2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家

2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家
2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家

正面反面

2011年安徽省中考物理模拟试卷

一、填空题(第1-6题每空1分,第7-10题每空2分,共28分;将答案直接写在横线上,不必写出题过程)

1.如图,“歼—10战斗机”是亚洲最具作战力的一种机型。高空的最大速度可达2马赫(马赫为音速

单位,1马赫大约等于340m/s),合_____km/h。在“歼—10战斗机”的驾驶员看来,飞机是_____的。

第1题图第2题图2.草坪式浴室防滑垫是由柔软的PVC材料制成,其正面为仿草坪式设计,背面有许多小吸盘(如图所示)。

正面是通过_____增大脚与垫之间的摩擦力,背面则是利用_____产生的较大压力来增大垫与地之间的摩擦力,两措施并举从而达到理想的防滑效果。

3.美国科学家发明了一种特殊的隐形物质,在空气中沿______传播的光,射到该物质表面上时会

顺着衣服“流走”,从而无法让光在其表面发生______,让旁人看不到它。

4.生活中,当我们拔掉自行车轮胎气门芯时,一股气流从气门冲出来,并伴有潮湿的小水珠。这实际

上是车胎内的压缩空气迅速膨胀对外做功,使其内能_____,(填变化情况)温度降低,空气中的水蒸气遇冷_____(填物态变化名称)而形成的小水珠。

5.灯L1与L2并联在电路中,L2比L1亮。小明同学猜想可能是通过L2灯的电流比通过L1灯的电流大;小

亮同学猜想可能是L2灯两端的电压比L1灯两端的电压大。你认为____同学猜想肯定是错的,理由是________________________。

第5题图第6题图

6.如图,条形磁铁放在水平桌面上,当闭合开关后,条形磁铁保持静止,画出条形磁铁所受摩擦力的示

意图。请你判断:通电螺线管的左端为_____极。

7.2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家。石墨烯被证实是世界上已经发现的最

薄、最坚硬的物质,它的导电性能好、导热性能强,熔点超过3000℃。用石墨烯制成的导线可用来做______(“保险丝”或“高压输电线”)。科学试验表明:如果将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,要想用一支削尖的铅笔戳穿它,那么需要一头大象站在铅笔上,才能戳穿。若铅笔尖的横截面积为1×10-7m2,一头大象的质量为3000kg,铅笔的质量忽略不计,则这种保鲜膜厚度的石墨烯薄层所能承受的最大压强约为______Pa。(g取10N/kg)

8.在中考跳绳比赛中,李艳艳同学以1min跳绳180次的绝对优势获得女子跳绳第一名。她的诀窍是每

次跳起的高度很低,约为5cm。若李艳艳的质量是50kg,则在比赛中,李艳艳跳绳的功率约为_____W。(g取10N/kg)

9. 如图所示,一艘轮船正在长江上航行,假设船体和货物总重为7500吨,江水的密度为1.0×103kg/m 3

船体浸在水面下的体积V =______m 3;这艘轮船从长江驶入大海时,船体是上浮还是下沉一些?____。

第9题图 第10题图

10. 如图,小明用滑轮组匀速提升重为220N 的泥桶,动滑轮重为20N ,不计摩擦及绳重,由图可知,绳

端受到的拉力F =_____N ,滑轮组的机械效率η=_____%。上升过程中泥桶的_____能没有发生变化。

二、选择题(每小题3分,共21分;每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入题后的括号内)

11. 在进行如图所示的情境中,利用热传递改变物体内能的是( )

A 利用燃气加热水,改变水的内能

B 凭借双手弯折铁丝,改变铁丝的内能

C 通过与大气的摩擦,改变陨石的内能

D 接通电路,使灯丝的温度升高,改变灯丝的内能

12. 如图所示是市场上的一种“逍遥椅”,关于它的说法,不符合物理规律的是( )

A .躺者用脚蹬地,椅子就向后晃动,说明力的作用是相互的

B .躺者用脚蹬地,椅子就向后晃动,说明力能改变物体运动状态

C .椅子晃动速度越来越小,说明椅子受到的阻力越来越大

D .使用这种椅子,地面上容易留下压痕,是由于压强较大 第12题图

13. “影”是我们日常生活中常见的光现象,如夏天乘凉的“树影”;民间皮影戏的“皮影”;岸边景色

在水中形成的“倒影”;春游时的“摄影”等。下列说法中正确的是( )

