智能数字式变频大电流接地特性测量系统

智能数字式变频大电流接地特性测量系统
智能数字式变频大电流接地特性测量系统

智能数字式变频大电流接地特性测量系统

一、概述

DF9000智能数字式变频大电流接地特性测量系统是上海大帆电气有限公司研制的最新成果,是用于精确测量大型接地网特性参数的软硬件系统,系统主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电压,跨步电压,土壤电阻率,地网电流分布状况,导通电阻,接地桩电阻等参数。

DF9000智能数字式变频大电流接地特性测量系统通过对接地网注入一个异于工频的电流,有效地避免了50Hz及其它干扰信号引起的测量误差,可精确、经济、安全的测量接地网接地阻抗,接触电压,跨步电压,场区地表电位梯度等参数,同时使得测量过程变得方便而安全。

DF9000智能数字式变频大电流接地特性测量系统主要包括:大功率变频信号源、耦合变压器、高精度多功能选频万用表及其它附件等组成。

二、产品别称

接地电阻测试仪、大地网接地电阻测试仪、大型地网接地阻抗测试仪、大型地网接地阻抗测试系统、变频大电流多功能地网接地特性测量系统、接地阻抗测试、接地阻抗测试仪、大型地网变频接地阻抗特性测试系统,接地装置特性参数测量系统,变频大电流多功能测试仪,异频接地阻抗测试仪,抗干扰异频地网接地阻抗测试仪,异频接地电阻测试仪,接地电阻异频测试仪,大地网接地电阻测试仪,超大型接地网接地阻抗测量仪,大型接地网异频接地电阻测试仪,地网接地电阻测量系统,大型地网接地电阻测试仪、异频接地电阻测试仪,基于异频法的大型接地网接地电阻测试仪,大地网接地电阻测试仪,变频大电流多功能接地阻抗测试系统,基于异频法的大型接地网接地电阻测试、逐点变频大型地网接地特性测量系统、大型地网变频接地特性测试系统等。

三、系统主要技术特点

☆ 采用军用电子对抗数字化分析滤波技术,抗干扰能力极强。(关键性能) 选频特性尖锐,通频带±0.3Hz,干扰衰减>100dB/Hz。实测200V的干扰在±1Hz偏频测量引起的误差低于0.1mV,干扰抑制能力达到十万分之一以上,远胜于模拟式仪器百分之几的抗干扰能力,保证了测试精度。

☆ 高精度选频 + 自动换挡技术,全自动切换量程,保证了在高低量程范围的测量精度,使用简单方便。

☆ 自带SD数据存储卡,可很方便的下载数据。可保存2000组数据,可与计算机联机上传数据,方便分析处理。

☆ 系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A),彻底解决了同类设备输出功率和电压偏小,现场难以升流的问题。

对于一个具体的测试回路,加在回路上的电压越高,回路电流才能达到越大。 本系统输出电压高,功率大,确保现场能实际产生较大的试验电流,保证了测试的准确性。

☆ 逐点步进精确选频测试,非误差较大的双点变频。

本系统采用45-65Hz步进1Hz多点变频测试,能明确发现和剔除因同频谐波干扰而产生的测量坏值,克服了双点变频法的固有局限,同时可得接地系统的频率特性,测量结果更加符合实际值。

☆ 可准确测量接地阻抗,跨步电位差,接触电位差,土壤电阻率,场区地表电位分布,地网电流分布等参数。

☆ 同时测量指定频率下的电压、电流大小,及电压电流之间的相位差,自动计算出接地阻抗及其中电阻分量,电抗分量。

☆ 有独立的高精度选频电压表,内置人体模拟电阻,可方便的测量跨步电压,接触电压。

☆ 各量程可分别多点进行校准,保证了测量精度。

☆ 可外接Rogowski线圈(罗氏线圈,柔性电流互感器),方便现场不断开导体测量电流。并可自动识别多个不同量程的线圈。

☆ 高稳定度的变频源,纯正弦波输出,保证了测试结果的等效性,并有过压、过流和过热,断线保护等保护功能。

☆ 大屏幕显示测试数据,一键鼠标式旋钮,傻瓜式操作。

☆内置可充电电池,可连续工作8小时以上,同时支持外接干电池供电。

三、系统参数

3.1、系统总体参数

电源电压:AC 220V,50Hz

输出功率:2KW~20KW(可定制)

输出电压:0~1000V (可定制)

测试输出电流:0~50A(可定制)

频率调节范围:45~65Hz 步进频率:1Hz

抗干扰能力:通频带±0.3Hz,衰减>100dB/Hz;

测量范围:0.001~1000Ω

分 辩 率:0.01mΩ

测量精度:1.0级

使用环境温度:-20℃~+50℃

3.2系统各部分技术参数

3.2.1、DF3000G大功率变频信号源

大功率变频电源主要作用是为测试提供一个可变频的电流信号,根据用户要求的不同,标准配置为5KW可选择2kW--20KW或定制的功率大小。

电源电压:AC 220V

输出功率:2KW~20KW(可定制)

波形畸变率:≤1%

频率调节范围:45~65Hz

步进频率:1Hz

重 量:约20Kg

信号源操作设计简洁明了,无需学习繁琐说明书即可使用,深得使用人员好评。

3.2.2、GBLC耦合变压器

耦合变压器主要作用是起变压及隔离的作用,根据需要可选择不同容量及输出电压的耦合变压器。

容量: 2KVA~20KVA(可定制)

输出电压:0-1000V, (可定制)

输出电流:0-50A ,(可定制)

频率范围:45—65Hz

重 量:约25Kg

3.2.3、DF9001高精度逐点选频万用表

DF9001高精度逐点选频万用表主要用于测量指定频率下的电压、电流大小以及电压电流相位差,可自动计算出接地阻抗及电阻分量,电抗分量。

电压量程:(5个)20mV / 200mV / 2V / 20V / 200V,自动换挡

电流量程:(4个)0.2A / 2A / 20A/200A ,自动换挡

选频抗干扰能力:通频带±0.3Hz,抗干扰能力超过十万分之一(关键性能) 测量频率范围:45~65Hz

步进频率:1Hz

电压分辨率:0.001mV

电流分辨率:0.001A

测量精度:1.0级

重 量:<4Kg

DF9001高精度多功能选频万用表操作界面设计简洁明了,飞梭旋钮一键傻瓜式操作,单屏信息全面清晰,无繁琐及多层次菜单,深得使用人员好评。带有SD 卡及RS232接口,可很方便下载试验数据。

