正确选择减速调速电机额定功率的方法要点

正确选择减速调速电机额定功率的方法要点

正确选择减速调速电机额定功率的方法

减速调速电机的额定功率大小必须根据被驱动的负载所需的功率来决定.如果减速调速电机的额定功率选得过小,就会导致减速调速电机起动困难,如果勉强起动工作,也会由于电流超过额定值而会导致减速调速电机过热甚至烧毁.如果减速调速电机的额定功率选得过大,形成“大马拉小车”,虽然能保证生产机械正常运行,但由于减速调速电机长期处于轻载状态,不仅会造成资金和材料的浪费,而且减速调速电机的效率和功率因数都较低,从而白白浪费了电力.

三相异步减速调速电机功率因数和效率随负荷变化情况负荷空载1/4负载1/2负载3/4负载满负载

功率因数0.2 0.5 0.77 0.85 0.89 效率0 0.78 0.85 0.88 0.875

有表可知,减速调速电机带3/4负载时的效率和功率因数都较高.因此,减速调速电机额定功率选得比负载功率稍大较好.目前生产的大部分生产机械都注明了需要配用多大功率的减速调速电机,可以直接按其要求选用.

减速调速电机的额定功率是根据它的发热情况来选择的.在容许的温度范围以内,减速调速电机的绝缘材料的使用寿命一般约为15~25年.如果温度超过了容许值范围,就会使减速调速电机的使用寿命缩短.由于减速调速电机发热情况与负载的大小及运行时间的长短有关.

RV减速机选型的具体方法

关于RV减速机选型的具体方法 机械、电子电器、筑路机械、化工机械、食品机械等行业中,主要起到降低转速,增加转矩的作用,由于减速机的种类繁多,型号各异,很多顾客在购买减速机时很头疼的问题,就是不知道如何选择,东莞台机作为专业生产各种类型减速机的公司,在减速机选型方面拥有颇多经验,所以台机减速机就分享一下关于rv减速机的如何选型: 第一步:根据需求确定减速机类型 减速机的类型很多,如果齿轮传动的类型可分为:蜗杆减速机、圆柱齿轮减速机等。如果按传动级数可分为:双级减速机与单级减速机以及多级减速机。按安装方式可为分:卧式与立式。如按铸造类型可以分为铸铁式与铝合金两种。你的减速机将用到什么地方、需要具备什么功能首先要搞清楚,然后确定自己要的是蜗轮蜗杆减速机、铝合金减速机、还是RV减速机,级数是单级还是双级。 第二步:了解减速机的基本参数 减速机在选型过程中需要知道的几个系数分别是:工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数、电机功率、电机转速、减速机速 第三步:确定减速机的传动比 按照公式:电机转速/工作机转速,根据用户要求的传动比选取接近的公称传动比。

第四步:确定减速机具体参数 计算减速机的中心距、扭矩、键长以及所需电机功率、工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数等等。 第五步:校核减速机的热功率能否通过 热功率=负载功率*环境温度系数*负荷功率系数*公称功率利用系数小于等于减速机功率(没有冷却措施的前提下)。对于圆柱齿轮减速机,只有采用盘状管冷却时,计算减速机功率(盘状管冷却或循环油润滑)大于热功率。因此可以选的减速机的型号,采用油池润滑,盘状水管通水冷却润滑油。如果不采用盘状管冷却,则需另选较大规格的减速机。 以上就关于RV减速机选型的具体要求,台机减速机建议购买减速机首先确定自己是需要什么类型什么型号,才能选择合适的减速机。切忌乱选、盲选,否则会带来严重后果。

交流电动机调速系统的分类

交流电动机调速系统的分类 1.同步电动机调速系统 同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。 如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。 采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。 负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。 交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。 2.异步电动机调速系统 在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。 (1)转差功率消耗型调速系统。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。 (2)转差功率回馈型调速系统。这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线异步电动机转子双馈调速即属于这一类。 (3)转差功率不变型调速系统。在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。如变极对数调速、变频调速两种调速方法即属于这一类。 2.异步电动机转差回馈型调速系统 双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。 因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。 绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。从广义上说,它也是双馈调速系统的一种。 在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、