A. 树影是由光的直线传播形成的

B. 皮影利用了平面镜成像的原理

C. 倒影是由光的折射形成的

D. 摄影时用的照相机是根据凹透镜成像的原理制成的

14. 下列有关厨房的物理知识,说法不正确的是 ( )

A 、烧水时,若水不到100℃就沸腾,则此时的气压小于一个标准大气压

B 、在水中下饺子,饺子不会被煮焦,在油中煎饺子,饺子易被煎焦,所以油的沸点比水高

C 、洗碗时,油花漂在水面上,油的密度比水小

D 、菜刀刀口磨得很锋利是为了增大压力

15.如图是用羊角锤起钉子的示意图,仔细观察一根长钉子被完全拔出的全过程,发现锤子与桌面的接触

点逐渐移动,设阻力不变,当施加一个始终与锤柄垂直向右的作用力时,作用在锤柄上的力将会()A.逐渐变小 B.不变 C.逐渐变大 D.无法判断

第15题图第16题图

16.学习了电学知识后,物理兴趣小组对亮度可调的应急灯进行了探究:发现它的亮度调节开关相当于一

个滑动变阻器,电路如图所示。闭合开关用电压表和电流表对其进行测量,调节滑动变阻器使灯泡变亮的过程中,下列说法正确的是 ( )

A. 电压表和电流表示数都变小

B. 电压表和电流表示数都变大

C. 电压表示数变大,电流表示数变小

D. 电压表示数变小,电流表示数变大

17.通过直接感知的现象,推测无法直接感知的事实,是常用的物理方法。下列根据现象所作出的推测不

符合事实的是()

A.扩散现象推测分子是运动的

B.电路中的灯泡发光推测电路中有电流

C.小磁针放在磁体旁受力偏转推测磁体周围有磁场

D.街边的路灯同时亮、灭推测路灯是串联的

三、实验与探究题(第18题6分,第19题7分,第20题8分,共21分)

18.利用如图实验装置来“探究凸透镜成像规律”。

(1)如图甲所示,一束平行于凸透镜主光轴的光线经过凸透镜后,在光屏上形成了一个最小、最亮的光斑。由图可知,该凸透镜的焦距是______cm。

第18题图

(2)小明将该凸透镜放在光具座上进行实验,蜡烛、凸透镜、光屏在光具座上的位置如右图所示,其中明显还需要调整的是______。调整后,在光屏上恰好得到一个清晰的蜡烛的像,请你详尽地描述这个像点:__________________。

(3)当在光屏上已经得到了一个清晰的像后,如果想模拟幻灯机的工作原理(如图所示),在凸透镜保持不动的情况下,接下来的操作应该是:_______________。

(4)当蜡烛位于距透镜8cm位置时,为观察到烛焰所成的像,眼睛需要在____(选填“光屏”或“蜡烛”)一侧透过透镜观察,请你详尽地描述这个像:____________。

19.要测量一个额定电压是2.5V小灯泡的额定功率。

(1)请你根据电路图,用笔画线代替导线,将图乙中的器材连成实验电路(要求减小误差,导线不要交叉)。

第19题图

(2)进行实验时,小明说:“由于电源选用三节干电池,所以应选0~15V的量程。”你是否同意他的观点:______,理由是________________。

(3)根据你连接的电路图,变阻器的滑片应移动到最____时,闭合开关,电压表和电流表的指示如图所示。你分析产生这一现象的原因:________________。(写出一种即可)

(4)老师更换了同样规格的灯座和灯泡后,闭合开关,移动滑片,使电压表的示数为“2.5V”,此时电流表的指针又向右偏转2小格。则该灯泡的额定功率为______。

20.思考:你能否用弹簧测力计、烧杯、水、细绳测出小石块的密度?

实验步骤:

(1)弹簧测力计测出小石块的重力G石,则小石块的质量_______(用符号表示);

(2)_________________________________________,测出小石块的浮力=_____(用符号表示);

(3)用测量所得的物理量和已知量符号表示出小石块的密度ρ石=___________。

四、计算与推导题(第21小题6分,第22小题6分,第23小题8分,共20分;解答要有必要的公式和过程,只有最后答案的不能得分)

21.(1)证明:密度为ρ均匀的规则物体(如长方体)放置在地面水平上,其对地面的压强P=ρgh。

(2)如果该物体对地面的压强为7.8×103Pa,请你根据图形算出该实心物体的密度。

=10cm

第21题图

22. 在初中物理学习过程中,曾经学过一种方法――“等效替代”。如左图所示,如果用一个电阻R 替代两

个电阻R 1、R 2接入电路后,整个电路中的各个物理量保持不变,则电阻R 就可以等效替代电阻R 1、R 2并联。电阻R 的大小就等于电阻R 1、R 2并联后的总电阻。请你根据这个思路,计算右图中开关闭合后,电流表的示数?整个电路消耗的总功率?

