任楼煤矿主采煤层顶底板岩性工程地质分类

任楼煤矿主采煤层顶底板岩性工程地质分类
任楼煤矿主采煤层顶底板岩性工程地质分类

岩土体工程地质类型及特征

一、岩土体工程地质类型及特征 岩土体工程地质类型的划分根据岩土体形成条件、结构、岩性、力学特性及工程地质特征的差别,可分为松散松软堆积层岩类、碳酸盐岩类及碎屑岩类3个岩体类型6个工程地质岩组。 (一)土体工程地质类型及物理力学特征 此岩类的划分根据其结构特征、力学性质及工程特性分为中偏高压缩粘性土类岩组和低压缩碎石土类岩组2个工程地质岩组。 1、中偏高压缩粘性土类岩组 (1)残坡积土(Q el+dl) 残坡积层主要分布于沿线丘陵沟谷坡脚一带,多为紫红色、棕红色粉砂质粘土或浅黄色、灰黄色砂土、亚粘土、粉土夹(含)碎石,沿线厚度不一。残坡积亚粘土天然含水量W18.8~24.00%,天然孔隙比e0.600~0.697,塑性指数Ip 8.4~12.6,液性指数I L0.46~0.60为软塑状,凝聚力C26.6~45.1Kpa,内摩擦角φ10.1~18.7度,压缩系数a0.25~0.40为中~偏高压缩土类。残坡积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 (2)冲洪积土(Q4al+pl) 冲洪积层主要分布于河床、河滩上,为灰色、浅灰色亚粘土、粘土及褐灰色细、粉砂土及砂砾卵石层,厚度不一。亚粘土天然含水量W21.7~26.50%,天然孔隙比e0.619~0.838,塑性指数Ip 8.4~14.6,液性指数I L0.46~0.87为可塑状,凝聚力C12.9~32.2Kpa,内摩擦角φ7.0~10.3度,压缩系数a0.31~0.47为中~偏高压缩土类。粘

土天然含水量W28.8~34.30%,天然孔隙比e0.838~0.978,塑性指数Ip 20.0~21.3,液性指数I L0.54~0.77为软塑状,凝聚力C22.6~54.7Kpa,内摩擦角φ10.0~10.3度,压缩系数a0.24~0.605为中~高压缩土类。 冲洪积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 2、低压缩碎石土类岩组 崩坡积土(Q4col+dl) 崩坡积层主要分布于斜坡边缘、高陡斜坡的坡脚处,碎块石成份与地层岩性有关,为黄灰、红褐色亚粘土夹块石、碎石。此类岩组颗粒级别差异大,密实度较高但不均一,透水性较好,为低压缩碎石土类岩组,工程地质问题主要表现为土石滑坡、塌方,不均匀沉降。 线路区段内土体工程地质类型及主要物理力学指标参见表6。 (二)岩体工程地质类型及物理力学特征 根据路线区岩层坚硬程度、抗风化能力、抗溶蚀能力和基本物理力学性 土体工程地质类型及主要物理力学指标表 表6

工程地质知识:岩土的分类

工程地质知识:岩土的分类 1.作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。 2.岩石应为颗粒间牢固联结,呈整体或具有节理裂隙的岩体。作为建筑物地基,除应确定岩石的地质名称外,尚应按规定划分其坚硬程度和完整程度。 3.岩石的坚硬程度应根据岩块的饱和和单轴抗压强度按规定分为坚硬岩、较硬岩、较软岩、软岩和极软岩。当缺乏饱和单轴抗压强度资料或不能进行该相试验时,可在现场通过观察定性划分,划分标准可按本规范执行。岩石的风化程度可分为为风化、微风化、中风化、强风化和强风化。 4.岩体完整程度应按规定划分为完整、较完整、较破碎、破碎和极破碎。当缺乏试验数据时可按本规范执行。 5.碎石土为粒径大于2mm的颗粒含量超过全重50%的土。碎石土可分为漂石、块石、卵石、碎石、圆砾和角砾。 6.碎石土的密实度,可分为松散、稍密、中密和密实。 7.砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。砂土可分为砾砂、粗砂、中砂、细砂和粉砂。 8.砂土的密实度,可分为松散、稍密、中密和密实。 9.粘性土为塑性指数Ip大于10的土,可分为粘土、粉质粘土。 10.粘性土的状态,可分为坚硬、硬塑、可塑、软塑、流塑。

11.粉土为介于砂土与粘性土之间,塑性指标Ip10且粒径大于0.075mm的颗粒含量不超过全重50%的土。 12.淤泥为在静水或缓慢的流水环境中沉积,并经生物化学作用形成,其天然含水量大于液限、天然孔隙比大于或等于1.5的粘性土。当天然含水量大于液限而天然孔隙比小于1.5但大于或等于1.0的粘性土或粉土为淤泥质土。 13.红粘土为碳酸盐岩系的岩石经红土化作用形成的高塑性粘土。其液限一般大于50。红粘土经再搬运后仍保留其基本特征,其液限大于45的土为次生红粘土。 14.人工填土根据其组成和成因,可分为素填土、压实填土、杂填土、冲填土。 素填土为由碎石土、砂土、粉土、粘性土等组成的填土。经过压实或夯实的素填土为压实填土。杂填土为含有建筑垃圾、工业废料、生活垃圾等杂物的填土。冲填土为由水力冲填泥砂形成的填土。 15.膨胀土为土中粘粒成分主要由亲水性矿物组成,同时具有显著的吸水膨胀和失水收缩特性,其自由膨胀率大于或等于40%的粘性土。 16.湿陷性土为侵水后产生附加沉降,其湿陷系数大于或等于0.015的土。

