SD卡工作原理介绍和工作原理图

SD卡工作原理介绍和工作原理图
SD卡工作原理介绍和工作原理图

大容量SD卡在海洋数据存储中的应用

本设计使用8 GB的SDHC(High Capacity SD Memory Card,大容量SD存储卡),为了方便卡上数据在操作系统上的读取,以及数据的进一步分析和处理,在SDHC卡上建立了FAT32文件系统。

海洋要素测量系统要求数据存储量大、安全性高,采用可插拔式存储卡是一种不错的选择。目前,可插拔式存储卡有CF 卡、U盘及SD卡。CF卡不能与计算机直接通信;U盘需要外扩接口芯片才能与单片机通信,增加了外形尺寸及功耗;而SD卡具有耐用、可靠、安全、容量大、体积小、便于携带和兼容性好等优点,非常适合于测量系统长期的数据存储。

1 SD卡接口的硬件设计

STM32F103xx增强型系列是意法半导体公司生产的基于Cortex-M3的高性能的32位RISC内核,工作频率为72 MHz,内置高速存储器(128 KB的闪存和20 KB的SRAM),以及丰富的增强I/O端口和连接到2条APB总线的外设。STM32F103xx系列工作于-40~+105℃的温度范围,供电电压为2.0~3.6 V,与SD卡工作电压兼容,一系列的省电模式可满足低功耗应用的要求。

SD卡支持SD模式和SPI模式两种通信方式。采用SPI模式时,占用较少的I/O资源。STM32F103VB包含串行外设SPI接口,可方便地与SD卡进行连接。通过4条信号线即可完成数据的传输,分别是时钟SCLK、主机输入从机输出MISO、主机输出从机输入MOSI和片选CS。STM32F103VB与SD卡卡座的接口电路如图1所示。

SD卡的最高数据读写速度为10 MB/s,接口电压为2.7~3.6 V,具有9个引脚。SD卡使用卡座代替传输电缆,减少了环境干扰,降低了出错率,而且1对1传输没有共享信道的问题。SD卡在SPI模式下各引脚的定义如表1所列。

2 SD卡接口的软件设计

本设计采用STM32F103VB自带的串行外设SPI接口与SD卡进行通信,这里只介绍SPI模式的通信方式。

2.1SD卡的读写

先对STM32F103VB的SPI_CRl(SPI控制寄存器)以及SPI_SR(SPI状态寄存器)进行初始化设置,使能SPI并使用主机模式;同时设置好时钟,在时钟上升沿锁存数据。SPI通道传输的基本单位是字节,由STM32F103VB控制其和SD卡之间的所有通信。

要读写SD卡,首先要对其进行初始化。初始化成功后,即可通过发送相应的读写命令对SD卡进行读写。SD卡的读写流程如图2所示。

2.2 SD1.x与SD2.0标准的识别

由于大容量SDHC的出现,SD1.x满足不了SDHC的容量要求,标准已经升级为SD2.0。但也因此出现了许多电子设备无法驱动大容量SD卡的情况,如何识别SD1.x与SD2.0就显得尤为重要。SD2.0的SPI模式初始化流程如图3所示。

判断是否为SD2.0卡,CMD8(SD2.0新增的命令)是关键。若卡是SD2.0,则发送CMD8将会返回有效响应;若是SD1.x,则返回非法响应,这样就可以识别SD卡的类型。

SD1.x与SD2.0的最大不同在于命令地址的表示。SD1.x的地址单位是字节,而SD2.0的地址单位是扇区,地址仍然采用32位4个字节来表示。因此在读写操作时应该根据不同的卡对地址进行相应的处理,若是SD1.x则写入字节地址,若为SD2.0则写入扇区地址。

3 FAT32文件系统目前有3种FAT文件系统:FAT12、FAT16和FAT32。它们的区别在于文件分配表(File Allocation Table,FAT)中每一表项的大小(也就是所占的位数):FAT12为12位,FATl6为16位,FAT32为32位。本设

计选择FAT32文件系统。由于文件存储在硬盘上占用的存储器空间以簇为最小单位,FAT32文件系统不适合管理容量低于512 MB的存储器。簇如果太大,存储小文件会浪费大量的存储空间;如果太小,FAT表会变大,不方便管理。综合考虑,FAT32每簇大小为4 KB。

3.1 FAT32文件系统结构

FAT32文件系统可以分为以下几部分;保留区(reserved

region),存放FAT文件系统的重要参数和引导程序;FAT区

(FAT region),记录簇(cluster)的使用情况;根目录区(root

directory region),记录根目录信息,FAT32文件系统舍弃了这

个区,根目录区可以指定为任意一个簇;文件目录数据区(file

and directory data region),是各种文件数据实际存放的区域。

保留区中的BPB表从扇区0偏移11个字节开始,共占25字

节。表2是格式化为FAT32文件系统的8 GBSD卡首扇区中

读出的BPB参数内容。

逻辑加密存储卡芯片AT88SC1604卡的应用

摘要:本文介绍了目前应用较为广泛的AT88SC1604逻辑加密卡的特点和工作原理,同时给出了通过单片机控制操作IC卡的的应用实例及程序。

前言

IC卡按结构划分,可分为存储器卡和微处理器卡(CPU card)两大类。逻辑加密卡与普通存储卡相比,内部结构较复杂,其存储区可以分成卡片设置区和应用区。卡片设置区内存放与卡片厂商及发卡者相关代码和卡片密码;应用区又可以根据需要分为不同的分区。逻辑加密卡的安全性相对较高,体现在:卡片设立主密码、每个应用分区具有各自独立的操作密码。逻辑加密卡主要控制作用是:对数据存储区开放/关闭的控制;对数据存储区读/写的控制;对数据存储区擦除操作的控制以及对密码校验和错误次数计数及锁闭功能控制。