3.2.4、DT-10A接地引下线导通测量仪 本产品适用于接地装置导通电阻的测量。

输出电流:10A/5A/2A/1A可调

测量范围:1~2000 mΩ

测量精度:±(0.5%+2d)

测量半径:50米(可加线延长)

显示方式:LCD液晶显示

工作方式:连续

工作温度: -10℃~+40℃

相对湿度:≤90% 无结露

工作电源:外接AC220V 或内置电池

重 量:约5Kg

3.2.5、DFGT接地测量野外放线专用GPS定位仪 主要功能

直接显示电压极电流极直线距离及夹角

内置阻抗修正公式

定位及计算数据存储,下载

全国道路语音及3D实景导航

音乐、电影播放

高速上网冲浪

记事本,休闲游戏等应用软件

语音通话(选配功能)

中性点虚拟接地装置工作原理

中性点虚拟接地装置工作原理 中性点虚拟接地装置将不稳定电路特性的供电系统转化为稳定电路特性的供电系统,提高系统可靠性和安全性。 在我国中压电力系统中,中性点的接地方式涉及到技术、经济、安全等诸多因素。中性点不接地系统由于投资、运行经济,供电可靠性高被广泛采用。但是,中性点不接地系统有着自身的缺点,系统不稳定,内部过电压水平高,故障概率高,极易发生谐振和单相弧光接地等故障。 过电压是电力系统安全运行最大杀手,系统故障及事故主要是由过电压引起。过电压不仅造成事故且加速系统绝缘累积老化,而且直接引发绝缘击穿发生故障,对电力系统安全运行造成严重危害。 中性点不接地系统过电压水平高与系统不稳定是由系统的电路参数决定的,根源在于系统的电路特性,下面就从系统的电路原理分析为什么不接地系统的过电压。 电路原理分析中性点不接地供电系统过电压 1、供电系统可以等效为一个RLC二阶电路 如图1,为一段母线的供电一次图。 图1 一段母线高压系统图 图1的一段母线上的出线可以等效为一条供电线路,如图2。 图3 一段母线出线等效图 图2中,由于负载为中性点不接地,系统输电线路对地,可以等效为一个RLC电路,如图3.

图3 等效RLC二阶电路 2、欠阻尼 如图3,这里不再累述二阶电路的推计算过程,我们直接引用二阶电路的结论。 固有角频率,也称无耗角频率: 衰减系数:(或用μ表示) 3、供电系统是欠阻尼的二阶电路 供电系统中由于输电线路中的电阻成分R消耗有功功率,因此系统中R越小越好,故系统中R的阻尼极小,系统处在严重的欠阻尼状态,且系统L、C振荡衰减很慢,这就带来系统的过电压水平高,系统不稳定容易发生谐振等。 供电系统中由于输电线路中的电阻成分R极小是系统各种过电压的根源。 《高电压技术》指出:系统无耗自振频率ω0= 1/√LC,衰减系数μ=R/2L,当ω0是电源频率整倍数时,系统如有风吹草动,就会发生事故。有些系统当操作人员拉开开关突然进线跳闸,就是属于这类情况。 中性点不接地系统的μ/ω0 < 0.2,系统谐振时过电压水平很高,其操作过电压水平很高,以致系统绝缘无法承受而发生故障及事故。 图4 μ/ω0的比值决定了系统的稳定性,对于架空线路供电系统送电距离长有较大的R,且架空线路对地电容很小,而对企业变电所送电距离很短有很小的R,且电缆线路对地电容很大,因此,企业变电所设计更要注意系统可能出现线性谐振,系统操作、不对称接地故障、断线(熔断器一相、二相熔断)时系统发生线性谐振。 总之,如果使系统系统的μ/ω0 >0.3,系统的各种过电压水平就会很低,系统就会稳定。 中性点虚拟接地装置电路原理

接地装置安装检验批质量验收记录范文表.doc

接地装置安装检验批质量验收记录 工程名称达日县吉迈镇巷道改造工程二标段 分部(子分部)工程名称防雷及接地装置安装工程验收部位黄河七巷支路一施工单位四川广安金达建筑有限公司项目经理石奇勇分包单位/ 分包项目经理/ 施工执行标准名称及编号《电器装置安装工程接地装置施工及验收规范》GB50169-92 施工质量验收规范的规定施工单位检查评定记录监理(建设)单位验收记录 1 接地装置测试点的设置第 24.1.1 条符合要求 主 2 接地电阻值测试第 24.1.2 条符合要求 控 3 防雷接地的人工接地装置的接地干线埋设第 24.1.3 条/ 项 目 4 第 24.1.4 条/ 接地模块的埋设深度、间距和基坑尺寸 5 接地模块设置应垂直或水平就位第 24.1.5 条/ 一 1 接地装置埋设深度、间距和搭接长度第 24.2.1 条符合要求 般 2 接地装置的材质和最小允许规格第 24.2.2 条符合要求 项 目 3 第 24.2.3 条/ 接地模块与干线的连接和干线材质选用 主控项目全部合格,一般项目满足规范规定要求 施工单位检查评定结果 项目专业质量检查员:年月日 监理(建设)单位 验收结论专业监理工程师(建设单 位项目专业技术负责人):年月日

单位(子单位)工程名称北汽福田长沙汽车新工厂配件分装中心 分部(子分部)工程名称防雷及接地装置安装工程验收部位27 交 E~1/E 轴、21~26 交 A 轴:基础 施工单位新兴福田建筑工程有限公司项目经理崔俊华分包单位/ 分包项目经理/ 施工执行标准名称及编号《建筑电气工程施工质量验收规范》GB50303-2002 施工质量验收规范的规定施工单位检查评定记录监理(建设)单位验收记录 1 接地装置测试点的设置第 24.1.1 条符合要求 主 2 接地电阻值测试第 24.1.2 条符合要求 控 3 防雷接地的人工接地装置的接地干线埋设第 24.1.3 条/ 项 目 4 接地模块的埋设深度、间距和基坑尺寸第 24.1.4 条/ 5 接地模块设置应垂直或水平就位第 24.1.5 条/ 一 1 接地装置埋设深度、间距和搭接长度第 24.2.1 条符合要求 般 2 接地装置的材质和最小允许规格第 24.2.2 条符合要求 项 目 3 接地模块与干线的连接和干线材质选用第 24.2.3 条/ 专业工长(施工员)施工班组长 主控项目全部合格,一般项目满足规范规定要求 施工单位检查评定结果 项目专业质量检查员:年月日