(整理)圆柱齿轮减速机减速机的选用

圆柱齿轮减速机减速机的选用 一、概述 执行国家标准JB/8853-2001,硬齿面圆柱齿轮减速机。 适用范围: 1、高速轴转速不大于1500转/分 2、齿轮传动圆周速度不大于20米/秒 3、工作环境温度为-40~45度,如果低于0度,启动前润滑油应预热至0度以上,本减速机可用于正反两个方向运转。 二、特点: 1、齿轮采用高强度低碳合金钢经渗碳淬火而成,齿面硬度达到HRC58-62,齿轮均采用磨齿工艺,要求精度高,接触性好。 2、传动效率高:单级大于96%、双极大于93%、三级大于90% 3、传动平稳,噪音低 4、体积小、重量轻,使用寿命长,承载能力高。 5、便于拆检、便于安装。 三、减速机型号、规格及其表示方法 1、型号:ZDY、ZL Y、ZSY、ZFY圆柱齿轮减速机 2、规格:单级80——560 两级:112——710 三级:160——710 四级:180——800 3、表示方法: 型号—低速级中心距(mm)—公称传动比—装配型式标准号 D表示单级、L表示单级、S表示单级、F表示单级、Y表示采用硬质齿面齿轮 4、转向规定:配置逆止器的减速机只允许单向运转,转向规定为:面对输出轴,输出轴顺时针运转为“S”,逆时针运转为“N”。 四、外形及安装尺寸: 五、减速机承载能力: 减速机输入功率P:为计算功率或台架试验功率,配套电机是必须考虑工况系数和安全系数。减速机转速一般指的是输入轴转速。 六、减速机齿轮的润滑 1、减速机齿轮的润滑,冷却一般采用油池润滑,自然冷却。 当减速机承载功率超过发热功率时,可采用循环油润滑,或采用油池润滑加盘状管冷却,对采用循环油润滑的减速机在停歇时间超过24小时且满载启动时,应在启动前给润滑油。润滑油的牌号(粘度),按高速级齿轮圆周速度或润滑方法选择: 当V小于2.5m/s或当环境温度在35-50度之间时,选中级压齿轮油N320(或VG320,Mo-bi632)。 当V大于2.5m/s,或采用润滑油时,选中级压齿轮油N220(或VG220,Mo-bi630)。 2、轴承的润滑 采用飞溅油润滑,轴承的润滑油品与齿轮润滑油品相同。 七、安装、使用与维护: 1、减速机的输入轴轴线和输出轴轴线,与连接部分的轴线保证同轴,其误差不得大于允许值。对采用三角皮带传输的动力时,三角带轮应通过金切加工以减少不平衡质量。宜采用高强度窄形带传动为佳,这样可以降低振动噪声和提高使用寿命。 2、安装好后,箱体油池内必须注入润滑油,油面应至于油尺规定高度(油标上、下限刻线之间)。 3、减速机在正式使用前,用手转动,必须灵活,无卡住现象,然后进行空载操作,时间不

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

电机与减速机选用方法

电机与减速机选用方法 用扭矩计算功率的公式功率(w) = 扭矩(nm) * 角速度角速度= 2Pi*转/秒看到A4L的2.0T,计算了一下: 最大扭矩(N·m): 320 最大扭矩转速(rpm): 1500-3900 那么3900的时候的功率 = 320nm * 2 * 3.14 * 3900/60s=130624w = 130kW 几乎就是最大功率了啊 电机功率:P=T*N/9550*η(其中T为扭矩,N为转速,η为机械效率)9550就是转换为角速度电机需要扭矩=9550*电机功率(千瓦)/电机转速n, 一、P= F×v÷60÷η (直线运动) 公式中 P 功率 (kW) ,F 牵引力 (kN),v 速度 (m/min) ,η传动机械的效率二、T=9550 P/N (转动) P—功率,kW;n—电机的额定转速,r/min; T —转矩,Nm。实际功率=K×扭矩×转速,其中K是转换系数 已知转矩减速器速比电机转速怎样求电机功率电机联减速器后输出转矩为T=200NM,减速器速比为i=11,电机转速为1450r/min,求电机功率最小是多少?输出转速ω=(1450÷1.1)×2pi÷60=138.1(rad/s) 电机功率P≥T×ω=200×138.1=27607.94(W)=27.61(kW) 只是理论计算。实际电机功率要考虑减速器与联轴器(联电机与减速器)的传动效率η问题,具体你可根据减速器与联轴器的型号查手册选取。若η=0.9,所以实际电机的最小功率P=T×ω÷η=30.7kW。 减速机的选用: 1 先选速比:先确定负载所需转速(也就是减速机出力轴的输出转速),在用伺服电机的输出转速/减速机轴输出转速=减速比 2 减速机选型:得到以上减速比后,伺服电机的额定输出扭矩X减速比<减速机额定输出扭矩,再更具这个输出扭矩选型,这样可以100%保证在任何情况下减速机都不会崩齿。 3再将伺服电机型号或尺寸报给减速机厂商即可。