AT88SC1604卡的工作原理

AT88SC1604是由美国ATMEL公司设计的逻辑加密存储卡芯片。它具有15704位的存储容量,是目前逻辑加密存储卡中容量较大的一种产品芯片。

芯片特点

(1) AT88SC1604芯片属于单存储器多逻辑分区结构。主存储器除划分了特定的标志数据区和控制数据区之外,还将应用数据区分成四个完全隔离的子区,并在每个子区中配备了各自的读、写控制标志和写入/擦除密码以及密码输入错误计数器等逻辑控制。

(2) 芯片为串行传输方式,并满足ISO7816-3同步传输协议。

(3)芯片采用低功耗的CMOS工艺制造,每字位的读取时间为 s,写周期为5ms。

(4) 芯片内部的存储单元具有至少10000次的擦除/改写循环次数。数据保存期为10年。

例谈几种常见加速器的工作原理

例谈几种常见加速器的工作原理 浙江奉化中学 王军明 加速器的全称是“带电粒子加速器”,顾名思义,它是利用电磁场加速带电粒子的装置。带电粒子包括电子、质子、α粒子和各种离子。加速器将电磁能量转移给带电粒子,使带电粒子速度加快,能量增高。自1931年首台静电加速器问世以来,这种作为探索原子核结构而发展起来的粒子加速器得到迅速的发展。加速器类型已增加到20多种。数量已达五千多台。按粒子在加速过程中的轨迹和加速原理相结合的分类方法:可分为高压加速器、感应加速器、直线加速器和回旋加速器。04年高考又把“回旋加速器”列入考试大纲,所以本文结合例题简单谈谈这几类加速器的工作原理。 一、高压加速器 高压加速器是利用直流电场加速带电粒子的加速器。这类加速器结构简单,造价低廉。 例1、串列加速器是用来产生高能离子的装置。如图(一)中虚线框内为其主体的原理示意图,其中加速管的中部b 处有很高的正电势U,a 、c 两端均有电极接地(电势为零)。现 将速度很低的负一价碳离子从a 端输入,当离子到达b 处时, 可被设在b 处的特殊装置将其电子剥离,成为n 价正离子, 而不改变其速度大小,这些正n 价碳离子从c 端飞出后进入 一与其速度方向垂直的、磁感应强度为B 匀强磁场中,在磁 场中做半径为R 的圆周运动,已知碳离子的质量 kg m 26100.2-?=,v U 5105.7?=,,2,50.0==n T B 基 元电荷c e 19106.1-?=,,求R. 解析:设碳离子到达b 处时的速度为1v ,从c 端射出时的速度为2v ,由能量关系得eU mv =2121 ……①,neU mv mv +=21212221……②,进入磁场后,碳离子做圆周运动,可得R v m B nev 222=……③ , 由以上三式可得 e n mU nB R )1(21+=……④ , 由④式及题给数值可得R=0.75m 二、感应加速器 例2,电子感应加速器是利用变化磁场产生的电场加速电子的。在圆形磁铁两极之间有一环形真空管,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速。被加速的电子同时在洛仑兹力的作用下沿圆形轨道运动。在10-1ms 内电子已经能获得很高的能量了。最后把电子引入靶室,进行实验工作。北京正负电子对撞机的环行周长为=240m,加速后电子在环中做匀速圆周运动的速率接近光速,其等效电流大小I=8mA,则环中约有多少个电子在运行? 解析:一周内每个电子通过每一截面一次,设电子个数为N,周期为T.则,T Ne I =c L T =,

电脑还原原理解析

要想实现硬盘还原,需要做到两个步骤:第一步是分析扇区,还原产品通过分区表和文件分配表,获取当前硬盘哪些扇区是已经使用过的,哪些扇区是暂未使用的。第二步是拦截读写,还原产品通过还原驱动程序拦截硬盘读写驱动,并改变系统对硬盘的读写,实现对硬盘已经存在的数据的保护。 举个简单的例子。Windows要将一段内容写入到硬盘的第100扇区,这时还原驱动会将它拦截下来,通过还原算法将这段内容转而写入到了硬盘中空闲的第1000扇区,并将这个扇区映射关系(100→1000)记录下来,这样实际上100扇区原先的内容并未改变。之后当Windows要读取100扇区时,还原驱动通过查询将1000扇区的内容提交给Windows,Windows则认为它成功的从100扇区得到了想要的数据。这样对用户甚至Windows来说硬盘随时都在发生着改变,然而实际上硬盘原有的数据都没有改变。当Windows重新启动后,包括这个100→1000在内的所有记录都被清除了,在用户和Windows看来,硬盘没有发生任何变化,数据被还原了。 目前还原方式不外乎硬件还原和软件还原两种。 那么还原卡和还原软件有什么区别呢?我们一一分析。 现在流行的还原软件大致可分为两种,一种是以冰点为代表的纯驱动还原软件。这一类的还原软件只有一个驱动程序,在Windows启动过程中加载。这个驱动程序不仅要实现对硬盘驱动的拦截,它还要在程序加载时完成对硬盘已使用扇区和未使用扇区的分析。它把还原的两个步骤结合到了一个驱动程序当中。它还舍弃了从Windows开始启动后,到还原驱动程序启动前这段时间Windows对硬盘的读写(事实上这段时间几乎没有写操作)。这是实现还原最简单的方法,简单就会存在安全性的问题,我们后面再分析。 第二种是以还原精灵为代表的类还原卡软件。顾名思义,它们和还原卡很类似,它们的特点是通过修改硬盘的主引导记录(MBR)来启动还原。启动还原的代码是在安装时写入到硬盘中去的。我们知道,硬盘都是通过主引导记录来启动的。还原精灵将硬盘原有的主引导记录保存下来,并改成自己的主引导程序。这样当硬盘启动时,系统就会首先加载还原精灵的主引导程序。分析扇区这一步就是在这个时候完成的。而同时还原精灵可以做很多事情,包括分析硬盘扇区,还原,转储(又叫更新硬盘数据)等等,这让它也能实现还原卡的诸多功能。当还原精灵做完了这些事后,就去加载硬盘原有的主引导记录,开始启动Windows。然后还是通过驱动程序,完成对硬盘读写的拦截。 还原卡的工作原理和还原精灵类似,也是分两部分,只不过它的启动是通过插在主板PCI 槽上的还原卡来实现的。这种方式启动时间更早,而且也无需修改硬盘的引导区,相比之下更加安全。还原卡在启动时,同样可以实现转储等功能,甚至还能实现网络对拷,硬盘复制等附加功能,这些对于拥有多台相同型号电脑的机房来说,非常实用。 了解了这些还原产品的原理后,我们可以对它们做一番比较。(考虑到市场上还原产品很多,各有特点和附加的功能,所以我们只针对还原相关的功能,对以上三类还原产品做比较)。 功能比较 纯驱动还原软件的功能都很简单,只有开机还原,和开放还原两个功能。这和它的工作原理有关。没有引导程序,让它无法执行转储等类似于整理磁盘的功能。当还原驱动处于工作状态时,就是开机还原;当还原驱动停止工作时,就是开放还原。 类还原卡软件,顾名思义和还原卡很类似。它除了有开机还原和开放还原的功能外,还

