的最危险形式是(张开型)。 17.表示的是(持久强度)。 18.晶粒度越小,耐热性(越差)。 19.真空应力应变曲线在拉伸时位于工程应力应变曲线的(左上方)。 20.若材料的断面收缩率小于延伸率,则属于(低塑性)材料 21.材料的弹性常数是(E )、(G )、(ν)。 22.影响弹性模量最基本的原因是(点阵间距)。 23.加载速率不影响材料的(弹性)。 24.机床底座用铸铁制造的主要原因是价格(低),内耗(高),模量(大)。 25.多晶体金属塑性变形的特点是(不同时性,不均匀性,相互协调性)。 26.细晶强化不适用于(高温) 27.位错增殖理论可用于解释(屈服现象)和(形变强化)。 28.应力状态软性系数最大的是(压)。 29.工程测硬度最常用(压入法)。 30.同种材料的(布氏硬度)和(维氏硬度)可以相互参比。 26.与抗拉强度之间存在相互关系的是(布氏硬度)。 27.材料失效最危险的形式是(断裂)。 28.解理断裂是(穿晶断裂)。 29.(韧窝断口)是韧性断裂。<同13> 30.双原子模型计算出的材料理论断裂强度比实际值高出一个数量级,是因为(实际材料有缺陷)。 31.韧性材料在(增大加载速度)的条件下可能变成脆性材料。 32.在实验中不同材料的(冲击)性能指标可比性差。 a 200σ600103MP

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

6005铝合金材料力学性能研究

6005铝合金材料力学性能研究 采用万能材料试验机,对典型车用的6005铝合金材料进行准静态拉伸试验。输出载荷-变形量关系,获得应力-应变曲线,进而分析材料的弹性模量、极限强度、极限应变、屈服强度和延展率等力学性能。 标签:6005铝材;准静态拉伸;应力-应变曲线;力学性能 1 概述 车辆用6005铝合金属于Al-Mg-Si系中等强度铝合金。由于其优良的挤压成形性、耐腐蚀性和良好的焊接性,在国外被广泛用于高速列车、地铁列车、双层列车和客货汽车车体所需的薄壁、中空的大型铝合金壁板型材以及其它工业用结构型材。在我国,铝合金大型材已研制成功并投入生產,随着我国交通运输业的发展,6005铝合金在高速、轻型铝合金列车和地铁列车以及轻型客货汽车上的应用必将越来越多[1-3]。 6005具有较高的工艺性能。万普华等人对6005铝合金试样进行了水淬和水淬并深冷处理,来观察金相组织、抗拉强度等对6005铝合金力学性能的影响[4]。张健等人利用热塑性试验研究了6005A铝合金的热裂纹敏感性[5],张大新等人将6005铝合金铸态试样和挤压制品试样在不同温度固溶加热后淬火处理,制备金相组织,用混合酸溶液侵蚀后在金相显微镜下观察金相组织[6]。 文章主要就6005铝合金材料的力学性能性能通过万能材料试验机开展了系统的实验研究。测定试件在准静态拉伸时,材料的应力应变曲线;提取加载曲线中的屈服点、强度极限;同时,测量实验前后试件实验段(即试件的标距段)的长度变化,計算断裂伸长率和断面收缩率。 2 准静态拉伸试验 2.1 试件及仪器 运用Instron 5969标准电子万能拉伸试验机对6005铝材进行了准静态拉伸试验。试件参照GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》[7]制作。板状试件的尺寸示意图如图1所示。本试验采用比例试件,形状为板状,其厚度为4mm,平行长度为55mm,总长度128 mm。 2.2 试验结果 将试验试件在室温(10~35℃)环境下,试验试件及试验用夹头安装在试验机上,试件轴线应与力的作用线重合,将引伸计连接在试件上。试验机匀速进行拉伸,加载速率为10mm/min,测试试件在拉伸过程中的载荷-变形量的关系。针对横向切取和纵向切取材料,分别进行五次试验。试验过程如图2所示。

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

复合材料力学沈观林编着清华大学出版社

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。 根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒复合材料、纤维增强复合材料(fiber-reinforced composite)、层和复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶瓷。 (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。 按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高) 碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