第三章 测试系统的基本特性

第三章 测试系统的基本特性 习 题 3-1 某压力测量系统由压电式传感器、电荷放大器和笔式记录仪组成。压电式压力传感器的灵敏度为90pC/kPa ,将它与一台灵敏度调到0.005V/pC 的电荷放大器相联。电荷放大器输出又接到灵敏度调成20mm/V 的笔式记录仪上。试计算该测量系统的总灵敏度。又当压力变化为3.5kPa 时,记录笔在纸上的偏移量是多少? 3-2 某压力传感器在其全量程0~5MPa 范围内的定度数据如题3-2表,试用最小二乘法求出其拟合直线,并求出该传感器的静态灵敏度和非线性度。 3-3 题表所列为某压力计的定度数据。校准时加载压力范围0~10kPa, 校准分加载(正行程)和卸载(反行程)两种方式进行。试根据3-3表中数据在坐标纸上画出该压力计的定度曲线;用最小二乘法求出拟合直线,并计算该压力计的非线性度和回程误差。 压力传感器的定度数据 题3-2表 校准压力 (MPa ) 读数压力 (MPa ) 0 0 0.5 0.5 1.0 0.98 1.5 1.48 2.0 1.99 2.5 2.51 3.0 3.01 3.5 3.53 4.0 4.02 4.5 4.51 5.0 5.0 压力计定度数据 题3-3表 指示压力(kPa ) 校准压力(kPa )正行程 反行程 0 -1.12 -0.69 1 0.21 0.42 2 1.18 1.65 3 2.09 2.48 4 3.33 3.62 5 4.5 4.71 6 5.26 5.87 7 6.59 6.89 8 7.73 7.92 9 8.68 9.10 10 9.80 10.20 3-4 用一个时间常数0.35s τ=的一阶装置去测量周期分别为1、和的正弦信号,问各种情况的相对幅值误差将是多少? s 2s 5s 3-5 已知某被测信号的最高频率为100Hz ,现选用具有一阶动态特性的测试装置去测量该信号,若要保证相对幅值误差小于5%,试问应怎样要求装置的时间常数τ?在选定τ之后,求信号频率为50Hz 和100Hz 时的相位差。 3-6 试证明一阶系统在简谐激励作用下,输出的相位滞后不大于90。 D 3-7 一气象气球携带一种时间常数为15s τ=的一阶动态特性温度计,以5m/s 的速度通过大气层,设大气层中温度随高度按每升高30m 下降0.15℃的规律变化,气球将温度和高度的数据用无线电拍回地面。在3000m 处所记录的温度为-1℃时的真实高度是多少? 3-8 试说明具有二阶动态特性的测试装置阻尼比大多采用0.6~0.7ζ=的原因。 3-9 一力传感器具有二阶动态特性,传递函数为22()2n n n H s s s ω2ζωω=++。已知传感器的固有频率为800Hz ,阻尼比为0.14。问所用该传感器对400Hz 的正弦交变力进行测量时,振幅比()A f 和相角差()f ?各为多少?又若该传感器的阻尼比改为0.7,则()A f 和() f ?

接地装置安装技术交底

接地装置安装技术交底 施工企业:XXXX公司№:(津建安表22) 工程名称XXXX项目工种电力 施工部位接地装置安装交底时间2019年月日 一、接地装置 接地体是埋入地中与土壤作良好接触的金属导体,也称为接地极。连接于接地体与电气设备之间的金属导体,称接地线或接地引下线。电气设备的接地引下线和埋入地中的金属接地体的总和称为接地装置。 1.接地极 接地极是接地电流流向土壤的流散件,接地极的金属导体可分为以下两种: (1)自然接地体。自然接地体是利用已有的与大地有良好接触的金属体作为接地电流的流散件。如埋设在地下的金属管道、建筑物地下基础部分的金属构件和金属桩、直接埋在土壤中的电缆金属外皮(铝皮除外)等。为了节省钢材和施工费用、降低接地电阻、等化地面和设备间的电位,有条件的情况下尽量采用自然接地体。但流有易燃易爆危险气体、液体的金属管道不能做接地体,爆炸危险场所的电力设备的接地装置,按专门规程规定执行,发电厂和变电站的接地必须有人工接地体。利用自来水管或电缆的铅包作自然接地体时,应征得有关部门的同意,以便相互配合和检修。 (2)人工接地体。人工接地体是指按照施工要求专门埋设的金属体,可以是扁钢、钢管、圆钢或角钢。人工接地体可以是水平敷设也可以垂直敷设,钢管或角钢一般是垂直打入地下,圆钢、扁钢一般水平埋入地下。根据电压等级的要求和土壤电阻率的不同,接地体的形式也是多种多样的,一般有以下几种: 1)放射形接地体:采用一至数条接地带敷设在接地槽中,一般应用土壤电阻率较小的地区和电压等级较低的线路。 2)环状接地体:是用扁钢围绕杆塔构成的环状接地体,通常用于输电线路,可以改善接地点土壤的电场分布。 3)混合接地体。是由扁钢和钢管组成的接地体,这种情况往往是单一形式接地体的接地电阻不能满足要求时,所采用的水平和垂直敷设的综合体,又称复合接地体。 2.接地线