煤矿顶板、老顶的划分及标准

根据顶底板岩层相对煤层的位置和垮落性能,强度等特征的不同,从上至下顶板划分为基本顶(老顶)、直接顶、伪顶三个部分;底板分为伪底、直接底及老底三个部分。不过,对于某个特定的煤层来说,其顶底板的这六个组成部分不一定发育俱全。可能缺失某一个或几个组成部分的岩层。 1.1煤层的顶板 1.1.1伪顶:是紧贴煤层之上的,极易随煤炭的采出而同时垮落的较薄岩层,厚度一般为0.3~0.5m,多由页岩、炭质页岩等组成。 1.1.2直接顶:是直接位于伪顶或煤层(如无伪顶)之上岩层,常随着回撤支架而垮落,厚度一般在1~2m,多由泥岩、而岩、粉砂岩等较易垮落的岩石组成。 1.1.3基本顶:又叫老顶,是位于直接顶之上或直接位于煤层之上(此时无直接顶和伪顶)的厚而坚硬的岩层。常在采空区上方悬露一段时间,直到达到相当面积之后才能垮落一次,通常由砂岩、砾岩、石灰岩等坚硬岩石的组成。 1.2煤层底板 1.2.1伪底:直接位于煤层之下的薄层软弱岩层,多为炭质页岩或泥岩,厚度一般为0.2~ 0.3m。 1.2.2直接底:直接位于煤层之下硬度较低的岩层,厚度一般由几十厘米到1米左右,通常由泥岩、页岩或粘土岩。若直接底为粘土岩,则遇水后易膨胀,可能造成巷道底鼓与支架插底现象,轻者影响巷道运输与工作面支护,重者可使巷道遭受严重破坏。 1.2.3老底:指位于直接底之下,比较坚硬的岩层,多为砂层,石灰岩等。 2 采煤工作面顶板分类 根据工作面顶板冒落的难易程度,将顶板分为五类。 2.1易冒落的松软顶板。该类顶板的特点是煤层顶板是易垮落的松软岩层,回柱后顶板能立即冒落,且能填满采空区。这类顶板由于冒落比较充分,使位于裂隙带的老顶岩层,在回采过程中,很容易取得平衡,因而老顶的开裂,弯曲下沉,对工作面几乎没有什么影响,工作面来压比较缓和,无明显的周期压力,靠采空区一侧的顶板下沉量较稳定,顶板容易管理。 2.2中等冒落性的顶板。该类顶板的特点是直接顶,厚度一般小于煤层平等的6~8倍,其上部为比较坚硬的老顶,虽然回柱后直接顶随之垮落,但因厚度不大,不能填满采空区,老顶则置于悬露状态,当工作面推进一段距离后老顶才开始垮落,此时因采空区落差较大,致使工作面呈现周期来压状态,严重时可使采场切顶垮面。对于这类顶板应注意老顶的活动规律。 2.3难冒落的坚硬顶板。这类顶板的特点是老顶直接赋于煤层之上,或有一伪顶,无直接顶,由于老顶垮时采空区的落差太大,使工作面呈现明显的周期来压,工作面平时的下沉量及下沉速度较小,而当周期来压时下沉速度急剧增加,工作面顶板情况迅速恶化,应当注意及时采取措施。 2.4极难冒落的坚硬顶板。这类顶板的特点是煤层板为极其坚硬的整体性厚岩层,在采空区能悬露上万平方米而不垮落,当垮落时则能形成暴风,致使工作面造成垮面和严重破坏。 2.5可塑性弯曲的顶板。该类顶板的特点是直接顶,虽是具有一定厚度的坚硬岩层(如