交流调速原理及运用

第八章 交流调速原理及运用 8.1概述 8.1.1交流调速技术的发展 一、发展过程 19世纪相继诞生了直流电动机和交流电动机,由于直流电动机转矩容易控制,因此 它作为调速电动机的代表在20世纪的大部分年代广泛地应用于工业生产中。直流调速系 统具有起、制动性能好、调速范围广、静差小及稳定性能好等优点,晶闸管整流装置的应 用更使直流调速在自动调速系统中占主导地位,相比交流电动机则只能应用于不变速的或 要求调递性能不高的传动系统中。 虽然直流调速系统的理论和实践应用比较成熟.但由于电动机的单机容量、最高耐电 压、最高转速及过载能力等主要技术指标受机械换向的制约,限制了直流调速系统的发展,使得人们长期以来寻找用交流电动机替代直流电动机调速的方案,研究没有换向器的交流调速系统。交流电动机的主要优点是:没有电刷和换向器,结构简单,运行可靠,使用寿命长,维护方便,且价格比相同容量的直流电动机低。早在20世纪30年代就有人提出用交流调速代替直流调速的有关理论,到60年代,随着电力电子技术的发展,交流调速得以迅速发展。1971年伯拉斯切克(F.Rlaschke)提出了交流电动机矢量控制原理,使交流转动技术从理论上解决丁获得与直流传动相似的静、动态特性问题。矢量变换控制技术(或称磁场定向控制技术)是一种模拟直流电动机的控制。众所周知,调速的关键问题在于转矩的控制,直流电动机的转矩表达式为a T I C T φ=,其中T C 是转矩常数.磁通φ和电枢电流a I 是两个可以单独控制的独立变量,它们之间互成90o正交关系,在电路上互不影响,可以分别进行调节。 而交流异步电动机的转矩表达式为22'cos ?φI C T m T =,其中'T C 是异步电动机转矩系数气隙,有效磁通m φ与转子电流2I 之间是既不成直角关系又不相互独立的两个变量,转子电流2I 不仅与m φ有关,且还与转差率s (或转速n )有关(因为2 22r sx arctg =?),这也是交流电动机转矩难以控制的原因所在。为了获得与直流电动机相似的控制性能,矢量控制理论提出了坐标变换,即把交流电动机的定子电流1I 分解成磁场定向坐标的磁场电流分量M I 1和与之相垂直的坐标转矩电流分量T I 1,把固定坐标系变换为旋转坐标系解耦后,交流量的控制即变为直流量的控制,就与直流电动机相同了。 矢量控制理论的提出只解决了交流传动控制理论上的问题,而要实现矢量控制技术,则需要复杂的模拟电子电路,其设计、制造和调试均很麻烦,直到有了全控型大功率快速电力电子器件和微机控制之后,可以用软件来实现矢量控制的算法,才使硬件电路规范化,从而降低了成本,提高了控制系统的可靠性。由此可见,电力电子技术和微机控制技术的发展给交流调速系统的发展奠定了物质基础,它们的迅速进步是推动交流调速系统不断更新的动力。

