高中数学选修2-2导学案

高中数学选修2-2导学案
高中数学选修2-2导学案

高二数学导学案

§1.1.1

函数的平均变化率导学案

【学习要求】

1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率.

3.能利用平均变化率解决或说明生活中的一些实际问题.

【学法指导】

从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.

【知识要点】

1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商x

x f x x f ?-?+)

()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间

的 .

2.函数y =f (x )的平均变化率的几何意义:Δy

Δx =__________

表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 .

【问题探究】

在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究

这个问题.

探究点一 函数的平均变化率

问题1 如何用数学反映曲线的“陡峭”程度? 问题2 什么是平均变化率,平均变化率有何作用?

例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.

问题3 平均变化率有什么几何意义? 跟踪训练1 如图是函数y =f (x )的图象,则:

(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 探究点二 求函数的平均变化率

例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率:

(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].

跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )

时的平均变化率.

问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?

探究点三 平均变化率的应用

例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?

跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?

【当堂检测】

1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________

2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________ 3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.

【课堂小结】

1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =1

2

12)

()(x

x x f x f --.

【拓展提高】

1.设函数()y f x =,当自变量x 由0x 改变到0x x +?时,函数的改变量y ?为( )

A .0()f x x +?

B .0()f x x +?

C .0()f x x ?

D .00()()f x x f x +?- 2.质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( )

A .6t +?

B .9

6t t

+?+? C .3t +? D .9t +?

【教学反思】

高二数学导学案

瞬时速度与导数导学案

【学习要求】

1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.

2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率. 3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法. 4.理解并掌握开区间内的导数的概念,会求一个函数的导数.

【学法指导】

导数是研究函数的有力工具,要认真理解平均变化率和瞬时变化率的关系,体会无限逼近的思想;可以从物理意义,几何意义多角度理解导数.

【知识要点】

1.瞬时速度:我们把物体在某一时刻的速度称为 .

设物体运动路程与时间的关系是s =s (t ),物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率

t t s t t s ?-?+)()(00,当Δt →0时的极限,即v =lim Δt →0

Δs

Δt =__________________

2.瞬时变化率:一般地,函数y =f (x )在x 0处的瞬时变化率是lim Δx →0

Δy

Δx

=_________________. 3.导数的概念:一般地,函数y =f (x )在x 0处的瞬时变化率是_________________,我们称它为函数y =f (x )在x =x 0处的 ,记为 ,即f ′(x 0)=lim Δx →0

Δy

Δx

=________________ 4.导函数:如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b ) .这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数)(x f ',于是在区间(a ,b )内,)(x f '构成一个新的函数,把这个函数称为函数y =f (x )的 .

记为 或y ′(或y ′x ).导函数通常简称为

【问题探究】

探究点一 瞬时速度

问题1 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态? 问题2 物体的平均速度能否精确反映它的运动状态? 问题3 如何描述物体在某一时刻的运动状态?

例1 火箭竖直向上发射.熄火时向上速度达到100 s m /.试问熄火后多长时间火箭向上速度为0? 问题4 火箭向上速度变为0,意味着什么?你能求出此火箭熄火后上升的最大高度吗?

跟踪训练1 质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2时的瞬时速度为8s m /,求常数a 的值.

探究点二 导 数

问题1 从平均速度当Δt →0时极限是瞬时速度,推广到一般的函数方面,我们可以得到什么结论? 问题2 导数和瞬时变化率是什么关系?导数有什么作用? 问题3 导函数和函数在一点处的导数有什么关系?

例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 跟踪训练2 已知y =f (x )=x +2,求f ′(2). 探究点三 导数的实际应用

例3 一正方形铁板在0℃时,边长为10cm ,加热后铁板会膨胀.当温度为C t 0

时,边长变为10(1+at )cm ,a 为常数,试求铁板面积对温度的膨胀率.

跟踪训练3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h

时,原油的温度(单位:C 0

)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时

变化率,并说明它们的意义.

【当堂检测】

1.函数y =f (x )在x =x 0处的导数定义中,自变量x 在x 0处的增量Δx ( ) A .大于0 B .小于0 C .等于0 D .不等于0

2.一物体的运动方程是s =1

2

at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( )

A .at 0

B .-at 0

C .1

2at 0 D .2at 0

3.已知f (x )=-x 2+10,则f (x )在x =3

2处的瞬时变化率是 ( )

A .3

B .-3

C .2

D .-2

4.已知函数f (x )=1

x ,则)1(f '=________

【课堂小结】1.瞬时速度是平均速度当Δt →0时的极限值;瞬时变化率是平均变化率当Δx →0时的极限值. 2.利用导数定义求导数的步骤:

(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy

Δx ;

(2)取极限得导数f ′(x 0)=lim Δx →0

Δy Δx

. 【拓展提高】

1.()()()为则设h

f h f f h 233lim

,430

--='→( )

A .-1

B .-2

C .-3

D .1

2.一质点做直线运动,由始点起经过t s 后的距离为234

1644

1t t t s +-=

,则速度为零的时刻是 ( ) A .4s 末 B .8s 末 C .0s 与8s 末 D .0s ,4s ,8s 末

【教学反思】

高二数学导学案

导数的几何意义导学案

【学习要求】1.了解导函数的概念,理解导数的几何意义.2.会求导函数.3.根据导数的几何意

义,会求曲线上某点处的切线方程.【学法指导】前面通过导数的定义已体会到其中蕴涵的逼近思想,本节再利用数形结合思想进一步直观感受这种思想,并进一步体会另一种重要思想——以直代曲.