非接触式IC卡(射频卡或感应卡)原理

非接触式IC卡(射频卡或感应卡)原理 2007年10月07日星期日下午 07:26 简介 非接触式IC卡,即射频卡或感应卡,它成功地将射频识别技术结合起来,解决了无源和免接触这一难题,是电子器件领域的一大突破。 非接触卡内含有唯一的独立的卡号,使用时,技术人员需在读卡器有效读区内(一般5-10CM)将卡片轻轻一晃,便将卡内信息输入读器内,实现考勤、收费管理。 非接触式IC卡的工作原理如下: 卡片的电气部分由一个元件和AISC组成,没有其他的外部器件,卡片中的天线是只有线圈,很适合封状到ISO卡片中。ASIC由一个高速(106KB波特率)的接口,一个控制单元和一个810位EEPROM组成。以MIAREI为例,读卡器向IC发一组固定频率的电磁波,卡内有一个IC串联谐振电路,其频率与读写器的频率相同,这样便产生电磁共振,从而使电容内有了电荷,在电容的另一端接有一个单向通的电子泵,将电容内的电荷送到另一个电容内储存,当储存积累的电荷达到2V时,此电源可作电源为其他电路提供工作电压,将卡内数据发射出去或接收读写器的数据。 一、非接触式IC卡 非接触式IC卡又称射频卡,由IC芯片、感应天线组成,封装在一个标准的PVC卡片内,芯片及天线无任何外露部分。是世界上最近几年发展起来的一项新技术,它成功的将射频识别技术和IC卡技术结合起来,结束了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破.卡片在一定距离范围(通常为5—10mm)靠近读写器表面,通过无线电波的传递来完成数据的读写操作。 1. 非接触性IC卡与读卡器之间通过无线电波来完成读写操作。 二者之间的通讯频为13.56MHZ。非接触性IC卡本身是无源卡,当读写器对卡进行读写操作是,读写器发出的信号由两部分叠加组成:一部分是电源信号,该信号由卡接收后,与本身的L/C产生一个瞬间能量来供给芯片工作。另一部分则是指令和数据信号,指挥芯片完成数据的读取、修改、储存等,并返回信号给读写器,完成一次读写操作。读写器则一般由单片机,专用智能模块和天线组成,并配有与PC的通讯接口,打印口,I/O口等,以便应用于不同的领域。 2. 非接触性智能卡内部分区 非接触性智能卡内部分为两部分:系统区(CDF)用户区(ADF) 系统区:由卡片制造商和系统开发商及发卡机构使用。 用户区:用于存放持卡人的有关数据信息。 3. 与接触式IC卡相比较,非接触式卡具有以下优点:

多联机系统介绍及工作原理

多联机系统介绍及工作原理 标签: 中央空凋系统多联机数码涡旋蒸发式换热器 多联机俗称"一拖多",指的是一台室外机通过配管连接两台或两台以上室内机,室外侧采用风冷换热形式、室内侧采用直接蒸发换热形式,多联机是一种一次制冷剂空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求,多联机系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。目前多联机系统在中小型建筑和部分公共建筑中得到日益广泛的应用。 1多联机系统的特点 多联机与传统的中央空凋系统相比,具有以下特点: 优点: ①节约能源、运行费用低、噪音低;②建筑空间小、使用方便、可靠性高、不需机房、无水系统等;③控制先进,运行可靠,维修方便;④机组适应性好,制冷制热温度范围宽;⑤具有设计安装方便、布置灵活多变,不受开关机时段限制,每个房间使用时间灵活;⑥免费维护,使用寿命长,机组故障率极低,基本上是自我调节和诊断,不需专门的维护,而且室外机的使用寿命长达30年,从而大大的节省了维护费。 缺点: ①新风问题需特殊处理; ②室内机匹配有要求限制; ③制冷剂接头多,易渗漏; 2多联机技术 多联机为了达到节能的目的,通过对制冷工质流量的有效控制实现压缩机和系统的变容量运行。目前,比较成熟的技术有三种:一类是变频多联机技术;第二类则是数码涡旋多联机技术;还有一种是智能多联机技术。 (1)变频多联机技术 变频多联机技术概况 变频多联机技术是指单管路一拖多空间热泵系统的室外主机调节输出能力方式:①室外主机

加速器原理总结

加速器原理总结 The Standardization Office was revised on the afternoon of December 13, 2020