围岩类别

围岩分类 classification of rock mass 围岩分类的目的是为了对隧道及地下建筑工程周围的地层进行工程地质的客观评价,判断坑道或洞室的稳定性,确定支护的荷载和设计参数,确定施工方法, 选择钻孔和开挖等施工机械,以及确定施工定额和预算等。 发展概况隧道及地下工程围岩分类是在长期实践的基础上发展起来的,并与地质科学、岩土工程和量测技术的发展密切相关。初期的围岩分类多以单一的岩石强度作为分类指标。例如1949年前中国采用的坚石、次坚石、软石、硬土、普通土和松软土的分类法,以及中华人民共和国成立后广泛应用的“”值分类法(即普罗托季亚科诺夫分类法,1907年)。这类方法在评价坑道或洞体稳定性方面是不充分的;但在选择钻孔机械,确定掘进机类型,尤其是确定松散围岩的地压值等方面仍有一定意义。1970年后,以岩体为对象的分类方法获得了迅速发展。如泰尔扎吉分类法(1974年)、巴顿分类法(1974年)、别尼亚夫斯基分类法(1974年)、法国隧道协会(AFTES)分类法(1975年),以及中国铁路隧道围岩分类(1975年)和水工隧洞围岩分类(1983年)等。这些分类法多数是根据经验的定性分类,但由于反映了围岩的地质构造特征、围岩的结构面状态、风化状况、地下水情况以及洞室埋深等,因此在评价坑道或洞体稳定性、确定支护结构参数和选择施 工方法等方面得到了广泛的应用。 近期的围岩分类中,引进了岩体力学的基本概念和数理统计方法,如考虑初始应力场、坑道周边位移值,以及量测信息等,使围岩分类逐渐从定性分类向定量分类方向发展。如拉布采维茨-帕赫分类(1974年)、日本地质学会的新奥法围岩分类(1979年)、奥地利阿尔贝格隧道的围岩分类(1979年)、苏联顿巴斯矿区的围岩分类(1979年)等。围岩分类的重要发展是把量测信息引进到分类之中,即根据量测的初期位移速度,拱顶下沉和洞体水平向的收敛、变形等进行分类。这也为隧道及地下工程的信息设计和施工打下了基础。到目前为止,已经提出的和正在应用的围岩分类约有50多种,但其中绝大多数仍处于定性描述或经验判别的 阶段,尚需进一步研究和完善。 分类要素在围岩分类中,最有影响的要素有:①围岩的构造。指围岩被各种地质结构面切割的程度以及被切割的岩块的尺寸和组合形态,在分类中它是一个起主导作用的因素。视裂缝间距,即被结构面切割的岩块的大小,可将围岩分成如表[围岩类型]所示的几种类型。②原岩或岩体的物理力学性质。包括单轴或三轴强度和变形特性,如抗压强度、抗剪强度以及弹性模量或变形模量等。一般说,在完整岩体中,原岩的指标是基本的;在非完整(裂隙)岩体中,岩体的指标是主要的。③地下水。地下水的水量和水压等对分类有重大影响,尤其是对软岩和破碎、松散围岩,它们导致岩质软化、降低强度。在有软弱结构面的围 岩中,地下水会冲走充填物或使夹层液化等。因而在一些分类法中,都考虑了它的定性的或定量 的影响。④围岩的初应力场。在现代围岩分类中,尤其是对于深埋隧道和软弱围岩而言,这一要 素占有重要的地位。初应力场通常以上覆岩(土)体的重力来决定,并视为静水应力场;也可通 过实地量测大致判定原岩应力场的大小及其方向。 分类依据①单一岩性指标。如岩石抗压强度和弹性模量等物性指标,以及诸如抗钻性、抗爆 性、开挖难易度等工艺指标。在为某些特定目的的分类中,如确定钻孔工效、炸药消耗量等,可 采用相应的工艺指标(钻孔速度等)进行分类。②综合岩性指标。指标是单一的,但反映的因素是综合的。如岩体弹性波速度,既可反映围岩的软硬程度,又可反映围岩的破碎程度。岩芯复原率是在反映岩体破碎程度的同时,还表示围岩软、硬分级的一个指标。这类指标,还有修正后的普氏系数、坑道自稳时间、围岩强度等。③复合岩性指标。是用两个或两个以上的单一岩性指标或综合岩性指标表示。例如, 已确定分类要素为、、,则复合岩性指标可用下述方法之一来确定:

煤及煤层顶底板的孔隙结构特征_张井

煤及煤层顶底板的孔隙结构特征* 张 井 韩宝平 唐家祥 冯启言 (中国矿业大学资环学院 徐州 221008) 摘要 使用9310型微孔结构分析仪,对煤和煤层顶、底板岩石的孔隙特征作了系统研究,取得下列结论:煤的孔隙发育主要受煤的变质程度、煤岩组分及成煤植物和后期构造破坏等因素的综合控制;碎屑岩的孔隙发育主要受岩石粒度和充填胶结程度控制;灰岩孔隙发育特征主要受溶蚀作用强度控制。 关键词 孔隙度 测量 煤 岩石 中国图书资料分类法分类号 P 583 作者简介 张 井 男 46岁 工程师 煤油气地质 1 引言 煤及其顶、底板岩石的孔隙是煤层气和地下水 储集运移的场所。它们的结构特征和连通程度,对瓦斯突出、瓦斯抽放和顶、底板突水起着重要作用,本文利用美国9310型微孔结构分析仪,系统地研究了一些矿区的煤层及其顶、底板岩石的孔隙特征及其控制因素。2 测试仪器与方法 9310型微孔结构分析仪(又称压汞仪),系美国佐治亚州Micro merities 仪器公司产品,工作压力范围0.0M Pa ~207M Pa,低压分辨率为±0.001M Pa, *煤炭基金资助项目 高压分辨率为±0.01M Pa ,测定孔径范围为0.006~360μm 。根据不同压力下汞液进入煤和岩石中的数量可求出岩石的孔隙度及各种直径的孔隙在总孔隙所占的比例。 测定方法:首先将试样置于70~80℃的烘箱内烘干10h,然后装入膨胀计中抽真空,当真空度达到50μm 汞柱以下时,将汞液注入膨胀计中。通过逐步加压,使汞液进入所测样品的孔隙中,压入孔隙中汞的体积由露出汞液面的铂电阻丝的变化求出。孔隙度可通过下式求出: 最大累计进汞体积/岩样体积×100%。3 煤的孔隙特征 煤岩中既有在沉积成煤过程中形成的原生孔隙,又有成煤后受构造破坏所形成的次生孔隙。其孔 C ONTROL FACTORS ON THE OCCURRENCE OF C OALBE D METHA NE I N NI NGWU C OAL FIELD ,S HANXI PROVINC E Guo Wumei Wu Yuxiu (The Ninth petroleum Brig ade o f the Petro leum Geo logical Bureau in No rth China ) Abstract In Ningw u coa l -bea ring r eaio n ,the streng ths of str uctura l stress suffer ed by v arious str uc tur e positio ns and coal seams are distinct unde r the tr ansfo rma tio ns of Indosinia n and Yansha nia n mov ements.T he tra nsfo rmed deg rees are also differ ent ,ther efo r e,the main facto rs co nt rolling the o ccur rence of coa lbed methane a re o bvio usly no t alike. Keywords co albed methane;cont rol facto r;fractur e;ga s-bea ring pro per ty;Ningw u coalfield · 28·CO A L GEO LO G Y &EX P LO R AT IO N Apr.1998