【知识要点】1.导数的几何意义

(1)割线斜率与切线斜率

设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx )) 的一条割线,此割线的斜率是Δy

Δx

=__________________.

当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋向于在点A 的切线AD 的斜率k ,即k = =___________________. (2)导数的几何意义

函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为_______________________. 2.函数的导数

当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,)(x f '是x 的一个函数,称)(x f '是f (x )的导函数(简称导数).)(x f '也记作y ′,即)(x f '=y ′=_______________

【问题探究】探究点一 导数的几何意义

问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?

问题2 曲线的切线是不是一定和曲线只有一个交点?

例1 如图,它表示跳水运动中高度随时间变化的函数h (t )=-4.9t 2+6.5t +10的图象.根据图象,请描述、比较曲线h (t )在t 0,t 1,t 2附近的变化情况. 跟踪训练1 (1)根据例1的图象,描述函数h (t )在t 3和t 4附近增(减)以及增(减)快慢的情况.

(2)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是 ( )

探究点二 求切线的方程

问题1 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?

问题2 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 例2 已知曲线y =x 2,求:

(1)曲线在点P (1,1)处的切线方程; (2)曲线过点P (3,5)的切线方程.

跟踪训练2 已知曲线y =2x 2-7,求:

(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程.

【当堂检测】

1.已知曲线f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为 ( ) A .4 B .16 C .8 D .2

2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则 ( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为_______

【课堂小结】1.导数

f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0

f (x 0+Δx )-f (x 0)

Δx

=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度. 2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.

3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.

【拓展提高】1.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122

y x =+,则

(1)(1)f f '+=

2.设P 为曲线C :2

23y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π??????

,,则点P

横坐标的取值范围为

高二数学导学案

导数公式表及应用导学案

【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1

x 的导数.

2.能利用给出的基本初等函数的导数公式求简单函数的导数.

【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式

函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣.

2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.

【知识要点】

1

2

【问题探究】探究点一

求导函数

问题1 怎样利用定义求函数y =f (x )的导数? 问题2 利用定义求下列常用函数的导数:

(1) y =c ; (2)y =x ; (3)y =x 2; (4)y =1

x ; (5)y =x .

问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?

例1 求下列函数的导数:

(1)y =sin π3; (2)y =5x ; (3)y =1x

3; (4)y =4

x 3; (5)y =log 3x .

跟踪训练1 求下列函数的导数:

(1)y =x 8; (2)y =(1

2

)x ; (3)y =x x ; (4)x y 3

1log =

探究点二 求某一点处的导数 例2 判断下列计算是否正确.

求f (x )=cos x 在x =π3处的导数,过程如下:f ′????π3=????cos π3′=-sin π3=-3

2.

跟踪训练2 求函数f (x )=13

x

在x =1处的导数.

探究点三 导数公式的综合应用

例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.

跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.

【当堂检测】

1.给出下列结论:

①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x

2,则y ′=-2x -

3;④若f (x )=3x ,

则f ′(1)=3.

其中正确的个数是 ( )

A .1

B .2

C .3

D .4 2.函数f (x )=x ,则f ′(3)等于 ( ) A .

3

6

B .0

C .12x

D .3

2

3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是

( ) A .[0,π4]∪[3π

4

,π)

B .[0,π)

C .[π4,3π

4

]

D .[0,π4]∪[π2,3π

4

]

4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________

【课堂小结】

1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.

如求y =1-2sin 2x 2 的导数.因为y =1-2sin 2x

2=cos x ,所以y ′=(cos x )′=-sin x .

3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化

高二数学导学案

导数的四则运算法则(一)

【学习要求】

1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.【学法指导】

应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的.

【知识要点】

导数的运算法则

设两个可导函数分别为f (x )和g (x )

【问题探究】

探究点一 导数的运算法则

问题1 我们已经会求f (x )=5和g (x )=1.05x 等基本初等函数的导数,那么怎样求f (x )与g (x )的和、差、积、商的导数呢?

问题2 应用导数的运算法则求导数有哪些注意点? 例1 求下列函数的导数:

(1)y =3x

-lg x ; (2)y =(x 2

+1)(x -1); (3)y =x 5+x 7+x 9

x

.

跟踪训练1 求下列函数的导数:

(1)f (x )=x ·tan x ; (2)f (x )=2-2sin 2x 2; (3)f (x )=x -1x +1; (4)f (x )=sin x

1+sin x .

探究点二 导数的应用

例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为_______________

(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________

(3)已知某运动着的物体的运动方程为s (t )=t -1

t

2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体

的瞬时速度.

跟踪训练2 (1)曲线y =

sin x sin x +cos x -1

2在点M ????π4,0处的切线的斜率为 ( ) A .-12

B.1

2

C .-

22 D .22

(2)设函数f (x )=13x 3-a

2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、

c 的值.

【当堂检测】

1.设y =-2e x sin x ,则y ′等于 ( )

A .-2e x cos x

B .-2e x sin x

C .2e x sin x

D .-2e x (sin x +cos x )

2.曲线f (x )=x

x +2在点(-1,-1)处的切线方程为( )

A .y =2x +1

B .y =2x -1

C .y =-2x -3

D .y =-2x +2 3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )

A .19

3

B .163

C .13

3

D .103

4.已知f (x )=1

3

x 3+3xf ′(0),则f ′(1)=_______

5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值.