加速器原理总结 第一章:绪论 1、加速器的分类: 1) 按加速粒子的种类分: ①电子加速器;②离子加速器;③全粒子加速器. 2) 按粒子运动轨道形状分: ①直线加速器;②回旋加速器;③环形加速器. 3) 按加速电场的种类分 ①高压;②感应;③高频共振加速器; 2、加速器束流品质 (1)粒子的品种(电子、离子、全粒子) (2)束流能量及可调范围; (3)束流的能散度:E E ? (4)束流强度及时间特性:I,直流束或脉冲束。 (5)束流的发射度: ' (,) S r r ε π =() mm mrad ? 3、粒子运动参数的相对论表达式 相对速度:v c β= 粒子质量: m= 粒子能量:

2 0mc ε=; 22 mc ε== = 001)W εεε=-=- 2 0() w P mv m c mc c c βεβ β+==== 由:22 mc ε== = 1 2 220 ()βεεε=- ? 1112222 2 00001122000111()[()()][()]11 [(2)][(2)]P w c c c w w w c c εεεεεεεεεεεε=-=-+=+=-+=+ 第二章 带电粒子的产生→电子枪和离子源 1、电子枪-基本结构和工作原理 (1)热发散电子枪的结构及工作原理 (2)场致式电子枪的结构及工作原理 2、离子源-基本结构和工作原理 (1)高频离子源的结构及工作原理; (2)双等离子源的结构及工作原理; (3)ECR 离子源的结构及工作原理. (4)离子源中产生等离子体的基本过程:电离、离解过程;复合过程;动态平衡。 3、离子源的束流品质 (1)束流强度; (2)束流的发射度;

智能卡的操作系统COS详细介绍

智能卡操作系统COS详解

随着Ic卡从简单的同步卡发展到异步卡,从简单的EPROM卡发展到内带微处理器的智能卡(又称CPU卡),对IC卡的各种要求越来越高。而卡本身所需要的各种管理工作也越来越复杂,因此就迫切地需要有一种工具来解决这一矛盾,而内部带有微处理器的智能卡的出现,使得这种工具的实现变成了现实。人们利用它内部的微处理器芯片,开发了应用于智能卡内部的各种各样的操作系统,也就是在本节将要论述的COS。COS的出现不仅大大地改善了智能卡的交互界面,使智能卡的管理变得容易;而且,更为重要的是使智能卡本身向着个人计算机化的方向迈出了一大步,为智能卡的发展开拓了极为广阔的前景。 1 、COS概述 COS的全称是Chip Operating System(片内操作系统),它一般是紧紧围绕着它所服务的智能卡的特点而开发的。由于不可避免地受到了智能卡内微处理器芯片的性能及内存容量的影响,因此,COS在很大程度上不同于我们通常所能见到的微机上的操作系统(例如DOS、UNIX 等)。首先,COS是一个专用系统而不是通用系统。即:一种COS一般都只能应用于特定的某种(或者是某些)智能卡,不同卡内的COS一般是不相同的。因为COS一般都是根据某种智能卡的特点及其应用范围而特定设计开发的,尽管它们在所实际完成的功能上可能大部分都遵循着同一个国际标准。其次,与那些常见的微机上的操作系统相比较而言,COS在本质上更加接近于监控程序、而不是一个通常所谓的真正意义上的操作系统,这一点至少在目前看来仍是如此。因为在当前阶段,COS所需要解决的主要还是对外部的命令如何进行处理、响应的问题,这其中一般并不涉及到共享、并发的管理及处理,而且就智能卡在目前的应用情况而言,并发和共享的工作也确实是不需要。COS在设计时一般都是紧密结合智能卡内存储器分区的情况,按照国际标准(ISO/IEC7816系列标准)中所规定的一些功能进行设计、开发。但是由于目前智能卡的发展速度很快,而国际标准的制定周期相对比较长一些,因而造成了当前的智能卡国际标准还不太完善的情况,据此,许多厂家又各自都对自己开发的COS作了一些扩充。就目前而言,还没有任何一家公司的COS产品能形成一种工业标准。因此本章将主要结合现有的(指1994年以前)国际标准,重点讲述COS的基本原理以及基本功能,在其中适当地列举它们在某些产品中的实现方式作为例子。 COS的主要功能是控制智能卡和外界的信息交换,管理智能卡内的存储器并在卡内部完

射频系统组成和工作原理

系统组成和工作原理 最基本的RFID系统由三部分组成: 1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。 2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。 3. 天线:在标签和读取器间传递射频信号。 有些系统还通过阅读器的RS232或RS485接口与外部计算机(上位机主系统)连接,进行数据交换。 系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。 在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接口原理图如图1所示。

阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的命令;控制与射频卡的通信过程(主-从原则);信号的编解码。对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。 射频识别系统的读写距离是一个很关键的参数。目前,长距离射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。影响射频卡读写距离的因素包括天线工作频率、阅读器的RF输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的Q值、天线方向、阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的40%~80%。

硬盘保护卡的工作原理

硬盘保护卡 硬盘保护卡、硬盘还原卡也称硬盘保护卡,它主要的功能就是还原硬盘上的数据。每一次开机时,硬盘保护卡总是让硬盘的部分或者全部分区能恢复先前的内容。任何对硬盘受保护的分区的修改都无效,这样就起到了保护硬盘数据的内容。硬盘保护卡的原理简单来讲就是它接管对硬盘进行读写操作的一个INT13中断,保护卡在系统启动的时候首先用它自己的程序接管INT13中断地址。这样,只要是对硬盘的读写操作都要经过保护卡的保护程序进行保护性的读写。也就是先将FAT文件分配表、硬盘主引导区、CMOS信息、中断向量表等信息都保存到保护卡内的临时储存单元中。 纠错编辑摘要 目录 ? 1 概述 ? 2 安装 ? 3 注意事项 ? 4 安全性 ? 5 选择 硬盘保护卡 还原卡的主体是一种硬件芯片,插在主板上与硬盘的MBR(主引导扇区)协同工作。大部分还原卡的原理都差不多,其加载驱动的方式十分类似DOS下的引导型病毒:接管BIOS的INT13中断,将FAT、引导区、CMOS信息、中断向量表等信息都保存到卡内的临时储存单元中或是在硬盘的隐藏扇区中,用自带的中断向量表来替换原始的中断向量表;再另外将FAT信息保存到临时储存单元中,用来应付我们对硬盘内数据的修改;最后是在硬盘中找到一部分连续的空磁盘空间,然后将我们修改的数据保存到其中。 硬盘保护卡在学校的机房管理中占有很重要的地位,基本上达到了“一卡无忧”的目标,使用了硬盘保护卡后极大的减少了机房的维护,基本无需担心病毒、误操作等问题。当然,如果硬盘发生了物理性损坏,硬盘保护卡是无能为力的。在教育、科研、设计、网吧等单位使用较多。它可以让电脑硬盘在大多情况下非物理损坏,恢复到最初的样子。换句话说,不管是病毒、误改、误删、故意破坏硬盘的内容等,都可以轻易地还原。