关于隧道围岩的分级

关于隧道围岩的分级 最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。 《公路隧道设计规范JTGD70-2004》 《公路工程地质勘察规范JTJ064-98》 《岩土工程勘察规范GB50021-2001》 《水工隧洞设计规范》(SL279-2002) 《工程岩体分级标准》(GB50218-94) 《铁路隧道设计规范》(TB10003-2005) 《地铁设计规范》(GB50157-2003) 《锚杆喷射混凝土支护技术规范》(50086-2001) 《公路隧道施工技术规范》(JTJF60-2009) 《工程岩体分级标准》(GB50218-94) 名词解释: 围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称) 在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。

岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。 在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》, GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。 公路隧道围岩分级将围岩分为6级,给出了主要围岩的工程地质特征、结构特征,和完整性等指标并预测了隧道开挖后可能出现的塌方、滑动、膨胀、挤出、岩爆、突然涌水、及瓦斯突出等失稳的部位和地段,给出了相应的工程措施, 围岩分级的概念

煤层底板等高线的绘制

煤层底板等高线的绘制 煤层底板等高线图是矿井生产的最基本地质图件之一,它为采区设计、工作面开拓布置、矿井提升运输、供排水等提供了最基本依据,因此掌握煤层底板等高线的绘制及其应用有重要意义。 1煤层底板等高线的绘制 1.1、绘制依据及数据来源 绘制煤层底板等高线主要依据钻孔资料中煤层底板标高、采掘过程中实测的导线点高程。除此之外,还要掌握井田内地质构造情况。 钻孔资料、井田地质构造情况,可在《生产矿井地质报告》中获得,采掘工程导线点高程由矿山测量部门实测所得,是生产矿井施工与回采中必不可少的数据。 1.2、煤层底板等高线的特性及绘制规则 ①一条等高线不能分成两条,不同高程的等高线不能相交或合并成一条。 ②等高线是一条连续、光滑的闭合曲线,不会中断(在断层附近断开)。由于图幅所限,如在本图幅内不闭合,则在相邻图幅内仍自成闭合。 ③同一条等高线上的各点高程相等。 ④等高线越密(即等高线之间的平距越小),煤层倾角越大,反之,煤层倾角越小。 1.3、绘制方法 ①解析法

如图1中,A、B两点相距51mm,高差25.5m,计算每米高差的平距,即51mm/25.5m=2 mm/m。A点与-380m等高线高差为5.5m,则-380m等高线与A点平距5.5x2=11 mm,沿A-B线从A点开始量取11mm即为-380m等高线位置点。同理可得C-D线上-380m等高线。依次类推,得出-370m、-360m等高线。 此方法应用的前提条件是假定A-B、C-D点之间煤层倾角相等。而在实际绘制中,常常采用“目测法”进行内插勾绘等高线。 ②图解法 用一张透明纸,绘出一组等间距的平行线,如图2所示,平行线两端注上0~10数字,将透明纸蒙在A-B连线上,使A点置于8-9线间5.5单位处,然后绕A点旋转透明纸使B点位于6线上,在A-B 连线上,将平行线6、7、8线与连线的交点,用针刺于图上,即得到

隧道围岩分类

隧道围岩分级 隧道围岩分级是正确地进行隧道设计与施工的基础。一个较好的、符合地下工程实际情况的围岩分级,能改善地下结构设计,发展新的隧道施工工艺,降低工程造价。 逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国内外的发展中可以看出,以隧道围岩的稳定性为基础进行分级是总的趋势。但分级指标方面,大多数正在从定性描述、经验判断向定量描述发展。 公路隧道围岩分级 经过长期的隧道工程实践,我国公路隧道以铁路隧道围岩分级的标准为基础,参考了国内外有关围岩分级的成果,提出了适合我国公路隧

道实情的围岩分级标准,下面介绍围岩分级的出发点和依据。 (一)公路隧道围岩分级的出发点 主要考虑了以下几点: 1.强调岩体的地质特征的完整性和稳定性,避免单一的岩石强度指标分级的方法; 2.分级指标应采用定性和定量指标相结合的方式; 3.明确工程目的和内容,并提出相应的措施; 4.分级应简明,便于使用; 5.应考虑吸收其它围岩分级的优点,并尽量和我国其它工程分级一致。 (二)分级的指标和因素 主要考虑了以下几类影响围岩稳定性的因素; 1.岩体的结构特征与完整性 岩体结构的完整状态是影响围岩稳定性的主要因素,当风化作用使岩体结构发生变化,松散、破碎、软硬不一时,应结合因风化作用造成的各种状况,综合考虑确定围岩的结构完整状态;结构面(节理)发育程度应根据结构面特征;地质构造影响程度。 岩体完整程度的等级划分

煤层工作面顶板的分类、冒顶发生的机理及处理措施

编号:SM-ZD-79551 煤层工作面顶板的分类、冒顶发生的机理及处理措 施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

煤层工作面顶板的分类、冒顶发生 的机理及处理措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 煤层的顶底板 煤层的顶底板是指煤系中位于煤层上下一定距离的岩层,按照沉积顺序,在正常情况下,位于煤层之下,先于煤层生成的岩层是底板;位于煤层之上,在煤层形成之后的岩层叫顶板。由于沉积物质和沉积环境的差异,顶底板岩层性和厚度各不相同,在开采过程中破碎,冒落的情况也就不同,了解这些岩层的岩性特征、厚度、层理及节理发育程度,强度及含水性等,对确定顶板管理和巷道支护方式均有重要意义。 根据顶底板岩层相对煤层的位置和垮落性能,强度等特征的不同,从上至下顶板划分为基本顶(老顶)、直接顶、伪顶三个部分;底板分为伪底、直接底及老底三个部分。不过,对于某个特定的煤层来说,其顶底板的这六个组成部分不一