对接地网进行系统测试的必要性简述

概述 接地网对于电力系统的安全、可靠运行起着不可忽视的作用。首先,变电站接地系统的目的主要是满足电力系统运行的电气性能要求,保证电力系统电力设备绝缘性能不受到反击过电压的损害,提供继电保护及自动装置所需的正常工作电压;其次,接地系统是保证变电站工作人员免受故障情况下入地电流在大地表面产生的跨步电压和接触电压的伤害;良好的接地可以降低接地电阻,不会对周围弱电系统造成严重的干扰影响。然而,由于接地网常年埋在地下,腐蚀不可避免,直接导致接地截面减小、电气性能参数变化,严重时将直接危及电网的安全运行。因此,进行接地网状态监测,及时了解接地网在土壤中的腐蚀状态及接地参数的变化情况,及早发现问题并采取相应的保护措施,智能化的完成接地网的维护工作,显得十分迫切和重要。 保证接地网的完整性、安全性、可靠性对于电力系统的可靠运行和站内工作人员的人身安全起着至关重要的作用。 接地网状态监测的必要性 发电厂、变电所的接地网不仅要满足工频短路电流的要求,还要满足雷电冲击电流的要求,保证发电厂、变电所内的一次设备、二次设备和微机自控装置的安全稳定运行。其接地的好坏直接关系到设备的运行和人身的安全,因接地网的缺陷曾发生过不少事故,事故的原因既有地网接地电阻方面的问题又又地网均压方面的问题。如信阳息县110kv变电所在1992年做的地网连通试验时发现:110kv电压互感器、避雷器间隔与地网不通,110kv系统与地网不通,结果在那几年,年年雷雨时都打坏设备;平桥电厂在1987年7月发生一次事故,其原因是由于35kv断路器内短路,而接地线又被烧断开路,造成了高压向保护电缆反击,使继电保护瘫痪,事故扩大。 对发电厂和变电所的接地网状态进行监测具有如下重要意义: (1)获得接地网的接地电阻值。由于接地电阻的存在,当与电流流过接地体时,将使接地体及周围的土壤发热,电流在接地电阻上的压降将引起接地极电位的升高,可能使设备受到过电压的作用而损坏。因此,接地电阻的检测对于保障电力系统的安全稳定运行具有重要意义。

接地装置做法

接地装置安装应按以下程序进行: 1建筑物基础接地体:底板钢筋敷设完成,按设计要求做接地施工,经检查确认,才能支模或浇捣混凝土; 2人工接地体:按设计要求位置开挖沟槽,经检查确认,才能打入接地极和敷设地下接地干线; 3接地模块:按设计位置开挖模块坑,并将地下接地干线引到模块上,经检查确认,才能相互焊接; 4装置隐蔽:检查验收合格,才能覆土回填定位放线1按设计规定防雷装置接地体的位置进行放线。沿接地体的线路,开挖接地体沟,以便打入接地体和敷设接地干线。因为地层表面层容易受冻,冻土层会使接地电阻增大,且地表层易扰动被挖,而至损坏接地装置,所以接地装置应埋置于地表层以下,接地体还应埋设在土层电阻率较低和人们不常到达的地方。(水平接地体局部埋置深度不应小于1m,并应局部包以绝缘物(50~80mm厚的沥青层)。)水平接地体的加工制作:一般使用-40mm×40mm×4mm的镀锌扁钢人工接地体的安装1垂直 接地体的安装:将接地体放在沟的中心线上,用大锤将接地体打入地下,顶部距地面不小于0.6m,间距不小于5m.接地极与地面应保持垂直打入,然后将镀锌扁钢调直置入沟内,依次将扁钢与接地体用电焊焊接。扁钢应侧放而不可平放,扁钢与钢管连接的位置距接地体顶端100mm,焊接时将扁钢拉直,焊好后清除药皮,刷沥青漆做防腐处理,并将接地线引出至需要的位置,留有足够的连接高度,以待使用。 2水平接地体的安装:水平接地体多用于绕建筑四周的联合接地。安装时应将扁钢侧放敷设在地沟内(不应平放),顶部埋设深度距地面不小于0.6m. 3铜板接地体应垂直安装,顶部距地面的距离不小于0.6m,接地极间的距离不小于5m.自然接地体安装1利用钢筋混凝土桩基基础做接地体:在作为防雷引下线的柱子(或者剪力墙内钢筋做引下线)位置处,将桩基础的抛头钢筋与承台梁主筋焊接,再与上面作为引下线的柱(或剪力墙)中钢筋焊接。如果每一组桩基多于4根时,只须连接四角桩基的钢筋作为防雷接地体。 2利用钢筋混凝土板式基础做接地体1)利用无防水层底板的钢筋混凝土板式基础做接地时,将利用作为防雷引下线符合规定的柱主筋与底板的钢筋进行焊接连接。 2)利用有防水层板式基础的钢筋做接地体时,将符合规格和数量的可以用来做防雷引下线的柱内钢筋,在室外自然地面以下的适当位置处,利用预埋连接板与外引的φ12mm镀 锌圆钢或-40mm×40mm的镀锌扁钢相焊接做连接线。同有防水层的钢筋混凝土板式基础的接地装置连接。 24.4.2.5接地干线安装接地干线(即接地母线)从引下线断线卡至接地体和连接垂直 接地体之间的连接线。接地干线一般使用-40mm×4mm的镀锌扁钢制作。接地干线分为室内 和室外连接两种。室外接地干线与支线一般敷设在沟内。室内的接地干线多为明敷,但部分设备连接支线需经过地面,也可以埋设在混凝土内,具体的安装方法如下: 1室外接地干线敷设1)根据设计图纸要求进行定位放线,挖土。

大型地网变频接地特性测量系统(精)

DF9000大型地网变频接地特性测量系统,DF910K大型地网变频接地阻抗测量系统,DF902K变频接地阻抗测量仪通过对接地网注入一个异于工频的电流,然后通过高精确数字滤波软硬件系统进行选频测量,有效地避免了50Hz 及其它干扰信号引起的测量误差,可精确、安全、经济的测量接地网接地阻抗、场区地表电位梯度、接触电压、跨步电压,转移电位等参数,使得测量过程变得轻松,方便,安全。 DF9000, DF910K, DF902K系列产品的共同技术特点: ☆采用军用电子对抗数字滤波技术,抗干扰能力极强。(关键性能)选频特性尖锐,通频带±0.3Hz。实测200V的干扰在±1Hz偏频测量引起的误差低于0.1mV,干扰抑制能力超过万分之一,保证了测试精度。 ☆系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A),彻底解决了同类设备输出功率和电压偏小,现场难以升流的问题。 测试回路电流等于电压除以回路电阻。做接地系统测试时,很多情况下回路阻抗较大,而仪器的输出功率小电压低,无法产生足够大的电流。本系统的输出功率大,电压高,有利于产生足够大的回路电流,保证测量准确性。 ☆逐点步进精确选频测试,非误差较大的双点变频。 系统采用40-70Hz步进1Hz多点变频测试,克服了双点变频法的局限性,可选择与工频相近的49Hz,51Hz进行测量,保证了测试结果等效性,并可得到接地系统的频率特性。 ☆专门设计的正弦波变频软硬件系统,保证系统输出纯正正弦波,波形畸变