已知:R 1=20Ω,R 2=30Ω,R 3=18Ω,U 总=15V

第22题图

23. 一种新型混合动力汽车基本原理是:混合动力汽车启动时,内燃机并不工作,蓄电池通过某种方式向

车轮输送能量;内燃机启动,既可以向车轮输送能量,也可以同时给蓄电池充电。

(1)测试人员驾驶该车在平直公路上以50km/h 的车速匀速行驶0.5h ,已知汽车行驶时所受阻力为2000N ,求需要向车轮输送多少机械能?

(2)测试人员观察仪表盘,发现上述(1)中内燃机启动的这段时间内,消耗燃油 4.5kg ,已知使用的燃油的热值为4.0×107J/kg ,如果此时内燃机的效率为40%,那么还可以向蓄电池组提供多少电能?(不计内燃机以外的机械传动及充电过程中的能量损失)

R

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

2010年诺贝尔物理学奖揭晓

2010年诺贝尔物理学奖揭晓 英国曼彻斯特大学2位科学家因在石墨烯方面的开创性实验获奖 安德烈·盖姆 康斯坦丁·诺沃肖罗夫

北京时间10月5日下午5点45分,2010年诺贝尔物理学奖揭晓,英国曼彻斯特大学2位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)因在二维空间材料石墨烯(graphene)方面的开创性实验而获奖。 安德烈·盖姆(Andre Geim),荷兰公民。1958年出生于俄罗斯索契。1987年从俄罗斯科学院固态物理研究所获得博士学位。英国曼彻斯特大学介观科学与纳米技术中心主任。曼彻斯特大学物理学教授及皇家学会2010周年纪念研究教授。 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov),英国和俄罗斯公民。1974年出生于俄罗斯下塔吉尔。2004年从荷兰内梅亨大学获得博士学位。英国曼彻斯特大学教授及皇家学会研究员。 只有一个原子厚度,看似普通的一层薄薄的碳,缔造了本年度的诺贝尔物理学奖。安德烈·盖姆和康斯坦丁·诺沃肖罗夫向世人展现了形状如此平整的碳元素在量子物理学的神奇世界中所具有的杰出性能。 作为由碳组成的一种结构,石墨烯是一种全新的材料——不单单是其厚度达到前所未有的小,而且其强度也是非常高。同时,它也具有和铜一样的良好导电性,在导热方面,更是超越了目前已知的其他所有材料。石墨烯近乎完全透明,但其原子排列之紧密,却连具有最小气体分子结构的氦都无法穿透它。碳——地球生命的基本组成元素——再次让世人吃惊。 安德烈·盖姆和康斯坦丁·诺沃肖罗夫是从一块普通得不能再普通的石墨中发现石墨烯的。他们使用普通胶带获得了只有一个原子厚度的一小片碳。而在当时,很多人都认为如此薄的结晶材料是非常不稳定的。 然而,有了石墨烯,物理学家们对具有独特性能的新型二维材料的研制如今已成为可能。石墨烯的出现使得量子物理学研究实验发生了新的转折。同时,包括新材料的发明、新型电子器件的制造在内的许多实际应用也变得可行。人们预测,石墨烯制成的晶体管将大大超越现今的硅晶体管,从而有助生产出更高性能的计算机。 由于几乎透明的特性以及良好的传导性,石墨烯可望用于透明触摸屏、导光板、甚至是太阳能电池的制造。 当混入塑料,石墨烯能将它们转变成电导体,且增强抗热和机械性能。这种弹性可用于制造新型超强材料,质薄而轻,且具有弹性。将来,人造卫星、飞机及汽车都可用这种新型合成材料制造。 今年的获奖者在一起工作了很长时间。36岁的康斯坦丁·诺沃肖罗夫最初在荷兰以博士生身份与51岁的安德烈·盖姆开始合作。后来他跟随盖姆去到英国。不过他们两人最初都是在俄罗斯学习并开始物理学家生涯。现在他们均为曼彻斯特大学的教授。 爱玩是他们的特点之一,玩的过程总是会让人学到点东西,没准就这么着中了头彩。就像他们现在这样,凭石墨烯而将自己载入科学的史册。