【课堂小结】

求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.

【教学反思】

高二数学导学案

导数的四则运算法则(二)

【学习要求】

1.了解复合函数的概念,掌握复合函数的求导法则.

2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax +b)的导数).

【学法指导】

复合函数的求导将复杂的问题简单化,体现了转化思想;学习中要通过中间变量的引入理解函数的复合过程.

【问题探究】

探究点一复合函数的定义

问题1观察函数y=2x cos x及y=ln(x+2)的结构特点,说明它们分别是由哪些基本函数组成的?

问题2对一个复合函数,怎样判断函数的复合关系?

问题3在复合函数中,内层函数的值域A与外层函数的定义域B有何关系?

例1指出下列函数是怎样复合而成的:

(1)y=(3+5x)2;(2)y=log3(x2-2x+5);(3)y=cos 3x.

跟踪训练1指出下列函数由哪些函数复合而成:

(1)y=ln x;(2)y=e sin x;(3)y=cos (3x+1).

探究点二复合函数的导数

问题如何求复合函数的导数?

例2求下列函数的导数:

(1)y=(2x-1)4;(2)y=

1

1-2x

;(3)y=sin(-2x+

π

3);(4)y=10

2x+3.

跟踪训练2求下列函数的导数.

(1)y =ln 1

x ; (2)y =e 3x ; (3)y =5log 2(2x +1).

探究点三 导数的应用 例3 求曲线y =e 2x +1

在点(-1

2

,1)处的切线方程.

跟踪训练3 曲线y =e 2x cos 3x 在(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.

【当堂检测】

1.函数y =(3x -2)2的导数为 ( )

A .2(3x -2)

B .6x

C .6x (3x -2)

D .6(3x -2) 2.若函数y =sin 2x ,则y ′等于 ( )

A .sin 2x

B .2sin x

C .sin x cos x

D .cos 2x 3.若y =f (x 2),则y ′等于 ( )

A .2xf ′(x 2)

B .2xf ′(x )

C .4x 2f (x )

D .f ′(x 2) 4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.

【课堂小结】

1.求简单复合函数f (ax +b )的导数

2.求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.

【拓展提高】

1 .已知函数

2)1l n ()(x x a x f -+=在区间)1,0(内任取两个实数q p ,,且q p ≠,不等式

1)

1()1(>-+-+q

p q f p f 恒成立,则实数a 的取值范围为____________

【教学反思】

高二数学导学案

利用导数判断函数的单调性

【学习要求】

1.结合实例,直观探索并掌握函数的单调性与导数的关系.

2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.

3.会求函数的单调区间(其中多项式函数一般不超过三次).

【学法指导】

结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想.

【知识要点】

一般地,在区间(a,b)内函数的单调性与导数有如下关系:

【问题探究】

探究点一函数的单调性与导函数正负的关系

问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?

问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?

问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1

中(4)的单调区间.

(2)函数的单调区间与其定义域满足什么关系?

例1已知导函数f′(x)的下列信息:

当10;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0.

试画出函数f(x)图象的大致形状.

跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.

例2求下列函数的单调区间:

(1)f(x)=x3-4x2+x-1;(2)f(x)=2x(e x-1)-x2;(3)f(x)=3x2-2ln x. 跟踪训练2求下列函数的单调区间:

(1)f(x)=x2-ln x;(2)f(x)=

e x

x-2

;(3)f(x)=sin x(1+cos x)(0≤x<2π).

探究点二函数的变化快慢与导数的关系

问题我们知道导数的符号反映函数y=f(x)的增减情况,怎样反映函数y=f(x)增减的快慢呢?你能否从导数的角度解释变化的快慢呢?

例3如图,设有圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是下图所示的四种情况中的哪一种?

()

跟踪训练3(1)如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.

(2)已知f ′(x )是f (x )的导函数,f ′(x )的图象如图所示,则f (x )的图象只可能是 ( )

【当堂检测】

1.函数f (x )=x +ln x 在(0,6)上是 ( )

A .单调增函数

B .单调减函数

C .在????0,1e 上是减函数,在????1e ,6上是增函数

D .在????0,1e 上是增函数,在????1

e ,6上是减函数 2.

f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )

3.函数f (x )=ln x -ax (a >0)的单调增区间为 ( ) A .???

?0,1

a B .???

?1

a ,+∞ C .(0,+∞) D .(0,a ) 4.(1)函数y =x 2-4x +a 的增区间为_________,减区间为___________

(2)函数y =x 3-x 的增区间为_______________________,减区间为_____________

【课堂小结】

1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.

2.利用导数求函数f (x )的单调区间的一般步骤为 (1)确定函数f (x )的定义域; (2)求导数f ′(x );

(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;(4)根据(3)的结果确定函数f (x )的单调区间.

【拓展提高】

1.已知函数53

123

-++=

ax x x y (1)若函数的单调递减区间是)1,3(-,则a 的是 . (2)若函数在),1[+∞上是单调增函数,则a 的取值范围是

2.函数f (x )的定义域为R ,且满足f (2)=2,)(x f ' >1,则不等式f (x )-x >0的解集为_______ 3.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是_______ 4.设函数f (x )=x -1

x

-a ln x .