如何选择减速机

我们需要了解一定的减速机参数,到底哪些参数需要知道呢?这里将详细的说明。决定减速机中热功率的校核的是什么?是周围环境的温度。这是我们需要分析的一个数据,作为减速机,它的内部应该有一个电机,这个电机的级数究竟是多少,合适不合适,它的功率又是什么,也需要我们来做深入的分析,此外,减速机的安全系数如何,大家的安全性可不可以得到可靠保证,更是重中之重,决不可忽视。还有就是减速机在什么设备上来使用,以及使用它可能的一些结果,也是绝对不可以马虎的事项。减速机输出轴的径向力和轴向力的校核,也是需要注意的一点。 电动机的功率.应根据生产机械所需要的功率来选择,而减速机则是根据所要传递的功率或者扭矩,以及工作所需要的转速来选择的。 电动机的功率.应根据生产机械所需要的功率来选择,尽 量使电动机在额定负载下运行。选择时应注意以下两点: (1)如果电动机功率选得过小.就会出现“小马拉大车”现 象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动 机被烧毁。 (2)如果电动机功率选得过大.就会出现“大马拉小车”现 象.其输出机械功率不能得到充分利用,功率因数和效率都不 高(见表),不但对用户和电网不利。而且还会造成电能浪 费。 要正确选择电动机的功率,必须经过以下计算或比较: (1)对于恒定负载连续工作方式,如果知道负载的功率 (即生产机械轴上的功率)Pl(kw).可按下式计算所需电动机 的功率P(kw): P=P1/n1n2 式中n1为生产机械的效率;n2为电动机的效率。即传动效 率。 按上式求出的功率,不一定与产品功率相同。因此.所选 电动机的额定功率应等于或稍大于计算所得的功率。 例:某生产机械的功率为3.95kw.机械效率为70%、如 果选用效率为0.8的电动机,试求该电动机的功率应为多少 kw? 解=P1/ n1n2=3.95/0.7*0.8=7.1kw 由于没有7.1kw这―规格.所以选用7.5kw的电动机。 (2)短时工作定额的电动机.与功率相同的连续工作定额的电动机相比.最大转矩大,重量小,价格低。因此,在条件许可时,应尽量选用短时工作定额的电动机。 (3)对于断续工作定额的电动机,其功率的选择、要根据负载持续率的大小,选用专门用于断续运行方式的电动机。负载持续串Fs%的计算公式为 FS%=tg/(tg+to)×100% 式中tg为工作时间,t。为停止时间min;tg十to为工作周期,而减速机的作用就是来提高力矩,想选好电机必须要知道启动最大力矩

减速机的选型与使用

减速机的选型与使用 一、选型指南 为了选到合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数Fb,使用系数Fb. 减速电机的选用首先应确定一下技术参数:每天工作小时数;每小时启停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件; 减速机通常是根据恒转矩、启停不频繁及常温的情况设计的,其许用输出转矩T由下式确定: T=T出X FB使用系数 T出----------减速电机输出扭矩,FB-------减速电机使用系数 传动比i i=n 入/ n出电机功率P(KW) P=T出*n出/9550*η输出转矩T出(N.m)T出=9550*P*η/n 出式中:n入—输入转速η—减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、T出≥T工作机 2、T=FB总*T工作机式中:FB总—总的使用系数,FB总=FB*FB1*KR*KW FB—载荷特性系数,KR—可靠度系数 FB1—环境问的系数; 二、减速机安装注意事项 安装减速机时,应重视传动中心轴线对中,其误差不得大于所用联轴器的使用补偿量。对中良好能延长使用寿命,并获得理想的传动效率。在输出轴上安装传动件时,不允许用锤子敲击,通常利用装配夹具和轴端的内螺纹,用螺栓将传动件压入,否则有可能造成减速机内部零件的损坏。最好不采用钢性固定式联轴器,因该类联轴器安装不当,会引起不必要的外加载荷,以致造成轴承的早期损坏,严重是甚至造成输出轴的断裂。 减速机应牢固地安装在稳定水平的基础或底座上,排油槽的油应能排除,且冷却空气循环流畅,基础不可靠,运转时会引起振动及噪音,并促使轴承及齿轮受损,当传动联件有凸出物或采用齿轮、链条传动时,应考虑加装防护装置,输出轴上承受较大的径向载荷时,应选用加强型。 按规定的安装装置保证工作人员能方便地靠近油标,通气塞、排油塞。安装就位后,应按次序全面检查安装位置的准确性,各紧固件压紧的可靠性,安装后应能灵活转动。减速机采用油池飞溅润滑,在运行前用户需将通气孔的螺栓取下,换上通气塞。按不同安装位置,并打开油位塞螺钉检查有为线的高度,从油位塞处加油至润滑油从油位塞螺孔溢出为止,拧上油位塞确定无误后,方可进行空载试运转,时间不得少于2小时。运转应平稳,无冲击、振动、杂音及渗油漏油现象,发现异常应及时排除。 经过一定时期应再检查油位,以防止机壳可能造成的泄漏,如环境温度过高或过低时,可改变润滑油的牌号。 三、轴装式减速机的安装 1、减速机与工作机的联接 减速机直接套装在工作机主轴上,当减速机运转时,作用在减速机箱体上的反力矩,又安装在减速机箱体上的反力矩支架或由其他方法来平衡,机直接相配,另一端与固定支架联接 2、反力矩支架的安装 反力矩支架安装在减速机朝向工作机的那一侧,以减小附加在工作机轴上的弯矩。 反力矩支架与固定支撑联接端的轴套使用橡胶等弹性体,以防止发生挠曲并吸收所产生的转矩波动 3、减速机与工作机的安装关系 为了避免工作机主轴挠曲及在减速机轴承上产生附加力,减速机与工作机之间的距离,在不影响正