1930年诺贝尔物理学奖——拉曼效应

1930年诺贝尔物理学奖——拉曼效应 1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara V enkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。 在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(https://www.360docs.net/doc/0616272273.html,ndsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。 1921年夏天,航行在地中海的客轮“纳昆达”号(S.S.Narkunda)上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装臵:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。 拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

2004年诺贝尔物理学奖

2004年诺贝尔物理学奖 2004年物理学奖,由三位美国的物理学家分享,他们是戴维·格罗斯(David J.Gross)、休·普利策(Hugh David Politzer)和弗兰克·维尔泽克(Frank Wilczek。他们提出了量子场中夸克“渐进自由”的理论。 戴维·乔纳森·格罗斯(David Jonathan Gross,1941—),出生于美国华盛顿。1966年获得美国加州大学伯克利分校博士学位。1985年当选为美国科学与艺术学院院士,1986年当选为美国科学院院士,2011年当选为中国科学院外籍院士。格罗斯在理论物理,尤其是规范场理论、粒子物理和超弦理论等方面做出了一系列开创性的研究成果。他是量子色动力学的主要奠基人之一。量子色动力学作为描述自然界四种基本作用力之一的“强相互作用力”的基本理论,成为研究强子性质和原子核物理的基础。 休·戴维·普利策(Hugh David Politzer,1949—),出生于美国纽约。1974年获得哈佛大学的物理学博士学位,后在加利福尼亚理工学院物理系任教授,同时也是该校粒子物理研究领域的学术带头人之一。加州理工学院坐落于帕萨迪纳美丽的圣盖伯利山脚下,是美国声名显赫的名牌私立大学之一。 弗兰克·维尔泽克(Frank Wilczek,1951—),出生在纽约州的米里奥拉,他的祖先来自波兰和意大利。他在昆斯区上中小学。在芝加哥大学物理系本科毕业后,前往普林斯顿大学继续深造,1972年获得数学硕士学位,1974年获得物 1

理学博士学位。毕业后在普林斯顿开始执教生涯。1988年他前往美国西海岸的加利福尼亚大学圣巴巴拉分校担任教授。2000年秋天,他重回东海岸,担任麻省理工学院的物理系教授。他被誉为美国最杰出的理论物理科学家之一。维尔泽克曾是戴维·格罗斯的学生。 近代物理学理论认为,夸克等是比质子和中子等亚原子粒子更基本的物质组成单位,夸克等组成了质子和中子,中子和质子又形成原子核,最终产生原子以及今天的宇宙万物。现有的物理学理论还认为,自然界中存在引力、电磁力、强作用力和弱作用力等4种基本的作用力。其中,夸克通过强作用力组成质子和中子,而这种强作用力主要通过另一种名为胶子的基本粒子来传递。但物理学家们在研究夸克时也发现了一个奇怪的现象,那就是从没有发现过自由的单个夸克,只有2个或3个夸克的集合体才能处于自由状态,通常情况下夸克总是被约束在质子和中子内部。本年度获奖者格罗斯、波利策和维尔切克提出的“渐近自由”理论,为此提供了解释。 1973年,维尔泽克正在普林斯顿大学读研究生,师从格罗斯。师徒二人于1973年发表论文,揭示了粒子物理中强相互作用理论中的渐近自由现象。当时他们分别只有32岁和22岁。同年,普利策也独立发表了相关论文。三位科学家提出的理论认为,强作用力会随着夸克彼此间距离的增加而增大,因此没有夸克可以从原子核中向外迁移,获得真正的自由。通俗地说,这一现象有点像拉一根具有弹性的橡皮筋:橡皮筋拉得越长,其产生的力量越大,人拉起来也更为费劲。同 2