率≤1%。 ☆实时测量指定频率下的电压、电流及电压电流相位差; ☆自动计算接地阻抗,电阻分量,电抗分量。 ☆可精确测量接地阻抗,场区地表电位分布,土壤电阻率等参数。 ☆自动转换电压、电流量程。采用高级增益编程放大技术,无需手动换挡,保证了测试精度。 ☆系统软件内置校准程序,各量程可分别进行校准,保证了测量精度。 ☆全天候大屏幕液晶显示测试数据,一键鼠标式旋钮,傻瓜式操作。 ☆可保存2000组以上数据,与计算机联机上传数据,方便分析处理。带SD 数据存储卡,可很方便的下载数据。 ☆自带微型打印机,随时打印保存数据。 ☆系统内置高精度日历时钟,保存结果包含时间信息,方便分析和后期处理。 上海大帆大型地网变频接地阻抗测量系统系列产品的主要功能: ◆精确测量大型接地网接地阻抗,接地电阻、接地电抗; ◆精确测量大型接地网场区地表电位梯度; ◆精确测量大型接地网接触电位差,接触电压,跨步电位差,跨步电压; ◆精确测量大型接地网转移电位; ◆测量接地引下线导通电阻; ◆测量土壤电阻率。 DF9000大型地网变频大电流接地特性测量系统 主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电位差,接触电压,跨步电位差,跨步电压,导通电阻,土壤电阻率等参数。可全面测量大型地网的各项特性参数,完全满足新版DL/T475-2006《接地装置特性参数测量导则》测量要求。 DF9000系统输出功率大,电压高,最大可输出50A电流,具有超强的选频抗干扰能力。系统中包含独立的高精度多功能选频万用表,可以很方便的测量接触电压,跨步电压,场区地表电位梯度等参数,完全满足大型、超大型地网的测量要求(110kV及以上变电站)。 系统参数

接地装置安装检验批质量验收记录

接地装置安装检验批质量验收记录 注:本表内容的填写需依据《现场验收检验批检查原始记录》。本检验批质量验收的规范依据见本页背面。

填写说明 一、填写依据 1 《建筑电气工程质量验收规范》GB50303-2002。 2 《建筑工程施工质量验收统一标准》GB50300-2013。 二、检验批划分 人工接地装置和利用建筑物基础钢筋的接地体单独划分检验批,大型基础可按区块划分成若干个检验批。 三、GB50303-2002规范摘要 主控项目 24.1.1 人工接地装置或利用建筑物基础钢筋的接地装置必须在地面以上按设计要求位置设测试点。 24.1.2 测试接地装里的接地电阻值必须符合设计要求。 24.1.3 防雷接地的人工接地装置的接地干线埋设,经人行通道处埋地深度不应小于lm,且应采取均压措施或在其上方铺设卵石或沥青地面。 24.1.4 接地模块顶面埋深不应小于0.6m,接地模块间距不应小于模块长度的3~5倍。接地模块埋设基坑,一般为模块外形尺寸的1.2~1.4倍,且在开挖深度内详细记录地层情况。 24.1.5 接地模块应垂直或水平就位,不应倾斜设置,保持与原土层接触良好。 一般项目 24.2.1 当设计无要求时,接地装置顶面埋设深度不应小于0.6m。圆钢、角钢及钢管接地极应垂直埋入地下,间距不应小于5m。接地装置的焊接应采用搭接焊,搭接长度应符合下列规定: 1 扁钢与扁钢搭接为扁钢宽度的2倍,不少于三面施焊。 2 圆钢与圆钢搭接为圆钢直径的6倍,双面施焊。 3 圆钢与扁钢搭接为圆钢直径的6倍,双面施焊。 4 扁钢与钢管,扁钢与角钢焊接,紧贴角钢外侧两面,或紧贴3/4钢管表面,上下两侧施焊。 5 除埋设在混凝土中的焊接接头外,有防腐措施。 24.2.2 当设计无要求时,接地装置的材料采用为钢材,热浸镀锌处理,最小允许规格、尺寸应符合表24.2.2的规定。 表24.2.2 最小允许规格尺寸 24.2.3 接地模块应集中引线,用干线把接地模块并联焊接成一个环路,干线的材质与接地模块焊接点的材质应相同,钢制的采用热浸镀锌扁钢,引出线不少于2处。

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

大型地网接地特性参数测试的技术要求

大型接地网特性参数测试的技术要求 摘要:接地装置的状况直接关系到电力系统的安全运行,科学合理地测试接地装置的各种特性参数,准确评估其状况十分重要。目前国内电力系统中接地装置的测试工作比较薄弱,一些关键的技术观念比较模糊,技术手段落后,工作方法上缺乏统一的规范和认识。鉴于新版的DL/T475-2006《接地装置特性参数测量导则》所涵盖的新技术、新观念,特根据当今接地测试技术发展的观念和趋势,结合一些实测案例说明接地装置的特性参数测量必要的技术要求。 关键词:接地装置特性参数变频抗干扰 一、接地网特性测试概述 接地网是由垂直和水平接地极组成的,供发电厂、变电所使用的,兼有泄流和均压作用的水平网状接地装置。大型接地装置是指110KV 以上电压等级变电所或装机容量在200MW以上的火电厂和水电厂的接地装置,或者等效面积在5000㎡以上的接地装置。大型接地装置特性的测试参数有接地阻抗、跨步电位差、接触电位差、电气完整性、场区地表电位剃度、转移电位等六项。除了电气完整性,其它参数为工频特性参数。 DL/T475-2006《接地装置特性参数测量导则》在接地特性参数测试方法上推荐使用三极法和直接测量法;取消了原导则中接地电阻四