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

减速机选型条件参考

为了选到最合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术 特性,就必须确定一个使用系数f B。 使用系数f B 减速电机的选用首先应确定以下技术参数:每天工作小时数;每小时起停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件。 减速机通常是根据恒转矩、起停不频繁及常温的情况设计的。其许用输出转矩T由下式确定:T=T 出 X f B T出————减速电机输出转矩。 传动比i i=n入/ n出 电机功率P(kw):P=T 出* n 出 / 9550 * η 输出转矩T出(N.m)T 出 =9550* P*η/n出式中:n入——输入转速η——减速机的传动效率。速比=电机输出转数÷减速机输出转数("速比"也称"传动比") 1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

减速器是指原动机与工作机之间独立封闭式传动装置,用来降低转速并相应地增大转矩。在某些场合,也有用作增速的装置,并称为增速器。减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成,其基本结构有三大部分:1)齿轮、轴及轴承组合;2)箱体;3)减速器附件。 其常用术语如下: 减速比i:减速器输入转速与输出转速之比。 级数:减速器所含齿轮的套数。采用单套齿轮的称为单级,减速比一般小于10:1, 采用多套齿轮的称为多级,以满足较大的传动比的要求。 效率:指在额定负载情况下,减速器输出功率与输入功率的比值。 额定寿命:指减速器在额定负载下,以额定输入转速运转时的连续工作小时数。 额定转矩:在某一确定输入转速下,可保证减速器额定寿命的安全输出转矩。 极限转矩:减速器可承受的瞬时最大输出转矩。 抗扭刚度:反映整机在额定负载时弹性扭转变形的大小。 回差:也称为“回程间隙”或“背隙”。主要是由齿轮啮合侧隙造成的运动滞后量, 通常在换向时产生。回差反映了齿轮加工和装配的精度水平。 噪音:此数值是在距离减速器一米,输入转速为3000转/分钟,减速器空载正常运行 时的测量值。 如何选用理想减速器: 1、尽量选用接近理想减速比: 减速比=输入转速/输出转速; 2、扭矩计算:对减速机的寿命而言,扭矩计算非常重要,并且要注意加速度的最大 转矩值(TP),是否超过减速机之最大负载扭力; 3、减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以根据自己的 需要来决定; 4、输入轴径不能大于提供的最大使用轴径; 5、根据选择的机型号、负载转距、传动比、输出转速确定所需的电机规格; 6、我公司可承接特殊规格产品的订货,并可为客户提供专用设计服务。

交流电机的调压调速论文

交流电机的调压调速论文-----------------------作者:

-----------------------日期:

天津工程师范学院成人教育专科毕业设计开题报告 天津工程师范学院成人教育专科毕业设计进度计划表

天津工程师范学院成人教育专科毕业设计任务书 设计题目交流电机的调压调速(普通车床的主轴调速) 学生姓名夏万宇系别自动化专业电气自动化技术班级 2007级 指导教师姓名职称高级教师课题来源教师自拟任务书下达时间 2008年9月 函授部主任签字成教部主管主任签字 一、车床的情况介绍 车床的应用比较广泛,它主要是用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工,它的主运动是主轴的旋转运动,由主轴电动机通过传动带主轴箱带动主轴旋转的,刀架是由溜板箱带这作纵向合横向移动,称为进给运动,进给运动也是由主轴电动机经过主轴箱输出轴传给进给箱,在通过光杆将运动传入溜板箱,溜板箱就带动刀架作纵,横两个方向的进给运动,刀架由快速电动机带动还可作快速移动,是机械制造和修配工厂中不可缺少的。 原有的主轴调速是靠齿轮箱进行调速,调速范围窄为改变对原来的调速较窄和电压动波,对电机转速的影响,本设计提出了对它的主轴变速改进采用变频器控制。对它的主轴电机驱动一些性能来控制的要求。 二、拖动方案的确定 为了满足上面所说的要求,交流主轴电机采用6.5KW交流电机,型号Y132M —4—B3主轴电机驱动控制采用的是PWM逆变器转差频率控制系统进行调压调速,实现系统的稳定调速,并配合由PI调节器组成的双闭环系统来抑制系统在运行过程中的扰动量。 三、设计要求 1、毕业设计的主要内容: (1)、交流电动的主要参数: 额定功率:6.5KW 额定转速:1430r/min 额定电压:380V (2)、由PWM逆变器转差频率调速,并且具有双闭环。 (3)、在断续负载下电机转速波动要较小。 (4)、振动,噪声不要太大。 (5)、电机可靠性能要高,容易维护。 (6)、体积要小,重量较轻,与机械连接容易。

化工反应釜搅拌罐减速机选型说明

化工反应釜搅拌罐减速机选型说明 目前种分罐(∮3500*7000mm(搅拌叶片∮2700,三组叶片,每组3片,正常液位高度6100,底部叶片距离釜底500,顶部叶片距离高液位1000;搅拌轴转速29rpm,搅拌轴直径∮150,)拌采用M10蜗杆减速器(配置7.5kw-6级电机)传动带到搅拌轴搅拌,存在减速器发热、振动大、故障率高、电机电流过载等问题。在目前每罐加8吨晶种的条件下还可基本保持正常运行,若按教授改进意见,每罐晶种加入量提高到18吨(提高125%),将大幅度提高罐内料液粘稠度,增大搅拌时料液内部摩擦阻力和功率消耗,目前配套的M10减速器和7.5kw6级电机将远不能满足加18吨晶种搅拌要求,需要加大搅拌减速器和电机。 氧化铝种分罐有一台从铬铁酸洗搅拌池拆卸的M12减速器(配置7.5kw电机),相对比其他灌上M10减速器的温度低、故障少,可以满足目前加8吨晶种搅拌的需要,但满负荷搅拌时电机电流也达到13安左右。若继续采用M12减速器配置7.5kw电机在加18吨晶种的搅拌罐上搅拌,其承载能力和有效传递功率也将达到极限(M12蜗杆减速器配置电机功率为7.5-11kw,因其传动效率低,有效传递功率5.5-9kw),因此,不建议配置M12和摆线针轮减速器,建议配置承载功率达到11kw的锥齿轮减速器(氯化铬搪瓷反应釜即配置7.5kw锥齿轮减速器)。 齿轮减速器、摆线针轮减速器、蜗杆减速器减速器能耗比较。齿