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

1955年诺贝尔物理学奖

1955年诺贝尔物理学奖 1955年的物理学奖,被美国的两位物理学家分享,他们是威利斯·兰姆(Willis https://www.360docs.net/doc/0616272273.html,mb)和波利卡普·库什(Polykarp Kusch)。兰姆使用微波技术探究氢原子的精细结构,发现了兰姆位移;库什使用射频束精确地测量了电子的磁矩,完善了核理论。二人都对量子电动力学的创立和发展起到重大的推动作用。 兰姆和库什都是在第二次世界大战前不久进入哥伦比亚大学辐射实验室的,两人都是拉比的追随者与合作者。兰姆先是从事理论研究,发表过多篇论文。库什则直接参与了拉比的磁共振方法研究。他们二人在第二次世界大战期间都从事过雷达技术的工作,从而促使他们对微波有所了解,并在后来的实验中用到这一技术。他们在同一个实验室中工作,但分别领导着一个小组,在同一年完成并且可以用同样的原理来解释各自的发现,这一原理就是关于电子与电磁辐射相互作用的理论。显然,他们的研究工作是相互促进的,尽管使用的方法与实验装置有所不同。 威利斯·尤金·兰姆(Willis Eugene Lamb,1913—2008),出生于美国加利福尼亚州的洛杉矶,父亲是一位电话工程师。1930年,兰姆进入伯克利加州大学,1934年获化学学士学位。随后在奥本海默的指导下研究理论物理学,1934年获得博士学位。1938年,兰姆到哥伦比亚大学任教。从1943年到1951年,兰姆在哥伦比亚大学辐射实验室工作,在那里完成了他的主要成就。2008年,逝世于亚利桑那洲的图森。 1

兰姆的发现与氢原子有关,氢原子中有一个电子,沿一系列的轨道绕其核旋转,每条轨道对应于确定的能级,各能级都具有精细结构。长期以来,精细结构的解释是使用狄拉克的相对论性量子力学,并且得到了公认。然而,用光学方法验证狄拉克的精细结构理论,历经一二十年,始终未获得成功。 氢光谱作为最典型、最简单的一种原子光谱,对它的研究历时一百多年。1885年,巴耳末发现14根氢谱线的波长可以用一个简单的公式来表示,这就是巴耳末公式。随后不久的1887年,迈克尔逊和莫雷发现这一谱系的第一条谱线Hα线有精细结构,当时由于谱线本底太强,无法分辨结构的细节,只能认为是由双线组成。后人根据谱线强度的包络线作出种种猜测,例如,有人认为里面包含五条强度不等的细线。1913年,玻尔提出定态跃迁原子模型,成功地推出了巴耳末公式,然而仍不能解释精细结构。1916年,索末菲对玻尔的理论进行了修正,计算出了双线的理论值,与实验所得基本吻合。1926年,海林堡等人用量子力学计算能级,与索末菲的结果稍有出入。1928年,狄拉克用相对论量子力学,考虑到自旋和轨道耦合,提出了狄拉克方程,可以描述氢原子的能级,据此得出氢光谱中Hα的精细结构。只是由于与Hα有关的能级中22S1/2和22P1/2、32S1/2和32P1/2、32S3/2和32P3/2能级分别相等,所以实际上Hα只有五个成分。 为了检验狄拉克理论的正确性,人们对氢光谱作了大量的光学实验,均未有定论。其中只有加州理工学院的豪斯顿(W.V.Houston)和谢玉铭的实验取得了明确结论,他们的实 2