极法测试、避雷线分流的处理,以及其他一些在实际中较难把握、很难实现的规定。在输电线路杆塔接地阻抗测试部分中严格规范了钳表法的使用,对于不满足测试条件而获得的数据不能采信。在土壤电阻率测试中增加了四极非等距法的内容。并给出了各项测试结果的参考界定值;在技术观念上强调对接地装置的各项参数全面考核,综合判断,而不是片面强调某一项指标。 在测试仪器技术指标方面也有明确的要求,例如在接地阻抗测试方面:工频大电流法试验电流≦50A,异频法试验电流≦3A,接地阻抗测量值分辨率≧1mΩ,测量电压分辨率≧1mV,测量准确度不低于 1.0级,异频法使用的仪表应具有良好的选频特性等。 二、大型接地网的复杂性 1、在大型接地网中,工频零序电流、谐波电流、运行中的输电线路感应等对接地网特性参数测试存在着很大的干扰。另外空间电磁场、天电辐射、广播通讯辐射、杂散干扰等对测量也有较大的影响。在实际现场就可以验证这些干扰的存在,使用无抗干扰的普通高内阻电压表,按三极法方式接线,测试地网与辅助电压极之间的电压,就会发现表计有一定的电压数值显示,数值大小与布线方式、布线长短关系很大,干扰电压可能是几伏、几十伏甚至几百伏。 2、在接地网的接地阻抗测试中,接地阻抗Z应包括:电阻分量R、电抗分量X和角差Ф。特别是大型接地网的接地阻抗中的电抗分量X有可能大于电阻分量R,因此在DL/T475-2006《接地装置特性参数测量导则》中的“术语定义”将“接地电阻”改为“接地阻抗”。

接地装置介绍

第一章接地装置的工频接地电阻和 冲击接地电阻 第一节工频接地电阻的基本概念 一、接地的意义 在电力系统中,为了工作和安全的需要,常需将电力系统及某些电气设备的某些部分与大地相连接,这就是接地。按其作用,可以分为工作接地、保护接地、防雷保护接地和防静电接地。 二、名词术语 工作接地:也叫系统接地,在电力系统中,为运行需要所设的接地(如中性点直接接地或经其他装置接地等)。 保护接地:也叫安全接地,电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止危及人身和设备的安全而设的接地。 防雷保护接地:为雷电保护装置,如避雷针、避雷线和避雷器等向大地泄放雷电流而设的接地。 防静电接地:为防止静电对易燃、易爆,如易燃油、天然气储藏和管道的危险作用而设的接地。 接地极:埋入地中并直接与大地接触的金属导体,称为接地极。兼作接地极用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建(构)筑物的基础、金属管道和设备,称为自然接地极。 接地线:电气装置、设施的接地端子与接地极连接用的金属导电部分。 接地装置:接地线和接地极的总和。 接地网:由垂直和水平接地体组成的供发电厂、变电所所使用的兼有泄流和均压作用的网格状接地装置。 集中接地装置:为加强对雷电流的散流作用,降低地面电位梯度而敷设的附加接地装置,一般由3—5根垂直地极组成,在土壤电阻率较高的地区,则敷设3~5根放射形水平接地极。 接地电阻:按地极或自然接地极的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。接地电阻的数值等于接地装置对地电压与通过接地极流人地中电流的比值。按通过接地极流人地中工频交流电流求得的电阻,称为工频接地电阻。 三、物理概念 地中有工频电流流散时,工频电流在地中的分布与直流电的分布在原则上是有区别 第1页 的。但是,由于地的电阻率较大,所以在计算接地体附近的电流时,由于感应电动势引起的电压降与电阻降比较起来可以略去不计,故工频电流的接地计算可以用直流的接地计算来代替。根据静电比拟法,直流电场的接点电阻计算可以用相应条件下静电场的电容计算来得到。 由高斯定理,穿过任意闭合表面的电位移矢量等于包围在此表面所限定的空间内的电荷,即

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

全厂接地网参数测试方案

西藏阿里过渡电源项目 全厂接地网特性参数测试方案 批准:贺祥云 审核:肖中林 编写:陈瑜琨史博 葛洲坝集团股份有限公司西藏阿里过渡电源工程施工项目部 二0 一0 年六月二十一日

西藏阿里过渡电源项目 全厂接地网特性参数测试方案 概况 接地是为了保证接地装置内、外发生接地故障时,经接地装置流入地中的最大短路电流,所造成的接地电位升高及地面的电位分布不致于危及人员和设备的安全,将电站范围的接触电位差和跨步电位差限制在安全值之内。 阿里过渡电源接地网由主厂房接地网、综合水池接地网、综合水泵房接地网、燃油泵房接地网、含油污水处理车间接地网等部分组成。 从接地网整体性来看,已完成的接地网已经有效的连为一个整体。整个接地网共敷设接地扁铁3500m埋设接地模块150个,打下钢桩50 根,经计算接地网总面积约为6190 m',最大对角线长度为112 m。 为了检查截流前已完接地工程的施工质量及接地效果,通过对全厂接地装置进行接地电阻、接触电势、跨步电势、接触电压、跨步电压及两台避雷针的接地电阻的测试,以便为后续工程的接地施工提供有关技术参数和决策依据。 本方案编制依据为中华人民共和国国家标准《电气装置安装工程电气试验设备交接试验标准》GB50150。 测试原理 1 、接地电阻的测量:测量接地电阻的方法很多,这里对接地网的接地电阻测试采用的方法是三极法,其测试接线原理图如图所示。 为了便于分析简化计算,把整个接地网视为半球形,设Rg为球 半径(m),流入大地的电流为I (A),则:

根据电场强度 E J ( v/m ) 则距球心x(x > Rg)处所具有的电位为 I I U Edx --------- dx ---- 2 x 2 x 因此电极1使1、2之间所呈现的电位差为 电极3使1、2之间所呈现的电位差为 U 、L 2之间的总电位差为 而接地网的接地电阻实际等于 三极法测接地电阻的原理接线图 在距球心为 x ( m 处球面上电流密度为: 2 — (A/m ) x (V) U 1 L (丄丄) 2 Rg d 12 (V) U2 ― d 23 十)(V) U U 1 U 2 1 d 12 1 d 23 d 13 (V) 则U 、U 之间呈现的电阻 Rg 为 Rg U 1 d 23 1 d 13