(1)若曲线y =f (x )在点(1,f (1))处的切线被圆x 2+y 2=1截得的弦长为2,求a 的值; (2)若函数f (x )在其定义域上为增函数,求实数a 的取值范围;

【教学反思】

高二数学导学案

利用导数研究函数的极值

【学习要求】

1.了解函数极值的概念,会从几何直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.

【学法指导】

函数的极值反映的是函数在某点附近的性质,是局部性质.函数极值可以在函数图象上“眼见为实”,通过研究极值初步体会函数的导数的作用.

【知识要点】

1.极值的概念

已知函数y =f (x ),设x 0是定义域(a ,b )内任一点,如果对x 0附近的所有点x ,都有 ,则称函数f (x )在点x 0处取 ,记作y

极大

=f (x 0),并把x 0称为函数f (x )的一个 .如果都

有 ,则称函数f (x )在点x 0处取 ,记作y 极小

=f (x 0),并把x 0称为函数f (x )的一

个 .极大值与极小值统称为 . 极大值点与极小值点统称为 2.求可导函数f (x )的极值的方法 (1)求导数f ′(x );

(2)求方程 的所有实数根;

(3)对每个实数根进行检验,判断在每个根的左右侧,导函数f ′(x )的符号如何变化. ①如果f ′(x )的符号由正变负,则f (x

0)是极 值. ②如果f ′(x )的符号由负变正,则f (x 0)是极 值.

③如果在f ′(x )=0的根x =x 0的左右两侧符号不变,则f (x 0)

【问题探究】

探究点一 函数的极值与导数的关系

问题1 如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律? 问题2 函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗? 问题3 若某点处的导数值为零,那么,此点一定是极值点吗?举例说明. 例1 求函数f (x )=x 3-3x 2-9x +5的极值.

跟踪训练1 求函数f (x )=3

x

+3ln x 的极值.

探究点二 利用函数极值确定参数的值

问题 已知函数的极值,如何确定函数解析式中的参数?

例2 已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值.

跟踪训练2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;

(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.

探究点三 函数极值的综合应用 例3 设函数f (x )=x 3-6x +5,x R . (1)求函数f (x )的单调区间和极值;

(2)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围.

跟踪训练3 若函数f (x )=2x 3-6x +k 在R 上只有一个零点,求常数k 的取值范围.

【当堂检测】

1.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取得极值”的 ( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 2.下列函数存在极值的是 ( )

A .y =1

x B .y =x -e x C .y =x 3+x 2+2x -3 D .y =x 3

3.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为 ( ) A .-1

B .-3

C .a <-1或a >2

D .a <-3或a >6

4.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为__________

5.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则a 的取值范围是________

【课堂小结】

1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值. 2.函数的极值是函数的局部性质.可导函数f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0且在x 0两侧f ′(x )符号相反.

3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.

【拓展提高】

1.已知三次函数c bx ax x x f +++=23)(在1=x 和1-=x 时取极值,且4)2(-=-f . (1)求函数)(x f y =的表达式;(2)求函数)(x f y =的单调区间和极值

2.若函数4)(3

+-=bx ax x f ,当2=x 时,函数)(x f 极值3

4-

, (1)求函数的解析式;(2)若函数k x f =)(有3个解,求实数k 的取值范围

【教学反思】

高二数学导学案

利用导数研究函数的最值

【学习要求】

1.理解函数最值的概念,了解其与函数极值的区别与联系. 2.会用导数求某定义域上函数的最值.

【学法指导】

弄清极值与最值的区别是学好本节的关键.

函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较.

【知识要点】

1.函数f (x )在闭区间[a ,b ]上的最值

函数f (x )在闭区间[a ,b ]上的图象是一条连续不间断的曲线,则该函数在[a ,b ]上一定能够取得最大值与最小值,函数的最值必在 处或 处取得. 2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求f (x )在开区间(a ,b )内所有使 的点;

(2)计算函数f (x )在区间内 和______的函数值,其中最大的一个为最大值,最小的一个为最小值.

【问题探究】

探究点一 求函数的最值

问题1 如图,观察区间[a ,b ]上函数y =f (x )的图象,你能找出它的极大值、极小值吗?

问题2 观察问题1的函数y =f (x ),你能找出函数f (x )在区间[a ,b ]上的最大值、最小值吗?若将区间改为(a ,b ),f (x )在(a ,b )上还有最值吗?由此你得到什么结论? 问题3 函数的极值和最值有什么区别和联系? 问题4 怎样求一个函数在闭区间上的最值? 例1 求下列函数的最值:

(1)f (x )=2x 3-12x ,x ∈[-1,3]; (2)f (x )=1

2x +sin x ,x ∈[0,2π]

跟踪训练1 求下列函数的最值:

人教版高中数学必修二全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空 1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是 6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5 .如图:右边长方体由左边的平面图形围成的

高中数学选修2-2导学案

高二数学导学案 §1.1.1 函数的平均变化率导学案 【学习要求】 1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率. 3.能利用平均变化率解决或说明生活中的一些实际问题. 【学法指导】 从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义. 【知识要点】 1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商x x f x x f ?-?+) ()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间 的 . 2.函数y =f (x )的平均变化率的几何意义:Δy Δx =__________ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 . 【问题探究】 在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究 这个问题. 探究点一 函数的平均变化率 问题1 如何用数学反映曲线的“陡峭”程度? 问题2 什么是平均变化率,平均变化率有何作用? 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义? 跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 探究点二 求函数的平均变化率 例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )

高中数学选修2-2学案7:2.2.2 反证法

2.2.2 反证法 学习要求 1.了解反证法是间接证明的一种基本方法. 2.理解反证法的思考过程,会用反证法证明数学问题. 知识要点 1.定义:假设原命题________,经过正确的推理,最后得出矛盾,因此说明_________,从而证明了__________,这种证明方法叫做反证法. 2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与__________矛盾,或与______矛盾,或与________________________矛盾等. 问题探究 探究点一反证法的概念 问题1王戎小时候,爱和小朋友在路上玩耍.一天,他 们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?” ”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用了什么方法? 问题2上述方法的含义是什么? 问题3反证法证明的关键是经过推理论证,得出矛盾. 反证法引出的矛盾有几种情况? 问题4反证法主要适用于什么情形? 探究点二用反证法证明定理、性质等一些事实结论

例1已知直线a,b和平面α,如果a?α,b?α,且a∥b,求证:a∥α. 小结数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法. 跟踪训练1已知:a∥b,a∩平面α=A,如图.求证:直线b与平面α必相交. 探究点三用反证法证明否定性命题 例2求证:2不是有理数.

人教版高中数学必修2全册学案(完整版)

第一章 立体几何初步 一、知识结构 二、重点难点 重点:空间直线,平面的位置关系。柱、锥、台、球的表面积和体积的计算公式。平行、垂直的定义,判定和性质。 难点:柱、锥、台、球的结构特征的概括。文字语言,图形语言和符号语言的转化。平行,垂直判定 与性质定理证明与应用。 第一课时 棱柱、棱锥、棱台 【学习导航】 学习要求 1.初步理解棱柱、棱锥、棱台的概念。掌握它们的形成特点。 2.了解棱柱、棱锥、棱台中一些常用 名称的含义。 3.了解棱柱、棱锥、棱台这几种几何 体简单作图方法 4.了解多面体的概念和分类. 【课堂互动】 自学评价 1. 棱柱的定义: 表示法: 思考:棱柱的特点:. 【答】 2. 棱锥的定义: 表示法: 思考:棱锥的特点:. 【答】 3.棱台的定义: 表示法: 思考:棱台的特点:. 【答】

4.多面体的定义: 5.多面体的分类: ⑴棱柱的分类 ⑵棱锥的分类 ⑶棱台的分类 【精典范例】 例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥; 丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。 以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3 例2:画一个四棱柱和一个三棱台。 【解】四棱柱的作法: ⑴画上四棱柱的底面----画一个四边形; ⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段; ⑶画下底面------顺次连结这些线段的另一个端点 互助参考7页例1 ⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去. 互助参考7页例1 点评:(1)被遮挡的线要画成虚线(2)画台由锥截得 思维点拔: 解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点: 例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗? 答:不能. 点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。 自主训练一 1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到? 答由四边形ABCD沿AA1方向平移得到. 2.右图中的几何体是不是棱台?为什么? 答:不是,因为四条侧棱延长不交于一点.3.多面体至少有几个面?这个多面体是怎样的几何体。 答:4个面,四面体. 第二课时圆柱、圆锥、圆台、球 【学习导航】 知识网络 A C B D A1 C1 B1 D1

(新教材)人教A版高中数学必修第二册学案 统计导学案含答案

9.1随机抽样 考点学习目标核心素养 抽样调查 理解全面调查、抽样调查、总体、个体、 样本、样本量、样本数据等概念 数学抽象 简单随机抽样 理解简单随机抽样的概念,掌握简单随机 抽 样的两种方法:抽签法和随机数法 数学抽象、逻辑推理分层随机抽样 理解分层随机抽样的概念,并会解决相关 问题 数学抽象、逻辑推理 问题导学 预习教材P173-P187的内容,思考以下问题: 1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么? 2.什么叫简单随机抽样? 3.最常用的简单随机抽样方法有哪两种? 4.抽签法是如何操作的? 5.随机数法是如何操作的? 6.什么叫分层随机抽样? 7.分层随机抽样适用于什么情况? 8.分层随机抽样时,每个个体被抽到的机会是相等的吗? 9.获取数据的途径有哪些? 1.全面调查与抽样调查 (1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W. (2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W. (3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况

作出估计和推断的调查方法,称为抽样调查W. (4)把从总体中抽取的那部分个体称为样本W. (5)样本中包含的个体数称为样本量W. (6)调查样本获得的变量值称为样本的观测数据,简称样本数据. 2.简单随机抽样 (1)有放回简单随机抽样 一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n

高中数学必修二学案

§1.1.1 柱、锥、台、球的结构特征 一、课前准备 (预习教材P2~ P4,找出疑惑之处) 引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、基础探究 1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么? 图1 2.【研读课本】 (1)多面体的概念:叫多面体, 叫多面体的面,叫多面体的棱, 叫多面体的顶点。 ①棱柱:两个面,其余各面都是,并且每相邻两个四 边形的公共边都,这些面围成的几何体叫作棱柱 ②棱锥:有一个面是,其余各面都是的三角形,这些面 围成的几何体叫作棱锥 ③棱台:用一个棱锥底面的平面去截棱锥,, 叫作棱台。 (2)旋转体的概念: 叫旋转体,叫旋转体的轴。