隧道围岩分类

隧道围岩分类 类别 围岩主要工程地质条件 开挖后的稳定状态(坑道跨度5m时) 主要工程地质特征结构特征及完整状态 Ⅵ 硬质岩石[饱和抗压极限强度R b>60MP]:受地质结构影响轻微,节理不发育,无软弱面或夹层;层状岩层为厚层,层间结合良好 呈巨快状 整体结构 围岩稳定,无坍塌,可能产生岩暴 Ⅴ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响较重,节理较发育,有少量软弱面或夹层和贯通微张节理,但其产状及组合关系不至产生滑动;层状岩层为中层或厚层,层间结合一般,很少有分离现象;或为硬质岩石偶夹软质岩石 呈大快状 整体结构 暴露时间长,可能会出现局部小坍塌,侧壁稳定,层间结合差的平缓岩层,顶板易塌落 软质岩石[饱和抗压极限强度R b≈30MP] 受地质结构影响轻微,节理不发育;层状岩层为厚层,层间结合良好 呈巨快状 整体结构 Ⅳ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响严重,节理发育,有层状软弱面或夹层,但其产状及组合关系尚不至产生滑动;层状岩层为薄层或中层,层间结合差,多有分离现象;或为硬、软质岩石互层 呈块(石)碎(石) 状镶嵌结构 拱部无支护时可产生小坍塌,侧壁基本稳定,爆破震动过大易塌 软质岩石[饱和抗压极限强度R b=5-30MP]:受地质结构影响较重,节理较发育;层状岩层为薄层、中层或厚层,层间结合一般 呈大快状 砌体结构 Ⅲ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响严重,节理很发育,层状软弱面或夹层以基本被破坏 呈碎石状 压碎结构

拱部无支护时可产生较大的坍塌,侧壁有时失去稳定 软质岩石[饱和抗压极限强度R b=5-30MP]:受地质结构影响严重,节理发育呈快(石) 碎(石)状 镶嵌结构 土:1、略具压密或成岩作用的粘性土及砂性土 2、一般钙质、铁质胶结的碎、卵石土、大快石上 3、黄土 1.呈大快状压密结构 2.3.呈巨快状整体结构 Ⅱ 石质围岩位于积压强烈的断裂带内,裂隙杂乱,呈石夹土或土夹石状 呈角(砾)碎(石)状松散结构 围岩易坍塌,处理不当会出现大坍塌,侧壁经常小坍塌,浅埋时易出现地表下沉或塌至地表 一般第四纪的半干硬—硬塑的粘性土及稍湿或潮湿的一般碎、卵石土圆砾、角砾土及黄土 非粘性土呈松散结构粘性土及黄土呈松软结构 Ⅰ 石质围岩位于挤压极强烈的断裂带内,呈角砾、砂、泥松软体 围岩极易坍塌变形、有水时土砂常与水一起涌出,浅埋时易坍至地表 软塑状粘性土及潮湿的粉细砂等 粘性土呈易蠕动的松软结构,砂性土呈潮湿松软结构 岩石等级分类 岩石等级饱和抗压极限强度R b MP a(kgf/㎝2) 耐风化能力程度(现象)代表性岩石硬质岩石 极硬岩> 60 (600) 强暴露后一、二年尚不易风化1.花岗岩、闪长岩、玄武岩等岩浆岩 硬质岩> 30 (300) 2.硅质、铁质胶结的砾岩及砂岩、石灰 岩、白云岩类沉积岩 3.片麻岩、石英岩、大理岩、板岩、片 岩等变质岩类 软质岩石 软质岩5~30 (50~300) 弱暴露后数月即出现风化壳1.凝灰岩等喷出岩类 极软岩≤ 5 (50) 2.泥砾岩、泥质砂岩、泥质页岩、灰质、 页岩、泥灰岩、泥岩、略煤等沉积岩 3.云母片岩或千枚岩等变质岩类 围岩受地质构造影响程度等级划分 等级构造作用特征 轻微围岩地质构造变动小,无断裂层;层状岩一般呈单斜构造,节理不发育

煤层顶底板破坏深度计算

煤层底板破坏深度计算 目前,国内外对底板破坏深度的研究已经有许多种方法,本次研究主要是运用弹塑性力学方法结合莫尔—库仑(Mohr-Coulomb)强度理论,依现场观测数据为依据,辅助进行计算机数值模拟,综合计算显德汪矿9#煤层底板岩体受采动影响的最大破坏深度,并提出该矿区9#煤层底板破坏深度的经验公式,为企业的安全开采提供科学依据。 6.1底板岩体破坏带空间分布形态 许多学者对煤层底板采动影响规律进行了研究,提出了煤层底板岩体采动带的空间分布形态。 6.1.1近水平煤层 煤层回采后,其顶板以冒落角ψ向上冒落,最终形成顶板中部冒落的比较充分,采空区在中部充填较密实,而在采空区两侧顶板冒落得最不充分,充填不实(图6-1)。煤层底板在采空区两侧有较大的自由空间,在地应力作用下,底板岩体能够充分膨胀,产生较多的采动裂隙,近水平煤层在采动边缘下方附近岩体的破坏深度最大。 图6-1煤层顶板岩体冒落示意图 煤层底板中破坏带的形态也可用计算的方法得出。考虑到底板岩体的受力状态,以图6-2中的X1X I剖面作为计算模型,作用在弹性表面某一局部面积上的力系,被作用在同一局部面积上的另一静力等效力系所代替,则载荷的这种重新分布,只在离载荷作用很近的地方才使应力的分布发生显著变化,在离载荷较远处影响极小。图6-2中的X1X I剖面的应力分布图形可采用等效模型(图6-3)代替。图6-2中等效应力q=(n+1)P0/2,作用宽度为工作面端部至应力峰值距离(x a)的