一种新型接地线快速接地装置的研制

龙源期刊网 https://www.360docs.net/doc/0618755150.html, 一种新型接地线快速接地装置的研制 作者:张海鹏 来源:《山东工业技术》2019年第13期 摘要:接地线是保障变电工作人员安全的重要措施,而目前变电站所使用的接地线的安 装拆卸耗时较长,本文针对这一问题,研制了一种新型接地线快速接地装置,并在某段10kV 母线上进行了安装测试,结果表明,新型接地装置能够大幅缩减接地线安装时间,提升工作效率,减少设备停运时间,提高电网供电可靠性,具有较好的应用前景。 关键词:接地线;变电站;装设时间;电气五防 DOI:10.16640/https://www.360docs.net/doc/0618755150.html,ki.37-1222/t.2019.13.163 0 引言 随着社会经济的快速发展,电能已成为人们日常生活中必不可少的重要能源[1]。为保证 向用户稳定可靠的输送电能,电力工作人员需要定期对电网设备进行停电检修维护,装设接地线能够有效避免线路倒送电引起人身触电,保障工作人员的人身安全,是将设备转至检修状态过程中的必不可少的重要步骤[2]。随着社会用电量的不断增加,变电站设备也不断增加,在 进行大型转检修操作时需要大量装设接地线,然而目前变电站通常利用镀锌螺丝将接地线的鸭嘴型接线端固定到接地桩上,该装设过程耗时较长,直接影响着设备停送电操作时间和供电可靠性[3-4]。本文目前接地线鸭嘴型接线端装设(拆除)时间长、工作效率低的缺点,设计了一种新型接地线快速接地端,能够大幅缩短接地端的装设(拆除)时间,提高工作效率和经济效益。 1 新型接地线快速接地装置的工作原理 为保证接地装置的可靠性,并有效减少接地线接地端的安装时间,本文设计的接地线快速接地端由接地装置、接地线导电杆和紧固装置等3个部分组成,结构示意图如图1所示,其中: ①为D型导电孔,能够起到限位作用,防止导电杆插入接地装置后转动。 ②为导电杆的尾部,通过压接的方法与多股软铜线相连接。 ③为电气五防锁插孔,防止恶性误操作。 ④为紧固装置锁盖,将弹簧固定到紧固装置内,中间有通孔,直径比导电杆尾部直径稍大,能够允许导电杆尾部穿过。

接地装置说明书

接地装置试验 1.适用范围 本作业指导书适用于变电站接地装置交接试验。 2.引用文件 电业安全工作规程 DL/T 1168-2013电力设备预防性试验规程 DL/T 621-199 设备制造厂家技术要求 该设备历年的试验数据 3.试验前准备工作安排

试验接线 一)电气完整性测试 电气完整性测试试验接线如图1所示。 图1电气完整性测试试验接线 二)接地阻抗测试 测试变电站接地装置工频特性参数的电流极应布置得尽量远,接地阻抗测试试验接线如图2所示。一般电流极与变电站的d CG应为变电站对角线长度D的4—5倍;当远距离放线有困难时,在土壤电阻率均匀地区d CG可取2D,在土壤电阻率不均匀地区d CG可取3D. 图2接地阻抗测试试验接线

G—被试接地装置;D—被试接地装置最大对角线长度;C—电流极; P—电压极;d CG—电流极与被试装置边缘的距离;d—电压极间隔; x—电压极与被试装置边缘的距离; 试验步骤 一)电气完整性测试 1)将测试仪接地,测试仪正极电流线接参考点接地引下线上端,正极电压线接下端,测试仪负极电流线接被测点接地引下线上端,负极电压线接下端; 2)检查试验接线正确,确保接触良好,工作人员与施加电压部位保持足够安全距离,操作人员征得试验负责人许可后,接通测试仪电源; 3)按测试键测试,待充电电流及测试数据稳定后记录试验结果; 4)按复位键,待仪器放电完毕后断开电源,操作人员向试验负责人汇报试验结束后,将测试线换至另外测试点测试,重复上述操作直至所有测试点测试完成。 二)接地阻抗测试 1)检查试验接线正确后,工作人员与施加电压部位保持足够安全距离,操作人员征得试验负责人许可后,接通仪器电源,选择接地阻抗测试、直线法测试,按测量键开始测量; 2)测试数据稳定后,按复位键并记录测试结果; 3)断开电源,汇报工作负责人,将电位极沿测量用电流极与被测接地装置之间连接线方向移动两次,每次移动的距离约为d CG 的5%,重复上述操作,三次测试值之间的相对误差不超过5%即可。 试验标准 一)电气完整性测试 1)状况良好的设备测试值在50mΩ以下; 2)测量结果在50mΩ—200mΩ之间,结果尚可以接受,重要设备应安排复测和检查处理。 3)测量结果在200mΩ—1Ω之间,设备接地不佳,应尽快查明原因处理。 4)测量结果在1Ω以上,设备位于主地网相连接,应尽快查明原因处理。独立避雷针的测试值应在500mΩ以上。 5)表69 接地装置例行试验项目

《接地装置工频特性参数的测量导则》DL475-92

接地装置工频特性参数的测量导则DL475—92 中华人民共和国电力行业标准 接地装置工频特性参数的测量导则DL475—92 中华人民共和国能源部1992-11-03 批准1993-04-01 实施 1 主题内容与适用范围 本导则规定了接地装置工频特性参数的测量方法以及减小或消除某些因素对测量结果影响的方法。 本导则适用于发电厂、变电所和杆塔等接地装置工频特性参数的测量,拟建发电厂、变电所和杆塔的场地土壤电阻率的测量。本导则也适用于避雷针和微波塔等其它接地装置工频特性参数的测量。 2 对接地装置工频特性参数测量的基本要求 2.1 在一般情况下尽量用本导则中推荐的方法测量接地装置的工频特性参数,如在测量中遇到困难时,可以由有关单位的负责人决定采用行之有效的方法测量。 2.2 发电厂、变电所和杆塔等接地装置的工频特性参数尽量在干燥季节时测量,而不应在雨 后立即测量。 2.3 通常应采用两种或两种以上电极布置方式(包括改变电极布置的方向)测量接地装置的工频特性参数。有时,还需要采用不同的方法测量,以互相验证,提高测量结果的可信度。 2.4 如条件允许,测量回路应尽可能接近输电线接地短路时的电流回路。 3 发电厂和变电所接地装置的工频接地电阻、接触电压和跨步电压的测量 3.1 发电厂和变电所接地装置的工频接地电阻的测量 3.1.1 测量原理 接地装置工频接地电阻的数值,等于接地装置的对地电压与通过接地装置流入地中的工频电流的比值。接地装置的对地电压是指接地装置与地中电流场的实际零位区之间的电位差。图1 是测量工频接地电阻的电极布置和电位分布的示意图,图上点P 是实际零电位区中的一点,实际零电位区是指沿被测接地装置与测量用的电流极C 之间连接线方向上电位梯度接近于零的区域。实际零电位区范围的大小,与测量用的电流极离被测接地装置的距离dGC 的大小、通过被测接地装置流入地中测试电流的大小以及测量用的电压表的分辨率等因素有关。 用电压表和电流表分别测量接地装置G 与电压极P 之间的电位差UG 和通过接地装置流入地中的测试电流I,由UG 和I 得到接地装置的工频接地电阻 (1) 3.1.2 测量工频接地电阻的三极法 三极法的三极是指图2 上的被测接地装置G,测量用的电压极P 和电流极C。图中测量 用的电流极C和电压极P离被测接地装置G边缘的距离为dGC=(4~5)D 和dGP=(0.5~0.6)dGC,D 为被测接地装置的最大对角线长度,点P 可以认为是处在实际的零电位区内。如果想较准确地找到实际零电位区,可以把电压极沿测量用电流极与被测接地装置之间连接线方向移动 三次,每次移动的距离约为dGC 的5%,测量电压极P 与接地装置G 之间的电压。如果电压 表的三次指示值之间的相对误差不超过5%,则可以把中间位置作为测量用电压极的位置。 图1 测量接地装置工频接地电阻的 电极布置和电位分布示意图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; D—被测接地装置的最大对角线长度 图2 三极法的原理接线图 (a)电极布置图;(b)原理接线图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; E —测量用的工频电源;A—交流电流表;V—交流电压表;