1977年诺贝尔物理学奖——电子结构理论

1977年诺贝尔物理学奖——电子结构理论1977年诺贝尔物理学奖授予美国新泽西州缪勒山(Murray Hill)贝尔实验室 的P.W.安德森(Philip W.Anderson,1923—)、英国剑桥大学的莫特(Nevill Mott,1905—1996)和美国哈佛大学的范弗莱克(John Van Vleck,1899—1980),以表彰他们对磁性和无序系统的电子结构所作的基础理论研究。 P.W.安德森1923年12月13日出生于美国依利诺斯州的印第安纳波利斯(Indianapolis)。父亲是依利诺斯大学的植物学教授,在他父母的亲友中有许多物理学家,他们激发了P.W.安德森对物理的爱好。中学毕业后,进入哈佛大学,主修数学。可是不久第二次世界大战爆发。P.W.安德森在此期间应召入伍,被分配去学习电子物理,不久派遣到海军研究实验室建造天线。这项工作使他对西方电器公司和贝尔实验室有所了解。战争结束后,P.W.安德森返回哈佛大学,就下决心向物理学家学习,做一名物理学家。在这些物理学家中,以电子结构理论著称的磁学专家范弗莱克是他最敬佩的物理学家之一。他和范弗莱克曾经一起在军事部门工作过,范弗莱克是哈佛大学的著名教授,正是范弗莱克的指引,P.W.安德森后来决心把自己的研究方向定位在固体的电子结构和现代磁学,在范弗莱克的指导下研究了微波和红外光谱的压力增宽。他为了用分子间相互作用解释这些谱线在高密度下增宽的现象,借助于洛伦兹等人的理论发展了一种更普遍的方法,运用于从微波到红外和可见光的光谱学。他还根据已知的分子作用计算出了初步的定量结果。 后来,P.W.安德森的注意力聚焦于绝缘的磁性材料,诸如铁淦氧体和反磁性的氧化物,也就是要研究是什么因素导致原子磁矩和自旋以及人们观测到的那些特殊排列。他在克拉默斯(H.A.Kramers)的“超交换”这一旧概念的基础上,探讨了相互作用的机制。他对相互作用所作的假设可解释自旋花样和居里-奈尔点。 在这项工作之后,P.W.安德森研究了所谓的近藤(Kondo)效应,这个效应涉及磁杂质对极低能自由电子的畸形散射,并对低温状态的情况给出了初步定性解答。这是重正化技术对固体和统计力学问题最早的应用之一。 50年代初,科学家开始研究不同领域的磁共振谱学中的谱线形状和宽度问题。布隆姆贝根、珀塞尔和庞德(Pound)对核共振、范弗莱克对电子共振提出了许多有用的概念,但从观测到的谱线进一步理解原子运动和相互作用,尚需有定量的数学表述。从这一观点看,铁磁共振是一个空白。P.W.安德森对此提供了一种数学上的方法,来处理“交换变窄”和“运动变窄”等问题,并把这些问题与原子运动和交换联系在一起。他还对相互作用和机制进行了许多研究。在铁磁共振方面,他和苏尔(H.Suhl)等人合作,首先提出了杂质增宽和自旋波激发等概念,使这个领域得以澄清。当解释超导电性的BCS理论在1957年刚刚提出时,基本原理问题还存在。P.W.安德森是最早解释这些问题并将巴丁、库珀和施里弗的方法普遍化中的一位。

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.360docs.net/doc/0616272273.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

1956年诺贝尔物理学奖——晶体管的发明(可编辑修改word版)

1956 年诺贝尔物理学奖——晶体管的发明 1956 年诺贝尔物理学奖授予美国加利福尼亚州景山(MountainView)贝克曼仪器公司半导体实验室的肖克利(William Shockley,1910—1989)、美国伊利诺斯州乌尔班那伊利诺斯大学的巴丁(JohnBardeen,1908—1991)和美国纽约州缪勒海尔(Murray Hill)贝尔电话实验室的布拉坦(Walter Brattain,1902—1987),以表彰他们对半导体的研究和晶体管效应的发现。 晶体管的发明是20 世纪中叶科学技术领域有划时代意义的一件大事。由于晶体管比电子管有体积小、耗电省、寿命长、易固化等优点,它的诞生使电子学发生了根本性的变革,它拨快了自动化和信息化的步伐,从而对人类社会的经济和文化产生了不可估量的影响。 应该指出,晶体管效应的发现是科学家长期探索的结晶,更是基础研究引向应用开发的必然成果。半导体的研究可以追溯到19 世纪,例如,1833 年法拉第曾经观察过某些化合物(例如硫化银)电阻具有负温度系数。这是半导体效应的先声。1874 年,布劳恩(F.Braun)注意到金属和硫化物接触时有整流特性,而1876 年亚当斯(W.G.Adams)等人发现光生电动势。1883 年,弗利兹(C.E.Fritts)制成第一个实用的硒整流器。无线电报出现后,矿石作为检波器被广泛应用,主要成分是硫化铜,后来用上了硅和锗。氧化铜整流器和硒光电池的商品化,要求科学家深入研究有关现象的实质和原理。 1926 年,索末菲用费米-狄拉克统计解释了金属中电子的行为。他的学生布洛赫(F.Bloch)研究晶体点阵对电子运动的影响,提出在周期性势场中电子占据的能级可能形成能带。1931 年A.H.威耳逊(A.H.Wilson)进一步对固体提出量子