图6-2 长壁工作面支承压力分布图 图6-3 底板上应力简化示意图 (P 0─原始应力) 2倍,即L =2 x a 。煤层底板内岩体自重产生的应力为γz ,在平面应变状态中,底板岩体任意点M 的主应力为: (6-1) (6-2) (6-3) 在多向应力作用下,岩体发生破坏时服从Mohr-Coulomb 破坏准则,即 σ1-Kσ3=Rc ,将(6-1~6-3)式代入上式后,得: z qva γπ σσυσ22)(312+= +=z q γααπ σ++=)sin (1 z a a q γπ σ+-= )sin (3YY剖面 X 1X 1剖面 X 2X 2 剖面Y

围岩分类

围岩分类 地峡工程围岩分类是依据地下工程围岩稳定的主要影响因素,将围岩的稳定性及主要的支护措施分成若干级序,便于地下岩土工程勘察,设计、施工及监测部门之间有关参数的互相对接,为地下工程的综合处理提供简要的方法。 由于影响围岩的因素较多,尤其是在时间和空间上表现出的非线性,使得围岩分类难于确定统一标准,因此在我国的不同行业、根据长期实线经验的总结,出现了不同的分类方法,他们既互相区别,又相互关联,但本质上是一致的。下面列出几个主要的分类。 1.《岩土工程勘察规范》(GB50021—2001)地下洞室围岩分类 地下洞室围岩的质量分级应与洞室设计采用的标准一致,无特殊要求时可根据现行国家标准《工程岩体分级标准》(GB50218)执行。 1)洞室围岩应根据岩体基本质量的定性特征和岩体基本质量指标BQ两者相结合,按表14.2-1确定其基本质量级别。a、岩体基本质量分级应符合表14.2-1的规定。 岩体基本质量分级表14.2-1 注:1、岩石坚硬程度可按表14.2-2划分 2、岩体完整程度定量指标应采用实测的岩体完整性系数Kv值按表14.2-3划分; 当无条件取得实测值时,也可用岩体体积节理数Jv按表14.2-4确定Kv值。 b、岩石按饱和单轴抗压强度?r划分其坚硬程度应符合表14.2-2的规定。 c、岩体按完整性系数Kv划分其完整程度应符合表14.2-3的规定。 d、Jv与Kv对照应符合表14.2-4的规定。 岩石坚硬程度表14.2-2 a、有地下水; b、围岩稳定性受软弱结构面影响,且由一组起控制作用; c、存在表14.2-5所列高初始应力现象。 应对岩体基本质量指标值BQ修正,并以修正后的[BQ]值按表14.2-1确定围岩质量级别。 3)高初始应力地区岩体在开挖过程中出现的主要现象,可按表14.2-5的规定,判定其应力情况。

工程地质岩石分类及鉴定

工程地质岩石分类及鉴定 中国?宜昌 2016年5月4日 目录 1.工民建工程 (3) 2.公路工程 (5) 3.港口工程 (10) 4.铁路工程 (13) 5.工程岩体分级标准 (18) 1 工民建工程 1.1、岩石坚硬程度分类《岩土工程勘察规范》GB50021—2001 注:1 当无法取得饱和单轴抗压强度数据时,科用点荷载试验强度换算,换算方法按现行国家标准《工程岩体分级标准》(GB50218)执行; 2 当岩体完整程度极为破碎时,可不进行坚硬程度分类。 1.2、岩石坚硬程度等级定性分类《岩土工程勘察规范》GB50021—2001 1.3、岩体完整程度分类《岩土工程勘察规范》GB50021—2001 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。

1.4-1、岩石完整程度的定性分类《岩土工程勘察规范》GB50021—2001 1.4-2、岩体完整程度划分《建筑地基基础设计规范》(GB50007—2002) 1.5、岩石按风化程度分类《岩土工程勘察规范》GB50021—2001 注:1 波速比Kv为风化岩石与新鲜岩石压缩波速度之比; 2 风化系数K f为岩石与新鲜岩石饱和单轴抗压强度之比; 3 花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化;N<30为残积土。 4 泥岩和半成岩,可不进行风化程度划分。 1.6、岩体基本质量等级分类《岩土工程勘察规范》GB50021—2001 1.7、岩石按质量指标RQD分类《岩土工程勘察规范》GB50021—2001

1.8、岩层厚度分类《岩土工程勘察规范》GB50021—2001 1.9、岩石按在水中软化系数分类《岩土工程勘察规范》GB50021—2001 注:软化系数(K R)等于饱和状态与风干状态的岩石单轴极限抗压强度之比。 1.10、岩体按结构类型划分《岩土工程勘察规范》GB50021—2001 2 公路工程 2.1、岩石坚硬程度分级《公路桥涵地基与基础设计规范》(JTG D63—2007) 注:岩石饱和单轴抗压强度试验要点,见本规范附录B。 2.2、岩体完整程度划分《公路桥涵地基与基础设计规范》(JTG D63—2007)