接地装置特性测试系统

北京市避雷装置安全检测机构管理办法 北京市劳动局北京市消防局 第一章总则 第一条为加强对本市避雷装置安全检测机构的管理,确保避雷装置检测质量,根据国家和本市有关规定,制定本办法。 第二条北京市劳动局、北京市消防局是本市避雷装置安全检测机构的主管机关,负责本市避雷装置安全检测机构的认证、年审和监督管理工作。 第三条北京市气象局归口管理本市防雷设施的技术检测工作。 第四条经北京市劳动局、北京市消防局审查合格的各避雷装置安全检测机构,应根据国家有关规定、标准独立地开展检测工作,具有第三方公正地位。其行政隶属关系不变。 第二章审查认可 第五条所有检测机构均需取得市劳动局、市消防局共同审查合格颁发的《北京市避雷装置安全检测许可证》(以下简称《许可证》)后方可开展检测工作。 第六条取得《许可证》的条件: (一)具有固定办公场所; (二)具有规定技术职称的专业、专职技术人员; (三)具有与检测级别相适应的仪器设备; (四)所有检测人员须经过专门培训并考核合格; (五)具有完善的各项规章管理制度,包括: 1.年工作计划,总结、汇总、报盘制度; 2.各类人员的技术责任制和岗位责任制; 3.避雷装置的检测、复检和质量判定制度; 4.检测报告的填写、审核和批准制度; 5.检测用仪器的使用、保管、维修和计量校准制度,并有完善的操作规程; 6.原始数据和其它技术资料的档案管理及保密制度; 7.检测事故的分析报告制度; 8.受检单位对检测结果提出异议的申报程序和处理制度; 9.各类人员的培训进修、业务考核制度; 10.勤政、廉政制度。 第七条《许可证》有效期为三年,有效期满前三个月,该检测机构应向市劳动局、市消防局提出换证申请。审查合格者,换发新的《许可证》;审查不合格者,限期三个月整改后重新对其进行审查,仍不合格者,取消其检测资格。 第八条《许可证》每年进行一次年审。检测单位有下列情况者,将不予进行年审,并取消其下一年度检测资格。 (一)超出标准的检测范围和等级进行检测的; (二)检测中弄虚作假,不按规程和技术规范进行检测的; (三)不遵守报告制度,不按时报盘,报工作总结,不接受抽查复检的; (四)未按时完成当年检测率的; (五)经抽检,检测质量不符合要求的; (六)超出收费标准乱收费的; (七)转借、转租《许可证》的。

接地特性测试

接地装置测试 一、概述 接地装置的特性参数 接地装置的电气完整性、接地阻抗、场区地表电位梯度、接触电位差、跨步电位差、转移电位等参数或指标。除了电气完整性,其他参数为工频特性参数。 在GB50150-2006中规定电气设备和防雷设施的接地装置的试验项目应包括下列内 容: 1、接地网电气完整性测试; 2、接地阻抗; 在DLT475-2006接地装置特性参数测量导则中规定:大型接地装置的特性参数测试应该包含以下内容:电气完整性测试,接地阻抗测试,场区地表电位梯度测试,接触电位差、跨步电位差及转移电位的测试。在其他接地装置的特性参数测试中应尽量包含以上内容。柳树颧要求测量场区地表电位梯度。在此重点介绍电气完整性测试、接地阻抗测试及场区地表电位梯度测试,其他内容简要介绍。 二、名词解释 接地极 埋入地中并直接与大地接触的金属导体。 接地线 电力设备应接地的部位与地下接地极之间的金属导体,也称为接地引下线。 接地装置 接地极与接地线的总和。 大型接地装置

110kV及以上电压等级变电所的接地装置,装机容量在200MW以上的火电厂和水电厂的接地装置,或者等效面积在5000m2以上的接地装置。 接地网 由垂直和水平接地极组成的,供发电厂、变电所使用的,兼有泄流和均压作用的水 平网状接地装置。 接地装置的电气完整性 接地装置中应该接地的各种电气设备之间,接地装置的各部分及与各设备之间的电气连接性,即直流电阻值,也称为电气导通性。在GB50150-2006中规定,直流电阻 值不应大于0.2Ω。 接地阻抗 接地装置对远方电位零点的阻抗。数值上为接地装置与远方电位零点间的电位差,与通过接地装置流入地中的电流的比值。按冲击电流求得的接地阻抗称为冲击接地阻抗;按工频电流求得的接地阻抗称为工频接地阻抗。 场区地表电位梯度 当接地短路电流或试验电流流过接地装置时,被试接地装置所在的场区地表面形成 的电位梯度。 跨步电位差 当接地短路电流流过接地装置时,地面上水平距离为1.0m的两点间的电位差。 接触电位差 当接地短路电流流过接地装置时,在地面上距设备水平距离1.0m处与沿设备外壳、架构或墙壁离地面的垂直距离1.8m处两点间电位差。 电流极

相关文档
最新文档