石墨烯在环氧树脂中的应用

石墨烯在环氧树脂中的应用 石墨烯的简介 石墨是碳单质的同素异形体,碳元素的神奇的六号元素,碳单质同素异形体从最硬到极软,从全吸收到全透光,绝缘体到半导体到导体,绝热到良导热,而石墨烯就是单原子层的石墨。 石墨烯增强树脂机理 石墨烯具有很大的表比面积,加上石墨烯的分子级的分散,可与聚合物之间形成很强的界面作用,羟基等官能团和制作过程均会使石墨烯变成褶皱的状态,这些纳米级的不平整可增强石墨烯与聚合物链之间的相互作用。官能团化石墨烯表面含有羟基,羧基等化学基团,可与极性高分子如聚甲基丙烯酸甲酯形成较强的氢键。 石墨烯在环氧树脂中的应用——导电性 改性的石墨烯于环氧树脂复合,加入2%的改性石墨烯,环氧复合材料的储能模量增大113%,加入4%是,强度增大38%。纯EP树脂的电阻为10^17欧姆.厘米,添加氧化石墨烯后电阻下降6.5个数量级。 石墨烯在环氧树脂中的应用——导热性 将碳纳米管、石墨烯加到环氧树脂中,当加入20 vol% CNTs 20 vol%

GNPs, 复合材料的导热系数可达7.3W/mK. 石墨烯在环氧树脂中的应用——阻燃性 当加入5wt%有机功能化氧化石墨烯时阻燃值提高23.7%,加入5wt%的石墨烯时阻燃性能提高43.9%。 石墨烯导热塑料的优势 石墨烯导热塑料容易加工、成型耗费能源少、密度适中做出产品轻巧、可降解对环境污染小、加工可自动化高效、颜色丰富任意调整、仓库运输成本大量降低、不易碰撞变形、可绝缘不易造成安全隐患,散热均匀。 环氧树脂的种类 1. 缩水甘油醚型树脂缩水 2.缩水甘油脂型树脂 3.缩水甘油胺型树脂

4.脂环族环氧化合物 5.线状脂肪族环氧化合物。 环氧树脂的用途 环氧树脂一般和添加物同时使用,以获得应用价值。添加物可按不同用途加以选择,常用添加物有以下几类:(1)固化剂;(2)改性剂;(3)填料;(4)稀释剂;(5)其它。 其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 由于用途性能要求各不相同,对环氧树脂及固化剂、改性剂、填料、稀释剂等添加物也有不同的要求。

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

1945年诺贝尔物理学奖

1945年诺贝尔物理学奖 1945年物理学奖得主,是奥地利的沃尔夫冈·泡利(Wolfgang E.Pauli),获奖理由是他提出了泡利不相容原理。 沃尔夫冈·厄恩斯特·泡利(Wolfgang Ernst Pauli,1900—1958),出生于奥地利维也纳。父亲是维也纳大学的生化学家,母亲是一名作家。他小他受到良好的教育,中学阶段就自学了大学物理和数学分析教程,被当作物理和数学神童。中学毕业后,泡利带着父亲的介绍信去慕尼黑找著名的物理学家索茉菲学习理论物理。泡利申请不学大学课程而直接读研究生,并要求参加高年级研究生的讨论班。这让索茉菲惊讶不已,觉得这个年轻人有些不知天高地厚。不久后,索茉菲发现在讨论班上,泡利发言最快,观点鲜明,才肯定了他的才华。当时,德国准备出版一本百科全书,其中有关相对论的章节,请索茉菲代为起草。索茉菲自己没有动笔,却把这个任务交给了泡利。泡利以惊人的速度,很快写出了一份250页的有关相对论的综述文章,再次让索茉菲惊叹不已。这篇文章写就于1921年,即使在今天,这篇文章和外尔(weyl)所著的《空间、时间和物质》,仍然被公认为评述相对论的经典著作。同年,在索茉菲的推荐下,泡利来到哥丁根大学做玻恩的助手。这年秋天,泡利与师弟海森堡一起,随导师索茉菲在哥丁根参加了一个会议。在这次会议上,泡利遇到了著名的理论物理学家玻尔。玻尔很快发现这两个年轻人非同一般,马上邀请他们去哥本哈根理论物理研究所工作。从此,泡利、海森堡与玻尔结下了深厚的友谊。泡利不 1