煤矿顶板分类

煤矿顶板分类 根据顶底板岩层相对煤层的位置和垮落性能,强度等特征的不同,从上至下顶板划分为基本顶(老顶)、直接顶、伪顶三个部分;底板分为伪底、直接底及老底三个部分。不过,对于某个特定的煤层来说,其顶底板的这六个组成部分不一定发育俱全。可能缺失某一个或几个组成部分的岩层。 1.1煤层的顶板 1.1.1伪顶:是紧贴煤层之上的,极易随煤炭的采出而同时垮落的较薄岩层,厚度一般为0.3~0.5m,多由页岩、炭质页岩等组成。 1.1.2直接顶:是直接位于伪顶或煤层(如无伪顶)之上岩层,常随着回撤支架而垮落,厚度一般在1~2m,多由泥岩、而岩、粉砂岩等较易垮落的岩石组成。 1.1.3基本顶:又叫老顶,是位于直接顶之上或直接位于煤层之上(此时无直接顶和伪顶)的厚而坚硬的岩层。常在采空区上方悬露一段时间,直到达到相当面积之后才能垮落一次,通常由砂岩、砾岩、石灰岩等坚硬岩石的组成。 1.2煤层底板 1.2.1伪底:直接位于煤层之下的薄层软弱岩层,多为炭质页岩或泥岩,厚度一般为0.2~0.3m。 1.2.2直接底:直接位于煤层之下硬度较低的岩层,厚度一般由几十厘米到1米左右,通常由泥岩、页岩或粘土岩。若直接底为粘土岩,则遇水后易膨胀,可能造成巷道底鼓与支架插底现象,轻者影响巷道运输与工作面支护,重者可使巷道遭受严重破坏。 1.2.3老底:指位于直接底之下,比较坚硬的岩层,多为砂层,石灰岩等。 2 采煤工作面顶板分类 根据工作面顶板冒落的难易程度,将顶板分为五类。 2.1易冒落的松软顶板。该类顶板的特点是煤层顶板是易垮落的松软岩层,回柱后顶板能立即冒落,且能填满采空区。这类顶板由于冒落比较充分,使位于裂隙带的老顶岩层,在回采过程中,很容易取得平衡,因而老顶的开裂,弯曲下沉,对工作面几乎没有什么影响,工作面来压比较缓和,无明显的周期压力,靠采空区一侧的顶板下沉量较稳定,顶板容易管理。 2.2中等冒落性的顶板。该类顶板的特点是直接顶,厚度一般小于煤层平等的6~8倍,其上部为比较坚硬的老顶,虽然回柱后直接顶随之垮落,但因厚度不大,不能填满采空区,老顶则置于悬露状态,当工作

煤层底板等高线图

煤层底板等高线图 一、煤层底板等高线图的概念、内容及作用 (一)概念 煤层底板等高线图是反映某一煤层空间形态特征的图件。他是利用煤层底板等高线来表示煤层在空间的起伏及断裂情况。它可以帮助我们了解煤层层面的立体概念,掌握煤层产状变化和地质构造变化,是煤矿生产中最重要的图件之一。一般生产矿井,特别是倾斜和缓倾斜煤层矿井都必须编制这种图件。 (二)内容 煤层底板等高线图一般采用的比例尺为1:10000或1:5000。构造复杂的井田、井型较小的矿井及反映一个采区或采面的煤层底板等高线图,一般采用1:2000的比例尺。图件中主要包括地形地物、地质界线(煤层露头线、煤层风氧化带界线、煤层分叉界线、火成岩侵入界线、陷落柱界线、古河床冲刷煤层的界线、煤层底板等高线等)、井巷工程、其他(经纬线、井田边界线、见煤钻孔小柱状等)。 (三)作用 它是煤矿井巷布置、编制生产计划、安排采掘生产的主要依据;是分析地质构造规律、布置生产勘探、进行储量计算的基础图件;同时,编制煤层顶底板岩性分布图、瓦斯地质图件,均以其为底图进行编制。 二、煤层底板等高线图的编制原理及方法

一、原理 煤系地层形成之后,由于受构造变动的影响,夹在地层中的煤层层面,包括顶面和底面,大多数为一空间曲面。在勘探及矿井生产中,一般可根据钻孔孔口标高及煤层深度资料或井上、井下测量获得煤层底面各点的标高,如果把标高相同的点连接起来,就构成一条等高线,而每隔一定高度,如50、100、150……各选取一条等高线,按垂直投影法投影到水平面上,并按一定比例尺编织成平面图,就形成了煤层底板等高线。当出现断层时,为了要反映断层情况,除要将等高线投影到平面图上外,还要将煤层和断层的交面线投影到平面上。 二、编制方法 1.利用地质剖面图编制煤层底板等高线图 (1)打方格网并注明经纬线。按煤层露头大致走向确定指北基线(露头走向与成图的长边一致)。 (2)投放钻探工程及井巷工程。 (3)确定剖面线。矿井地质剖面编图方向一般垂直煤层走向,钻探工程一般在剖面线上布置。 (4)以经纬线或准线作为基准线,把每个剖面上煤层底板与各标高线交点对应的投影到剖面线上,然后将相邻各相同标高点用圆 滑线连接,即为煤层底板等高线。 (5)如剖面上有断层,需要先连断煤交线。方法是将上下盘断失点

地下洞室的围岩分类方法

第四节地下工程的围岩分类 围岩分类是为解决地下洞室的围岩稳定和支护问题而建立的。因而围岩分类是围绕地下洞室的稳定性和支护的影响因素而作为分类原则,这些因素主要有:岩体的结构特征和完整状态;岩体强度;岩石的风化程度;地下水的影响;区域构造影响和地震影响等。在实际制定围岩分类时,一般主要考虑岩体强度、岩体结构特征和完整程度以及地下水活动等方面的因素。国内外的围岩分类所选取的基本因素大致都是这样,但在综合反映基本因素的指标上是不同的。 一、“普氏”分类 普氏分类在我国曾应用较广。主要是考虑岩性,而未考虑岩体构造和围岩完整性。围岩压力公式是把坚硬地层视作松散介质,形式上套用了松散地层中的压力拱理论和公式,即垂直压力为: P=γ0h1 (8-26) 式中P——垂直压力; h1——压力拱拱高,h1=a1/fkp ; a1——压力拱半跨; fkp——岩石坚硬系数; γ0——围岩的重度。 工程地质勘测工作基本上是根据地质条件和经验确定fkp值。见表8-16。或按下面的经验公式确定fkp值: fkp=Rc/10 (8-27) 式中Rc——岩石的单轴抗压强度(MPa)。 普氏岩石分类表8-16