①圆柱:所围成的 几何体叫做圆柱. ②圆锥:所围成的 几何体叫做圆锥. ③圆台:的部分叫 圆台. ④球的定义 三、能力探究 例1.(1)如图,观察四个几何体,其中判断正确的是() A.(1)是棱台 B.(2)是圆台 C.(3)是棱锥 D.(4)不是棱柱 (2)下列说法错误的是() A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 (3)下列命题中正确的是() A.棱台各侧棱的延长线交于一点 B.以直角梯形的一腰为轴旋转所得的旋转体是圆台 C.连接圆柱上、下底面圆周上两点的线段是圆柱的母线 D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径 (4)下列几个命题中, ①两个面平行且相似,其余各面都是梯形的多面体是棱台; ②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台; ③各侧面都是正方形的四棱柱一定是正方体; ④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.() A.1 B.2 C.3 D.4 (5)下列说法中不正确的是() A 棱与侧棱是同一概念 B 三棱锥与四面体是同一概念 C四棱柱有4条体对角线 D 存在这样的棱锥,它的各个面都是直角三角形 (6)一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为______cm. 例2有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?如果不是,请举例说明。

高中数学选修2-1 抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案 【学习要求】 1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【学法指导】 通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用. 【知识要点】 1.抛物线的定义 平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2 探究点一 抛物线定义 如图,我们在黑板上画一条直线EF ,然后取一个三角板,将一条拉链AB 固定在三角板的一条直角边 上,并将拉链下边一半的一端固定在C 点,将三角板的另一条直角边贴在直线EF 上,在拉锁D 处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线. 问题1 画出的曲线是什么形状? 问题2 |DA |是点D 到直线EF 的距离吗?为什么? 问题3 点D 在移动过程中,满足什么条件? 问题 4 在抛物线定义中,条件“l 不经过点F ”去掉是否可以? 例1 方程[] 2 2)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 跟踪训练1 (1)若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .直线 (2)若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆 B .双曲线 C .双曲线的一支 D .抛物线 探究点二 抛物线的标准方程 问题 1 结合求曲线方程的步骤,怎样求抛物线的标准方程? 问题2 抛物线方程中p 有何意义?标准方程有几种类型? 问题3 根据抛物线方程如何求焦点坐标、准线方程? 例2 已知抛物线的方程如下,求其焦点坐标和准线方程. (1)y 2=-6x ; (2)3x 2+5y =0; (3)y =4x 2; (4)y 2=a 2x (a ≠0). 跟踪训练2 (1)抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .??? ?7 16,0 B .????-74,0 C .??? ?-7 16,0 D .? ???0,-7 4 (2)抛物线y =-1 4x 2的准线方程是 ( ) A .x =1 16 B .x =1 C .y =1 D .y =2 例3 分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4); (3)焦点在直线x +3y +15=0上. 跟踪训练3 (1)经过点P (4,-2)的抛物线的标准方程为( ) A .y 2=x 或x 2=y B .y 2=x 或x 2=8y C .x 2=-8y 或y 2=x D .x 2=y 或y 2=-8x (2)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、

高中数学必修2全册导学案精编

高中数学必修二复习全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8 T1 (3))

人教版高中数学选修2-3学案 全册

§1.1 分类加法计数原理与分步乘法计数原理(1) ※学习目标 1.通过实例,总结出分类加法计数原理、分步乘法计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏. ※课前预习 1、预习目标 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 2、预习内容 分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m 1 种不同的方法,在第二类方 式,中有m 2种不同的方法,……,在第n类方式,中有m n 种不同的方法. 那么完成这件事共有 N= 种不同的方法. 分步计数原理:完成一件事,需要分成n个,做第1步有m 1 种不同的方法,做 第2步有m 2种不同的方法,……,做第n步有m n 种不同的方法,那么完成这件事共有 N= 种不同的方法。 3、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 预习自测 1从高二(1)班的50名学生中挑选1名同学担任学校元旦晚会主持人,有多少种不同挑选结果? 2一次会议共3人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?

二、新课导学 ※学习探究 探究任务一:分类计数原理 问题1:P2思考题1 分析:给座位编号的方法可分____类方法? 第一类方法用,有___ 种方法; 第二类方法用,有___ 种方法; ∴能编出不同的号码有__________ 种方法. 新知:分类计数原理-加法原理: 如果完成一件工作有两类不同的方案,由第1类方案中有m种方法,在第2类方案中有n种 m+种不同的方法. 不同的方法,那么,完成这件工作共有n 试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是. 反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗? 探究任务二:分步计数原理 问题2:P3思考题2 分析:每一个编号都是由个部分组成,第一部分是,有____种编法,第二部分是,有种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有个. 新知:分步计数原理-乘法原理: 完成一件工作需要两个步骤,完成第1步有m种不同的方法,完成第2步有n种不同的方 m?种不同方法。 法,那么,完成这件工作共有n 试试:P4例2

高中数学《函数的表示法》导学案

1.2.2函数的表示法 第1课时函数的表示法 1.函数的表示法 (1)解析法:□1用数学表达式表示两个变量之间的对应关系. (2)图象法:□2用图象表示两个变量之间的对应关系. (3)列表法:□3列出表格来表示两个变量之间的对应关系. 2.对三种表示法的说明 (1)解析法:利用解析式表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域. (2)图象法:图象既可以是连续的曲线,也可以是离散的点. (3)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性. 1.判一判(正确的打“√”,错误的打“×”) (1)任何一个函数都可以用列表法表示.() (2)任何一个函数都可以用解析法表示.() (3)函数的图象一定是定义区间上一条连续不断的曲线.() 答案(1)×(2)×(3)× 2.做一做 (1)函数f(x)是一次函数,若f(1)=1,f(2)=2,则函数f(x)的解析式是________. (2)某教师将其1周课时节次列表如下: X(星期)12345