是一个好的演讲者,或者说他对演讲和讲课不感兴起,讲解时经常自言自语,在黑板上写的字又小又乱。他还有一个癖好,就是在讲课时也在思考自己的课题,因而影响到教学效果。泡利在与人争论学术问题时,往往言词犀利,不留情面,让人有点难以接受。传说有一次在讨论会上,玻尔发言时被泡利突然打断:“住口,别冒傻气!”玻尔了解泡利的脾气,并未生气,而是温和地说:“但是泡利,你听我说完。”泡利立刻回口:“不,我一个字也不想听。”1928年,泡利转到瑞士苏黎世联邦工学院任物理学教授,一直工作到退休。1956年,杨振宁和李政道为解释τ-θ之谜而提出了在弱相互作用中宇称不守恒的理论,泡利曾极力反对,直到该理论被吴健雄证实。1958年,泡利在瑞士苏黎世去世,享年58岁。 1922年,泡利应玻尔之邀到哥本哈根工作,致力于研究不规则的塞曼效应。当时玻尔、索茉菲和兰德都认为,尤其是在碱金属中,价电子所围绕运动的原子核心具有角动量,造成了原子的不规则磁性。泡利持不同意见,他认为,不规则磁性与核心无关,是由电子的属性引起的。根据薛定谔描述量子规律的波动方程,已知的量子数有三个:n、l和m。主量子数n给出电子到达原子核的近似距离,这是极可能发现电子的地点。n值的范围从1到无穷大,对于处于基态的原子,n不超过7。第二量子数l给出电子的角动量值,这个数值一般与电子所占区域的形状有关,对于一给定电子,l值总是低于n值。第三量子数m叫作磁性量子数,它给出电子的角动量在磁场中的定向,其值范围从负l到正l。因此,对于l的第一个值都有m的容许值2l+1。 2

石墨烯在涂料领域中的应用探析

石墨烯在涂料领域中的应用探析 自从石墨烯诞生之日起,就受到世界范围内的高度关注。石墨烯作为碳单质的第三种形式,以其优异的物理性能、化学性能、电性能和热力学性能,在涂料行业一经使用,就有着十分突出的优异表现。文章围绕石墨烯在涂料领域的相关应用进行探讨,主要介绍了石墨烯在导电涂料、防腐涂料、阻燃涂料、导热涂料和高强度涂料方面的应用情况。 标签:石墨烯;涂料;导电;防腐 引言 使用工具是人类区别于其他动物的根本特征。人类的历史本质上是人类使用工具改造自然、认知世界的过程。优质的材料是工具发展的主要动力之一。许多次人类科学乃至社会上的重大进步,都是与新材料的发现、发明密切相关。石墨烯是21世纪重要的新型材料,其由多层片状结构组成,每层结构都是由碳原子经过sp2杂化轨道组成的六角型呈蜂巢晶格平面薄膜。石墨烯的理论已经提出了一段时间,但一直到2004年英国物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,才在实验室中人工分离出石墨烯单体,从而证实了石墨烯的存在。两位学者也因此荣获2010年诺贝尔物理学奖。石墨烯是纳米材料中厚度最小、强度最大的种类。由于吸光率很低,只有 2.3%,所以外观几乎是完全透明的。石墨烯物理性能优异,导热性能比碳纳米管和金刚石还高,为5300W/m·K,室温环境下其电子迁移率大于15000cm2/vs,超过纳米碳管或硅晶体。石墨烯是当前世界上已知材料中导电性最好的材料,电阻率仅为10-8Ω·cm,低于铜或银。综上所述,石墨烯兼具比表面积大、导电性好、化学稳定性强、力学性能和导热性能优异等优点,一经问世,就受到世界各国的广泛关注。现阶段我国已经初步形成石墨烯工业化生产。石墨烯应用范围十分广阔,涂料是目前石墨烯众多应用领域中的一个重要组成部分。凭借各种优越性能,石墨烯在导电涂料、防腐涂料、阻燃涂料、导热涂料和高强度涂料等方面都有着非常深远的应用前景。下面就对石墨烯在涂料领域中的主要应用进行一下简要介绍与分析。 1 石墨烯在导电涂料领域的应用 1.1 汽车静电喷涂浅色底漆 汽车是重要的工业产品。作为汽车构成系统中的有机组成部分,汽车塑件具有很好的市场空间。当前汽车塑件涂装普遍采用常规空气喷涂方式作业。这种喷漆工业是以喷枪为工具,使用压缩空气为载体进行生产。在生产过程中,大量涂料以雾化形式散逸到空气中,不仅成本昂贵,而且会造成较为严重的空气污染。基于这个原因,汽车及涂料企业一直把更具有经济性、环保性的新型涂料作为汽车涂料的主要开发目标。其中,静电喷涂就是其中一個重要方向。静电喷涂以电场为涂装载体,不但涂料利用效率高,成本相对降低,有利于环境保护,还具有生产速度快,装饰性能高等优点。汽车组成构件中有很大一部分,比如说汽车车

相关文档
最新文档