IC卡和ID卡的基本常识

IC卡和ID卡的基本常识 一、非接触式IC卡 非接触式IC卡又称射频卡,由IC芯片、感应天线组成,封装在一个标准的PVC卡片内,芯片及天线无任何外露部分。是世界上最近几年发展起来的一项新技术,它成功的将射频识别技术和IC卡技术结合起来,结束了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破.卡片在一定距离范围(通常为5—10mm)靠近读写器表面,通过无线电波的传递来完成数据的读写操作。 1. 非接触性IC卡与读卡器之间通过无线电波来完成读写操作。二者之间的通讯频为13.56MHZ。非接触性IC卡本身是无源卡,当读写器对卡进行读写操作是,读写器发出的信号由两部分叠加组成:一部分是电源信号,该信号由卡接收后,与本身的L/C产生一个瞬间能量来供给芯片工作。另一部分则是指令和数据信号,指挥芯片完成数据的读取、修改、储存等,并返回信号给读写器,完成一次读写操作。读写器则一般由单片机,专用智能模块和天线组成,并配有与PC的通讯接口,打印口,I/O口等,以便应用于不同的领域。 2. 非接触性智能卡内部分区 非接触性智能卡内部分为两部分:系统区(CDF)用户区(ADF) 系统区:由卡片制造商和系统开发商及发卡机构使用。 用户区:用于存放持卡人的有关数据信息。 3. 与接触式IC卡相比较,非接触式卡具有以下优点: ⑴可靠性高非接触式IC卡与读写器之间无机械接触,避免了由于接触读写而产生的各种故障。例如:由于粗暴插卡,非卡外物插入,灰尘或油污导致接触不良造成的故障。 此外,非接触式卡表面无裸露芯片,无须担心芯片脱落,静电击穿,弯曲损坏等问题,既便于卡片印刷,又提高了卡片的使用可靠性。 ⑵操作方便 由于非接触通讯,读写器在10CM范围内就可以对卡片操作,所以不必插拨卡,非常方便用户使用。非接触式卡使用时没有方向性,卡片可以在任意方向掠过读写器表面,既可完成操作,这大大提高了每次使用的速度。 ⑶防冲突 非接触式卡中有快速防冲突机制,能防止卡片之间出现数据干扰,因此,读写器可以“同时”处理多张非接触式IC卡。这提高了应用的并行性,,无形中提高系统工作速度。 ⑷可以适合于多种应用

手机工作原理

一、CDMA手机饰品的闪光原理为什么中国移动GSM手机饰品挂在中国联通CDMA手机上不闪光?这要从CDMA和GSM手机的工作原理谈起,GSM手机是采取将语音打包压缩后发射出去的,也就是说间隙脉冲工作的,工作时提高发射功率来保持语音清晰,其余时间不发射。而CDMA手机基台采用了定向天线系统,当基台发现有手机要工作时,便会启动定向系统指向手机所在的方向并计算手机最经济的发射功率,使手机发射功率维持在比较低的水平,也就是说CDMA手机系统是充分利用基台的定向系统优势,而让手机工作在小功率状态(这就是大家看到的CDMA手机的电池容量可以比GSM手机容量小而使用时间长的原因)。这样CDMA手机系统便可采用连续工作的方式发射信号,而不像GSM手机脉冲工作方式那样工作时大功率发射。目前市面上手机饰品是为GSM手机设计的,也就是说利用了GSM手机脉冲工作时大功率发射信号来触发IC闪光的。但对于CDMA手机GSM手机饰品就不会闪光了。本公司在充分研究CDMA手机系统后,开发了CDMA手机闪光饰品,她能在CDMA手机工作时触发专用IC闪光。这是目前世界上真正的第一款CDMA手机来电闪光饰品。二、手机贴纸的闪光原理当手机向基台传送信号时,手机发射的是很强的电磁波。根据电磁理论,电磁波在空中遇到天线,在天线的中段就会产生电压和电流。闪光贴纸其实就是一根接收天线,它把手机的电磁波信号变为电压和电流导致发光。但是为什么只有NOKIA的手机使用贴纸效果最好呢?因为由于此类型的手机没有采用标准的高效率螺旋天线,为了达到通话清晰和不掉线的效果,此类手机设计时就增大了手机的发射功率。这也是此类手机电池不够其它手机电池使用时间长的原因。三、GSM手机饰品的闪光原理手机使用时,手机是一部信号发射接收器,不停地和基台进行接收和发射的交换。手机闪光饰品中有一块具有检测手机信号发射接收的专用IC,当接检测到手机有信号时,就启动IC工作―-发光或发声等等。早期的闪光吊饰采用的是通用IC,需要加外围电路来检测手机的信号,这样做体积大,不适用产品的小型化。而现在把检测手机信号的外围电路和闪光IC集成一起。 GSM手机工作原理简介 发布时间:2006-10-18 图1 FDMA、TDMA及CDMA之间的对照图 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA的比较如图. 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是s,信道总传输速率s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet 公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=,每时隙为577us,每