Y (节次) 2 4 5 3 1 从这个表中看出这个函数的定义域是________,值域是________. (3)(教材改编P 23T 3)画出函数y =|x +2|的图象. 答案 (1)f (x )=x (2){1,2,3,4,5} {2,4,5,3,1} (3) 探究1 作函数的图象 例1 作出下列函数的图象并求出其值域. (1)y =2 x ,x ∈[2,+∞); (2)y =x 2+2x ,x ∈[-2,2]. 解 (1)列表: x 2 3 4 5 … y 1 23 12 25 … 画图象,当x ∈[2,+∞)时,图象是反比例函数y =2 x 的一部分(图1),观察图象可知其值域为(0,1].

高中数学人教B版必修二学案:2.2.3 两条直线的位置关系

2.2.3两条直线的位置关系 [学习目标] 1.能用解方程组的方法求两条直线的交点坐标,能根据直线的一般式方程判定两条直线的位置关系,能根据斜率判定两条直线平行或垂直.2.进一步体会几何问题代数化的基本思想. [知识链接] 1.直线的倾斜角α的取值范围0°≤α<180°. 2.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k= y2-y1 x2-x1 . 3.直线方程的形式有点斜式、斜截式、两点式、截距式和一般式. [预习导引] 1.两条直线相交、平行与重合的条件 (1)两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0的位置关系, 可以用方程组 ?? ? ??A1x+B1y+C1=0 A2x+B2y+C2=0 的解的个数进行判断,也可用直线方程的系数进行判断,方法如下: 方程组的解位置关系 交点个 数 代数条件无解平行无交点 A1B2-A2B1=0且 B1C2-B2C1≠ 0(A2C1-A1C2≠0) 或 A1 A2= B1 B2≠ C1 C2 (A2B2C2≠0)

有唯一解 相交 有一个 交点 A 1 B 2-A 2B 1≠0 或A 1A 2 ≠B 1 B 2 (A 2B 2≠0) 有无数个解 重合 无数个 交点 A 1=λA 2, B 1=λB 2, C 1=λC 2(λ≠0)或A 1 A 2=B 1B 2 =C 1 C 2 (A 2B 2C 2≠ 0) (2)两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2的位置关系,也可用两直线的斜率和在y 轴上的截距来进行判断.具体判断方法如表所示. 位置关系 平行 重合 相交一般 相交垂直 图示 k ,b 满足 条件 k 1=k 2且b 1≠b 2 k 1=k 2且b 1=b 2 k 1≠k 2 k 1·k 2=-1 对坐标平面内的任意两条直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,有l 1⊥l 2?A 1A 2+B 1B 2=0. 如果B 1B 2≠0,则l 1的斜率k 1=-A 1B 1,l 2的斜率k 2=-A 2 B 2. 又可以得出:l 1⊥l 2?k 1k 2=-1. 要点一 直线的交点问题 例1 求经过原点,且经过直线2x +3y +8=0和x -y -1=0的交点的

高中数学导学案 等差数列

2.2 等差数列 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。 3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 (二)教学重、难点 重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 难点:概括通项公式推导过程中体现出的数学思想方法。 (三)学法与教学用具 学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。 教学用具:投影仪 (四)教学设想 [创设情景] 上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 [探索研究] 由学生观察分析并得出答案: (放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,…… 2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。 水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期

高中数学选修2-2教案_学案

高中数学教案选修全套 【选修2-2教案|全套】 目录 目录................................................................................. I 第一章导数及其应用 (1) §1.1.1变化率问题 (1) 导数与导函数的概念 (4) §1.1.2导数的概念 (6) §1.1.3导数的几何意义 (9) §1.2.1几个常用函数的导数 (13) §1.2.2基本初等函数的导数公式及导数的运算法则 (16) §1.2.2复合函数的求导法则 (19) §1.3.1函数的单调性与导数(2课时) (22) §1.3.2函数的极值与导数(2课时) (27) §1.3.3函数的最大(小)值与导数(2课时) (31) §1.4生活中的优化问题举例(2课时) (34) §1.5.3定积分的概念 (38) 第二章推理与证明 (42) 合情推理 (42) 类比推理 (45) 演绎推理 (48) 推理案例赏识 (50) 直接证明--综合法与分析法 (52) 间接证明--反证法 (54) 数学归纳法 (56) 第3章数系的扩充与复数的引入 (67) §3.1数系的扩充和复数的概念 (67) §3.1.1数系的扩充和复数的概念 (67) §3.1.2复数的几何意义 (70) §3.2复数代数形式的四则运算 (73) §3.2.1复数代数形式的加减运算及几何意义 (73) §3.2.2复数代数形式的乘除运算 (77)

第一章 导数及其应用 §1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均 膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212)()(V V V r V r - -

苏教版高中数学必修二导学案答案

解析几何 2.1.1 直线的斜率 ? 2.11,,172 - 3. 4.3,3 5.180α?- 6.1 7.(1)m>1或m<-5; (2)m=-5; (3)-5

新苏教版高中数学选修2-2教学案(全册 共214页)