轮减速器因良好的滚动啮合,其传动效率可以达到95-98%,而蜗杆减速器由于自身滑动摩擦传动的结构,传动摩擦力大,决定了其传动效率只能达到70-82%,摆线针轮减速器由于传动主要为滚动摩擦,传动效率也可达到95-97%。齿轮减速器比蜗杆减速器节能16-40%,对长期连续运转的搅拌罐来说,节能量(节电量)还是很可观的。以一台配置7.5kw电机的蜗杆减速器,每年按300天工作日,每天按平均16小时运转,电机满载率按60%计算,年消耗电21600kwh,若更换为可满足需要的齿轮减速器,平均按20%节电率可节约4320kwh,因此有必要逐步选用传动效率更高、可靠度更好的新型釜用锥齿轮减速机代替部分蜗杆减速机和摆线针轮减速机。摆线针轮减速机的传动效率也可达到95%以上,但由于结构相对比蜗杆减速机和齿轮减速机复杂,内部滚针、滚销、销盘等加工精度较高,维修较困难,维护保养要求高,传递相同功率条件下价格比锥齿轮和蜗杆减速器都高。 因此,从综合以上分析比较,本次氧化铝种分罐减速器尝试采用锥齿轮减速器代替M型蜗杆减速器和摆线针轮减速器。 为适应搅拌罐内加晶种后不同时段、不同晶种量对搅拌转速和功率的需要,以及降低搅拌长期停机后物料沉降到罐底、冷却后粘度增大、或结晶物析出启动阻力增大造成直接启动时电流高电机过载烧毁的问题,可由电气管理部论证增加变频器变频启动及调速的必要性,同时可避免搅拌压住(实际是上述情况下物料阻力增大,电机和减速器过载)人工盘搅拌发生皮带挤伤手指的安全事故。 另外,我公司的所有搅拌罐的搅拌轴在上部都直接和减速器输出

直流电机和交流电机调速方法的不同

直流电机和交流电机调速方法的不同 编者摘要:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机我们叫做直流电机。 一、直流电机调速: 1、直流电机是指将直流电送到直流电动机,把直流电动机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电动机系统(F-D),这种方法只有在电动机由专用的发电机供电时才有可能。 2、另一种是可控硅--电动机系统(SCR-D)。 直流电机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。 可见直流电机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。尽管直流电机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。 二、交流电机调速: 交流电机刚好相反。电动机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化,高压化、高速化,而且价格低廉。 1、从节能的角度看,交流电机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。 2、低效调速装置的特点是:调速时改变转差,增加转差损耗。 (一)具体的交流调速装置有: 高效调速方法包括:改变极对数调速——鼠笼式电机变频调速——鼠笼式电机串级调速——绕线式电机换向器电机调速——同步电机 低效调速方法包括:定子调压调速——鼠笼式电机电磁滑差离合器调速——鼠笼式电机转子串电阻调速——绕线式电机 (二)调节电动机的转速的方法及各种调速装置的特点: (1)改变极对数调速: 优点:

运动控制课程设计 单闭环交流电动机调压调速系统概要

目录 第1章交流调压调速系统概述 (2) 1.1交流调速系统 (2) 1.2交流调速系统的应用领域 (2) 1.3交流调速系统的分类 (3) 1.4调压调速系统 (3) 第2章交流电机转速单闭环调压调速系统设计 (4) 2.1交流电机转速单闭环变压调速电路 (4) 2.2交流电机改变电压时的机械特性 (6) 2.3闭环控制的变压调速系统及其静特性 (9) 2.4闭环变压调速系统的近似动态结构图 (11) 2.5交流电机转速单闭环调压调速系统启动 (15) 第3章 matlab仿真及仿真图形分析 (15) 第4章课程设计总结 ............................... 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。