气压传动系统的工作原理及组成

气压传动系统的工作原理及组成 一、气压传动系统的工作原理 气压系统的工作原理是利用空气压缩机将电动机或其它原动 机输出的机械能转变为空气的压力能,然后在控制元件的控制和辅助元件的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外作功。 二、气压传动系统的组成 典型的气压传动系统,如图10.1.1所示。一般由以下四部分组成: 1.发生装置它将原动机输出的机械能转变为空气的压力能。 其主要设备是空气压缩机。

2.控制元件是用来控制压缩空气的压力、流量和流动发向,以保证执行元件具有一定的输出力和速度并按设计的程序正常工作。如压力阀、流量阀、方向阀和逻辑阀等。 3.控制元件是将空气的压力能转变成为机械能的能量转换装置。如气缸和气马达。 4.辅助元件是用于辅助保证空气系统正常工作的一些装置。如过滤器、干燥器、空气过滤器、消声器和油雾器等。 10.2 气压传动的特点 一、气压传动的优点 1. 以空气为工作介质,来源方便,用后排气处理简单,不污染环境。 2. 由于空气流动损失小,压缩空气可集中供气,远距离输送。 3. 与液压传动相比,启动动作迅速、反应快、维修简单、管路不易堵塞,且不存在介质变质、补充和更换等问题。 4. 工作环境适应性好,可安全可靠地应用于易燃易爆场所。 5. 气动装置结构简单、轻便、安装维护简单。压力等级低,固使用安全。 6. 空气具有可压缩性,气动系统能够实现过载自动保护。

二、气压传动的特点 1. 由于空气有可压缩性,所以气缸的动作速度易受负载影响。 2. 工作压力较低(一般为0.4Mpa-0.8Mpa),因而气动系统 输出力较小。 3. 气动系统有较大的排气噪声。 4. 工作介质空气本身没有润滑性,需另加装置进行给油润滑。

各类盗号木马是这样盗取你看似不可能盗取的帐号密码的!详细讲解

各类盗号木马是这样盗取你看似不可能盗取的网游帐号密码的!详细讲解帖子比较长,有耐心的就看下去吧,绝对有收获 首先先问大家几个问题,大家对号入座,看有没有你对上的情况。 1、有多少人的电脑没有装杀毒软件、防火墙,或者说有多少人装了且正确使用的; 2、有多少人在玩游戏的时候QQ聊得热火朝天; 3、有多少人装系统的时候用的是番茄花园等一系列所谓电脑公司专用系统盘的; 4、有多少人从来不关心微软每天发布的层出不穷的补丁的; 5、有多少人受不了诱惑去看PLMM的视频或照片; 6、有多少人在家上网,不设电脑密码或密码没有复杂性的; 7、有多少人家里电脑开启GUEST账户,且登录时用非Administrator账户登陆,尽管设置了密码,但最高权限的Administrator账户却无密码的(请搞清楚这段话什么意思); 8、有多少人在公司或机关上网,有硬件防火墙便不做任何防范措施的; 9、有多少人使用有未知风险的辅助的; (注:风大和大大们的小M等辅助挂可以放心使用,但新手发的要小心) 10、有多少人是在极不安全的网吧上网的; 11、有多少人会看些不安全网站(**、暴力等)的; 12、有多少人喜欢随手点一些不明链接的; 13、有多少人喜欢贪图小便宜,相信问道里的小道或陌生消息去看非官方网站的; 14、有多少人看别人盗号眼红,自己去网上搜索下载盗号木马的; 大家自己对对看,有的人抱怨我没上QQ、没上黑网等等的。其实你们仔细想想,恐怕大多数被盗号的人都干过这些中的某一条或很多条(当然不包括那些相信所谓朋友,自己给人家账号的笨蛋)。 接下来详细谈。说起盗号,不能不谈QQ盗号。我想问道里QQ号被盗的人数肯定远远超过游戏号被盗的人数。对大多数网民来说,QQ盗号也许是他们接触的最早的盗号现象了.早期的盗取Q号的方法主要有两种. 一,是本地机器种木马.这是极为普遍的一种方法,而且很简单,只要您能有一个QQ(或游戏)木马就行,这种软件可以说遍地都是,数量很多,随便到哪个小黑客网站都能找到,其工作原理也很简单,首先它具备记录功能,敲入的密码可以自动记录下来,当木马被“种”到您的电脑里之后,它会更改注册表,随系统启动而自动运行,并会自动侦测QQ(游戏)的进程,一旦运行QQ(游戏)它就开始记录键盘输入,有的木马会先弹出个伪装窗口和QQ登陆窗口一样,等您把号码、密码都输入后点确定,它会提示密码不正确,关闭后再弹出真正的登陆框,无论是以上哪种方法,此时您的QQ号+密码已经被发至盗号者的邮箱了。(这个现象在问道里不会出现,因为两者的数据验证方式有所不同,这里不谈).这种方式一般需要盗号者有机会接触盗取对象的电脑,对于网络游戏来说,一般情况下是不现实的,也没有太多的实用价值. 二,是远程机器种木马.原理是和第一种方式一样的,唯一的不同就是盗号者不需要接触盗取对象的电脑,通过传输文件的方式种植木马. 了解原理后,盗取方法就很简单了.