这种方法曾在我国较长时期内得到广泛的应用。目前有些单位仍应用此分类。但在长期工程实践中,发现这种分类与其计算方法存在严重的缺陷。 1.它主要是为估计土石工程的工作量、确定施工开挖定额服务的。因此它只能说明岩石开挖的难易程度,不能全面反映岩体的稳定性。 2.fkp值以岩石强度为基础,大量工程实践证明,决定岩体稳定性的主要因素是岩体结构特性,即它的完整性,在分类中虽然也规定要根据岩石的物理状态(风化的、破碎的)划归于较低一类去,这样给确定fkp值带来了很大的主观臆断性。我国各部门由于工程特点不同,确定fkp值标准也不同。甚至在同一地点对同一洞室的岩石,不同的人可以得出相差很大的fkp值。 3.分类等级较多,给使用上带来不便。由于选用的fkp值不同,相应计算得到的围岩压力也相差很大。当fkp=2和fkp=4时,则压力可相差近一倍。 4.普氏压力计算公式根据松散体理论而得,而地下洞室多位于坚硬及中等坚硬以上较完整的岩体中,理论假设前提与客观实际相差太大。一般来说,在坚硬地层中围岩压力公式计算结果偏大,而在松散地层中计算结果偏小。

如何编制煤层底板等高线图

编制煤层底板等高线图 一、实习目的 掌握煤层底板等高线图的编制方法的步骤。熟悉不同地质构造在煤层底板底高线图上的表现形式。 二、原理方法 1、概述 煤田勘探的最终目的,是为了了解煤层的埋藏深藏及其起伏变化,研究煤层的厚度、结构、煤质、储量、水文地质以及其它与开采有关的技木条件,对勘探区作出正确的工业评价,为煤矿企业的设计、建设与开采提供必要的资料,以保证煤炭资源得到合理和顺利地开发。 (1)基求概念 煤层底板等高线图,就是用煤层底板等高线来表示煤层在空间的起伏及被断裂的情况,它可以帮助我们了解煤层底板的空间概念,掌握煤层产状和构造的变化。此外,还能表示古河流冲蚀煤层的界线,煤层尖灭线,岩浆岩分布的界线以及煤种牌号区划界线等,因而在煤炭资源勘探以及煤矿生产中得到广泛应用。 煤系地层形成后,夹在地层中的煤层层面,包括顶面和底面,并不是一个平面,由于受构造变化的影响,大多为一空间曲面,它的起伏与变化,对煤矿生产有很大影响。同时,煤层底板等高线图编制的好坏,在一定程度上,也会影响对煤田的开发。在进行普查与勘探时,一般根据孔口标高及煤层底板深度资料可以获得煤层底面各点的标高,把各标高相等的点联结起来,就构成一条等值线,如果我们每隔一定高度 (如50米、100米等),各选取一条等值线,把它投影到平面上,就成煤层底板等高线图,如图5-1。 该图为一个煤盆构造,为了图示清楚起见,只画出半个煤盆,并表示出煤层顶板和底板的曲面,煤盆中虚线,为煤层底板曲面与水平面的交线,投影到平面上,成为五圈等高线,根据这五圈等高线呈同心圆状和外圈标高值较大这两个特点,很快就可以断定是一个煤盆构造,等高线之间的高差是10米,即h=10。所以简单地说,同一层面上高度相等的各点联线叫做构造等高线,用构造等高线表

第6章岩休的工程地质性质及岩体工程分类

第六章岩体的工程地质性质及岩体工程分类 1、按结构成因,结构面分为原生、构造、次生结构面。岩体受构造应力作用所产生的破裂面指的是()。 A. 原生结构面 B.构造结构面 C. 次生结构面 D.节理面 2、在地下洞室的围岩分类中,RQD表示()。 A. 岩石质量 B.岩石质量指标 C. 岩体质量 D.岩体质量指标 3、变质岩的片理面属于()。 A. 节理面 B.原生结构面 C. 次生结构面 D.构造结构面 4、沉积岩的层理面属于()。 A. 原生结构面 B.构造结构而 C. 次生结构面 D.节理而 5、风化作用在岩石中形成的结构面()。 A.原生结构面 B.构造结构面 C.次生结构面 D.构造面 6、下列各结构面为原生结构面的是()。 A.片理面B.断层面C.节理面D.卸荷裂隙面 7、岩体工程性质不仅取决于组成它的岩石,更主要是取决于它的( )。 A.结构体形态 B.矿物成份 C.不连续性 D.岩石构造 8、岩体结构是指( )。 A.结构面和结构体的组合形式 B.岩石块体的大小和形态 C.结构面的空间分布状况 D.岩体各向异性的持征 9、(),层状结构,碎裂结构,散体结构是结构体的四大类型。 A.砾石结构 B.砂状结构 C.粗粒结构 D.整体块状结构 10、在岩体结构类型中,构造变动中等,具中厚层状的沉积岩应属于()。 A.整体块状结构 B.层状结构 C.碎裂结构 D.散体结构 11、次生结构面的常见代表是()。 A.冷缩节理,层理,片理 B.张节理,剪节理,断层 C.风化裂隙,爆破裂隙,御荷裂隙,溶蚀裂隙 D.不整合接触界面 12、在结构面强度中,最重要的是()。 A.抗压强度 B.抗拉强度 C.抗剪强度 D.抗弯强度

相关文档
最新文档