新苏教版高中数学选修2-2教学案(全册) _1.1导数的概念 1.1.1 平均变化率 假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1). 问题1:若旅游者从A 点爬到B 点,则自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:Δx =x 1-x 0,Δy =y 1-y 0. 问题2:如何用Δx 和Δy 来刻画山路的陡峭程度? 提示:对于山坡AB ,可用Δy Δx 来近似刻画山路的陡峭程度. 问题3:试想Δy =y 1-y 0 x 1-x 0的几何意义是什么? 提示:Δy Δx =y 1-y 0 x 1-x 0 表示直线AB 的斜率. 问题4:从A 到B ,从A 到C ,两者的Δy Δx 相同吗?Δy Δx 的值与山路的陡峭程度有什么关系? 提示:不相同.Δy Δx 的值越大,山路越陡峭. 1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为 f (x 2)-f (x 1) x 2-x 1 . 2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”. 在函数平均变化率的定义中,应注意以下几点:

(1)函数在[x 1,x 2]上有意义; (2)在式子f (x 2)-f (x 1) x 2-x 1 中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0. (3)在平均变化率中,当x 1取定值后,x 2取不同的数值时,函数的平均变化率不一定相同;同样的,当x 2取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同. [对应学生用书P3] [例1] (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率. [思路点拨] 求出所给区间内自变量的改变量及函数值的改变量,从而求出平均变化率. [精解详析] (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为: f (2.1)-f (2)2.1-2 =(3×2.12+2)-(3×22+2) 0.1=12.3. (2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g (-1)-g (-2) (-1)-(-2) = [3×(-1)-2]-[3×(-2)-2](-1)-(-2) = (-5)-(-8) -1+2 =3. [一点通] 求函数平均变化率的步骤为: 第一步:求自变量的改变量x 2-x 1; 第二步:求函数值的改变量f (x 2)-f (x 1); 第三步:求平均变化率f (x 2)-f (x 1) x 2-x 1 . 1.函数g (x )=-3x 在[2,4]上的平均变化率是________. 解析:函数g (x )=-3x 在[2,4]上的平均变化率为g (4)-g (2)4-2=-3×4-(-3)×2 4-2 = -12+6 2 =-3. 答案:-3 2.如图是函数y =f (x )的图象,则:

高中数学导学案

§3.1.2 空间向量的数乘运算(一) 班级:二年级 组名:数学 设计人: 审核人: 领导审批: 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. P 86~ P 87,找出疑惑之处) 复习1:化简:⑴ 5(32a b - )+4(23b a - ); ⑵ ()()63a b c a b c -+--+- . 2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b ,若b 是非零向量,则a 与b 平行的充要条件 学习探究(由学生完成) 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关 系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线: 定理:对空间任意两个向量,a b (0b ≠ ), //a b 的充要条件是存在唯一 实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 反思:充分理解两个向量,a b 共线向量的充要条件中的0b ≠ ,注意零向 量与任何向量共线. 知识应用:已知5,28,AB a b BC a b =+=-+ ()3CD a b =- ,求证: A,B,C 三点共线. 精讲例题 例1 已知直线AB ,点O 是直线AB 外一点,若O P xO A yO B =+ ,且x +y =1, 试判断A,B,P 三点是否共线?

变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12 O P O A tO B =+ , 那么t = 例2 已知平行六面体''''ABC D A B C D -,点M 是棱AA ' 的中点,点G 在 对角线A ' C 上,且CG:GA ' =2:1,设CD =a ,' ,CB b CC c == ,试用向量,,a b c 表示向量' ,,,C A C A C M C G . 变式1:已知长方体''''ABC D A B C D -,M 是对角线AC ' 中点,化简下列 表达式:⑴ ' AA CB - ;⑵ '''''AB B C C D ++ ⑶ ' 111222 AD AB A A +- 变式2:如图,已知,,A B C 不共线,从平面ABC 外任一点O ,作出点,,,P Q R S ,使得: ⑴22OP OA AB AC =++ ⑵32O Q O A AB AC =-- ⑶32OR OA AB AC =+- ⑷ 23OS OA AB AC =+- . 小结(由学生完成)空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向. ※ 动手试试(由学生完成) 练1. 下列说法正确的是( ) A. 向量a 与非零向量b 共线,b 与c 共线,则a 与c 共线; B. 任意两个共线向量不一定是共线向量; C. 任意两个共线向量相等; D. 若向量a 与b 共线,则a b λ= . 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠ ,若//a b ,求实数.x 三、总结提升 ※ 学习小结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. 知识拓展 平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.

人教版高中数学选修2-2学案:2.2.3数学归纳法

2.2.3数学归纳法(一) 【学习目标】 1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤; 2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写; 3.理解数学归纳法中递推思想. 【新知自学】 知识回顾: 1.证明方法: (1)直接证明???_________ _________; (2)间接证明:________. 新知梳理: 1.问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么? 2.数学归纳法两大步: (1)归纳奠基:证明当n 取第一个值n 0时命题成立; (2)归纳递推:假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 3.数学归纳法是一种完全归纳的证明方法,主要用于研究与正整数有关的数学问题.在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 对点练习: 1.若f (n )=1+12+13+…+16n -1 (n ∈N +),则f (1)为() A .1 B .15 C .1+12+13+14+15 D .非以上答案 2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则() A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14

C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14 3.用数学归纳法证明:当为整数时, 2135(21)n n ++++-=. 【合作探究】 典例精析: 2222*(1)(21)123,6n n n n n N ++++++=∈ 变式练习: 2*1427310(31)(1),n n n n n N ?+?+?+ ++=+∈

相关文档
最新文档