复合材料力学答案

复合材料力学答案 【篇一:材料力学】 教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学 教程》的第2版。是根据高等工业院校《材料力学教学基本要求》 修订而成。可作为一般高等工业院校中、少学时类材料力学课程的 教材,也可作为多学时类材料力学课程基本部分的教材,还可供有 关工程技术人员参考。 内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力 学(Ⅱ)》两部分组成。《材料力学(Ⅰ)》包括材料力学的基本部分, 涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。 本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能 量法 (二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。各章均 附有复匀题与习题,个别章还安排了利用计算机解题的作业。.. 与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选 材与论述上,特别注意与近代力学的发展相适应。 本教材可作为高等学校工科本科多学时类材料力学课程教材,也可 供高职高专、成人高校师生以及工程技术人员参考。 以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒 体 课件与教学参考》、《材料力学学习指导书》、《材料力学网上作 业与查询系统》与《材料力学网络课程》等。... 作译者回到顶部↑本书提供作译者介绍 单辉祖,北京航空航天大学教。1953年毕业于华东航空学院飞机结 构专业,1954年在北京航空学院飞机结构专业研究生班学习。1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委 员会委员、中国力学学会教育工作委员会副主任委员、北京航空航 天大学校务委员会委员、校学科评审组成员与校教学指导委员会委 员等。..

复合材料力学性能的试验评价方法及其标准化动向

复合材料力学性能的试验评价方法及其标准化动向 王瑞杨连贺王建坤 (天津纺织工学院 300160) 摘要:复合材料力学性能的试验评价方法及其标准化是关系到加速复合材料的发展和扩大应用领域的重要课题。本文综述了复合材料力学性能的试验评价方法及其标准化的现状,分析了现行试验方法及标准中存在的问题和国际研究动向,提出了我国今后对复合材料试验方法及标准化研究和开发方向的建议。 关键词:复合材料力学特性试验方法标准化 1 前言 树脂基复合材料作为一种新型材料,以其轻量、耐腐蚀及良好的力学性能等而倍受青睐。由于其优良的特性,复合材料的研究和应用得到了广泛的关注,目前已被广泛应用于航空航天、电子、超导、汽车及建筑等领域。为了进一步扩大复合材料的应用领域,作为材料性能和安全可靠性保证的手段,试验技术和评价方法的研究是必不可少的。 复合材料力学性能的试验与评价在复合材料的开发与应用中发挥着极其重要的作用,尤其是在材料设计中。试验与评价在优化加工工艺、分析组分材料性能对复合材料整体性能的影响及降低材料成本等方面均具有十分重要的意义。高性能复合材料的设计与加工,需要充分把握复合材料的力学性能,从而明确开发目标与既用材料的差别,以确立高性能复合材料的开发方针。同时,为了根据使用条件和环境合理准确地设计复合材料,需要可靠和真实的复合材料力学性能数据、设计数据,来源于可靠的测试评价方法,因而复合材料力学性能的测试与评价方法的确立是正确设计复合材料,确保力学性能和使用质量、扩大应用范围的重要研究课题。在制定复合材料的试验方法与标准时,特别需要考虑的是与国际标准的接轨,以促进复合材料产品的市场发展,将我国的标准化运作同国际组织的标准化研究逐步衔接起来,使测试标准更加规范,消除贸易上的技术障碍,有效地促进信息交流和共享。实验方法的标准化也是复合材料发展和应用中必须解决的问题,具有重要的经济效益和社会效益。 2 试验、评价方法与标准化现状 2.l 特性评价的物理意义 与通常的金属材料及其它结构材料相比,复合材料具有无延伸性和异向性显著的特点,因此与通常的金属材料不同,存在三个问题:(1)在夹持部无因塑性变形而引起的缓和应力集中作用;(2)在测试部难以获得均匀的应力分布;(3)在应力传递部容易引起破坏等问题。目前,复合材料的力学特性试验与评价方法作为既定标准已不鲜见,但多数都存在上述问题。其中有些已历经修改而成为具有较高水平的“标准”,但同样存在不尽人意之处。理想的情况下,力学特性试验法应该是评价材料某一物理特性值的,但许多情况下都由于应力集中等影响而只能获得表现值,得不到材料的真实数据,因此在应用这些试验方法和标准时,必须充分理解和认识它们的物理意义。 2.2 评价方法存在的问题 关于复合材料力学性能的评价,迄今已有许多实验方法,其中有些方法比较简单,而且已经制定了标准。有些实验方法涉及复合材料固有的复杂性,尚不够

相关文档
最新文档