GSM手机工作原理简介

GSM手机工作原理简介 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA 是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA 的比较 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是22.8kb/s,信道总传输速率270.83Kb/s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM 向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者X.25连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=4.625ms,每时隙为577us,每比特宽度为3.692us. 但它还要加入纠错编码.因为话音编码的比特重要性不同,一种是重要的称为I类比特,必需加以保护,即规则脉冲编码与LPC参数比特共182个,加上3位奇偶检验比特,及4位尾比特共189比特.纠错编码使用1/2码率的卷积码,因此共编码为378个比特.260比特中的其余78个比特,则不加以保护.这样加起来,每20ms 的总输出是456比特. 为了防止抗衰落引起的突了误码,编码后的比特还须进行交织.交织的原理在此从略. 移动电话(以下均称手机)电路结构可分为四个部分:无线部分、传输处理部分、接口部分、电源部分。其电路原理可归纳为两大部分:射频电路和基带电路。 1.无线部分 包括天线回路、发送、接收、调制解调和振荡器等高频系统.其中发送部分由射频功率放大器、带通滤波器组成.接收部分由高频滤波、高频放大、变频及中频滤波器组成,调制解调器采用GMSK. 2.传输处理 2.1发送通道的处理包括语音编码、信道编码、加密、TDMA帧形成. 1)语音编码:用户的话音通过MIC转化成电信号,这个电信号通过ADC转化成数字的、代表语音的 13Kbitps的信息流。

消防系统工作原理及组成

消防系统工作原理及组成

消防系统工作原理 一、火灾自动报警系统 1、系统组成 (1)探测器:感烟探测器、感温探测器、火焰探测器 (2)手动报警装置:手动报警按钮 (3)报警控制器:区域报警、集中报警、控制中心报警 2、系统完成的主要功能 火灾发生时,探测器将火灾信号传输到报警控制器,通过声光信号表现出来,并在控制面板上显示火灾发生部位,从而达到预报火警的目的。同时,也可以通过手动报警按钮来完成手动报警的功能。 3、系统容易出现的问题、产生的原因、处理方法 (1)探测器误报警,探测器故障报警 原因:探测器灵敏度选择不合理,环境湿度过大,风速过大,粉尘过大,机械震动,探测器使用时间过长,器件参数下降等。 处理方法:根据安装环境选择适当灵敏度的探测器,安装时应避开风口及风速较大的通道,定期检查,根据情况清洗和更换探测器。 (2)手动报警按钮报警,手动报警按钮故障报警 原因:按钮使用时间过长,参数下降或按钮人为损坏。 处理方法:定期检查,损坏的及时更换,以免影响系统运行。 (3)报警控制器故障 原因:机械本身器件本身损坏报故障或外接探测器、手动按按钮问题引起报警控制器报故障、报火警。

处理方法:用表或自身诊断程序检查机器本身,排除故障,或按(1)(2)处理方法,检查故障是否由外界引起。 (4)线路故障: 原因:绝缘层损坏,接头松动,环境湿度过大,造成绝缘下降。 处理方法:用表检查绝缘程度,检查接头情况,接线时采用焊接、塑封等工艺。 二、消火栓系统 1、系统组成 消防泵、稳压泵(稳压罐)、消火栓箱、消火栓阀门、接口水枪、水带、消火栓报警按钮、消火栓系统控制柜。 2、系统完成的主要功能 消火栓系统管道中充满有压力的水,如系统有微量泄露,可以靠稳压泵或稳压罐来保持系统的水和压力。当火灾时,首先打开消火栓箱,按要求接好接口、水带,将水枪对准火源,打开消火栓阀门,水枪立即有水喷出,按下消火栓按钮时,通过消火栓启动消防泵向管道中供水。 3、系统容易出现的问题、产生的原因、处理方法 (1)打开消火栓阀门无水 原因:可能管道中有泄露点,使管道无水,且压力表损坏,稳压系统不起作用。 处理方法:检查泄露点,压力表,修复或安上稳压装置,使管道有水。(2)按下手动按钮,不能联动启动消防泵

计算机文化基础练习题1-

第一套 1 有关信息与数据之间的联系,下列说法错误的是__________。 A 数据(data)是反映客观事物属性的记录,是信息的载体 B 数据可表示信息,而信息只有通过数据形式表示出来才能被人们理解和接受 C 数据是有用的信息,信息是数据的表现形式 D 信息是数据的内涵,是对数据语义的解释 2 与其他运算工具相比,计算机最突出的特点是_________,它也是计算机能够自动运算的前提和基础。 A 高速性B存储性C通用性D精确性 3 在计算机的应用领域,CAI的中文全称是_________。 A 计算机辅助教育 B 计算机辅助设计 C 计算机辅助制造 D 计算机辅助教学 4 计算机在存储数据时,把2的10次方个存储单元记作1_________。 A M B K C T D G 5 计算机的硬件系统由五大部分组成,其中控制器的功能是________。 A 完成算术运算和逻辑运算 B 完成指令的翻译,并产生各种控制信号,执行相应的指令 C 将要计算的数据和处理这些数据的程序转换为计算机能够识别的二进制代码 D 将计算机处理的数据、计算结果等内部二进制信息转换成人们习惯接受的信息形式 6 系统软件中最重要的是________。 A 操作系统 B 语言处理程序 C 程序设计语言D数据库管理系统 7 在当前计算机领域中,通常用GHz来描述计算机的_________。 A 运算速度B主频 C 存储容量 D 字长长度 9 下列关于文件名的说法错误的是_________。 A 文件名由主文件名和扩展名两部分组成 B 从Windows 95开始放宽了对文件名的限制,组成文件名的字符数最多可达255个 C 主文件名和扩展名之间用英文句号分隔,但一个文件名只能有一个英文句号 D 文件名中可以包括空格和英文句号 10 可以修改计算机设置或安装程序,但不能读取属于其他用户的文件,没有备份和复制目录、安装或卸载设备程序以及管理安全和审核日志的权利的组是_________组。

感应加速器的原理和技术

感应加速器的原理和技术 张伦 (国防科大三院三队,长沙,410072) 摘要:简要分析了回旋加速器存在的缺陷,说明了感应加速器的原理,并对相关技术进行了初步的探究。 关键词:感应加速器 1 问题的提出 目前,粒子加速器按照粒子加速过程中路径的不同可分为直线型和曲线形,在中学的学习中,我们简要的了解了直线型加速器和劳伦兹回旋加速器的相关原理。劳伦兹加速器能够实现在小范围内利用较低电压加速粒子的目的,减少了加速器的建造成本和体积,但是劳伦兹加速器在粒子加速上有不可避免的自身缺陷: 最初发明回旋加速器的思想是:粒子在无场的D 型盒内转半个周期的时间,必须严格等于D 型间隙的加速场变化半个周期的时间。可是实际上,考虑高速情况下粒子质量的相对论效应,粒子在磁场中的旋转周期是随着粒子能量的增长而增长的。[1] ZeB m T c π2= (1) 2/120)1(β-=m m ~质量相对论效应 (2) 另一方面由于磁感应强度B 沿着半径增大而减小,两者更加大了在粒子加速过程中旋转周期c T 与加速电场周期间的差距。从而使粒子 不能与加速电场“谐振”而导致在电场中减速,限制了最大速度。

2 解决原理 由电磁感应定律可知:随时间变化的磁感应强度B 会感生涡旋电场,其大小和分布由下式决定: t B E ??-=?? (3) 在电子感应加速器中,通常采用轴对称分布的磁场,因此涡旋电场的形状是闭合的圆环,电场的方向则与磁感应强度增长的所组成的右手螺旋系统方向相反。由于涡旋电场的性质,进入到电场区并符合一定初始条件的粒子,有可能被这样的涡旋电场连续的加速而获得较大的速度,并且在这个过程中不受粒子质量相对论效应的影响。这样就克服了回旋加速器的速度限制。 3、感应加速器原理和技术 3.1沿恒定轨道加速电子的条件 在轨道附近的环形狭窄区域,设置了迫使电子做圆周运动的导引磁场,为了使电子在加速过程中沿一个恒定的轨道运动,必须是导引磁场强度)(0 t B R 随时间的增长率与粒子动量)(t P 的增长率之间保持平衡,由此决定粒子加速过程中运动的平衡轨道[2],下面我们探究两者之间关系: 粒子在磁场中作圆周运动,洛伦兹力提供向心力,满足 )()()(020 2t B t ev R t mv R = (4) 即 ) ()(00t eB t P R R = (5)

还原精灵与还原卡的工作原理

还原精灵与还原卡的工作原理分析: 还原精灵的工作原理:它修改了引导区,引导区又被称为MBR,它位于硬盘的0头0柱1扇区,在扩展int 13中没有头、柱、扇区这个概念,它只有逻辑扇区,在扩展的int 13中MBR位于是0扇区,如果BIOS中设置的是硬盘启动的话,系统会首先载入这个扇区到内存,然后运行这个代码,还原精灵就是用的是自己的引导代码,这个方法与引导型病毒一样,病毒的目的是破坏,而它的目的是保护,就如武器在坏人手里有破坏力一样,这个代码接管了INT13中断,每当我们向硬盘写入数据时,其实还是写入到硬盘中,可是没有真正修改硬盘中的FAT。由于INT13被接管,当还原精灵发现是写操作,如果没有激活管理身份,便将原先数据目的地址重新指向它自己定义的一段连续的空磁盘空间,并将先前背份的第二份FAT中的被修改的相关数据指向这片空间。当我们读取数据时,和写操作相反。所以还原精灵需要被保护的磁盘上有较大的空闲空间,它就需要利用这段空间! 另外,用户不可能格式化真正的硬盘,还是因为被接管的INT13,所有对硬盘的操作都要通过INT13。还原卡的原理也和还原精灵软件的方法类似,不做详细解释 如何解除还原精灵与还原卡的保护呢? 通过分析原理,我们发现保护程序是通过修改中断向量来达到保护硬盘不被真正写入的,其中int13是关键,它拦截了int13的处理程序,将自己的程序挂到上面,这也是无法写进数据的原因所在,有的卡同时还修改了时钟中断来达到反跟踪,它会利用早以被它修改过的时钟中断定时检查中断向量表,它一旦发现修改为别的值.就会一一还原。 所以我们从编程的角度来看,就有了下面这样一些解决方法(用qbasic在理论上都能使用下面的破解方法!) 1、既然它拦截了int13的处理程序,将自己的程序挂到上面,那么我们只要把bios的int13的程序地址,在dos下填入中断向量表不就大功告成了,不过对于有的卡不方便用,而且需要你对汇编有一定的基础。最重要的是这个方法用编程的方法来破解很有难度。 2、破解密码,这个方法比上一个我认为要简单,还原精灵把自己的密码放在0头0柱8扇区的位置,如何知道是这个位置呢?对于硬盘的0头0柱的63个扇区只有1扇区被使用,我们可以写个代码来分析这些扇区是否被改动,在安装还原精灵前,先保存这63个扇区,然后安装,再读取这些扇区与保存的比较,就可以找到存放真正MBR的扇区与存放密码的扇区,然后我们改动一下密码,再比较存放密码的扇区有什么不同,这样通过分析来找出密钥,很多还原卡也是把密码保存在前63个扇区里,不过扇区的位置和密钥不一定都一样,这个是肯定的! (凡是密码进行判断肯定有一段代码会把真假密码进行比较,可以使用一些调试工具来破解,如果加密技术不强也可以用什么能查看内存的软件来搜索,这种方法不大适合编程,只适合手动破解!) 相关编程资料: 中断INT13 读硬盘扇区功能用法 INT 13H,AH=02H读扇区说明: 调用此功能将从磁盘上把一个或更多的扇区内容读进存贮器。因为这是一个 低级功能,在一个操作中读取的全部扇区必须在同一条磁道上(磁头号和磁道号 相同)。BIOS不能自动地从一条磁道末尾切换到另一条磁道开始,因此用户必须 把跨多条磁道的读操作分为若干条单磁道读操作。

相关文档
最新文档