第1章交流调压调速系统概述 1.1交流调速系统 直流电力拖动和交流电力拖动在19世纪先后诞生。在20世纪上半叶的年代里,鉴于直流拖动具有优越的调速性能,高性能可调速拖动都采用直流电机,而约占电力拖动总容量80%以上的不变速拖动系统则采用交流电机,这种分工在一段时期内已成为一种举世公认的格局。交流调速系统的多种方案虽然早已问世,并已获得实际应用,但其性能却始终无法与直流调速系统相匹敌。 直到20世纪60-70年代,随着电力电子技术的发展,使得采用电力电子变换器的交流拖动系统得以实现,特别是大规模集成电路和计算机控制的出现,高性能交流调速系统便应运而生,一直被认为是天经地义的交直流拖动按调速性能分工的格局终于被打破了。 1.2交流调速系统的应用领域 交流调速系统的应用领域主要有三个方面:(1)一般性能的节能调速;(2)高性能的交流调速系统和伺服系统;(3)特大容量、极高转速的交流调速。 (1)一般性能的节能调速 在过去大量的所谓“不变速交流拖动”中,风机、水泵等通用机械的容量几乎占工业电力拖动总容量的一半以上,其中有不少场合并不是不需要调速,只是因为过去的交流拖动本身不能调速,不得不依赖挡板和阀门来调节送风和供水的流量,因而把许多电能白白地浪费了。 如果换成交流调速系统,把消耗在挡板和阀门上的能量节省下来,每台风机、水泵平均都可以节约 20-30% 以上的电能,效果是很可观的。 但风机、水泵的调速范围和对动态快速性的要求都不高,只需要一般的调速性能。 (2)高性能的交流调速系统和伺服系统 许多在工艺上需要调速的生产机械过去多用直流拖动,鉴于交流电机比直流电机结构简单、成本低廉、工作可靠、维护方便、惯量小、效率高,如果改成交流拖动,显然能够带来不少的效益。但是,由于交流电机原理上的原因,其电磁转矩难以像直流电机那样通过电枢电流施行灵活的实时控制。 20世纪70年代初发明了矢量控制技术,或称磁场定向控制技术,通过坐标变换,把交流电机的定子电流分解成转矩分量和励磁分量,用来分别控制电机的转矩和磁通,就可以获得和直流电机相仿的高动态性能,从而使交流电机的调速技术取得了突破性的进展。 其后,又陆续提出了直接转矩控制、解耦控制等方法,形成了一系列可以和直流调速系统媲美的高性能交流调速系统和交流伺服系统。

(完整word版)各种减速机型号

各种减速机型号 行星摆线针轮减速机 摆线针轮行星传动基本术语GB 10107.1-88 摆线针轮行星传动图示方法GB 10107.2-88 摆线针轮行星传动几何要素代号GB 10107.3-88 摆线针轮减速机温升测定方法JB/T 5288.1-1991 摆线针轮减速机清洁度测定方法JB/T 5288.2-1991 摆线针轮减速机承载能力及传动效率测定方法JB/T 5288.3-1991 摆线针轮减速器技术条件SJ 2459-84 摆线针轮减速机噪声测定方法JB/T 7253-94 摆线针轮减速机产品质量分等JB/T 53324-1997 X系列行星摆线针轮减速机 8000系列行星摆线针轮减速机 TB9000系列摆线针轮减速机 B系列上海变速机械厂标准行星摆线针轮减速机 B系列化工部标准行星摆线针轮减速机 B系列一机部标准行星摆线针轮减速机 B系列摆线针轮减速机(泰星标准) F8000系列行星摆线针轮减速机 Z系列摆线针轮减速机JB/T 2982-1994 SB系列双摆线针轮减速机(JB/T5561-1991) WB 系列微型摆线针轮减速机(永嘉标准) WB 系列微型摆线针轮减速机(双联标准) JXJ系列行星摆线针轮减速机 Q系列轻型行星摆线针轮减速机 ZB型变幅摆线齿轮减速机 BJ 系列摆线针轮减速机 BJS系列摆线针轮减速机 800 系列摆线针轮减速机 600系列摆线针轮减速机 SW 系列摆线针轮减速机 蜗轮蜗杆减速机 圆柱蜗杆传动基本参数GB/T 10085-1988 圆柱蜗杆、蜗轮术语及代号GB/T 10086-1988 圆柱蜗杆基本齿廓GB/T 10087-1988 圆柱蜗杆模数和直径GB/T 10088-1988 圆柱蜗杆、蜗轮精度GB/T 10089-1988 小模数圆柱蜗杆基本齿廓GB/T 10226-1988 小模数圆柱蜗杆、蜗轮精度GB/T 10227-1988 圆柱蜗杆、蜗轮图样上应注明的尺寸数据GB/T 12760-1991 直廓环面蜗杆、蜗轮精度GB/T 16848-1997 WH系列圆弧齿圆柱蜗杆减速机 CW系列圆弧圆柱蜗杆减速机GB9147—88

减速电机型号

减速电机型号 首先,尽量选用接近理想减速比:减速比=伺服马达转速/减速机出力轴转速 扭力计算:对减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力,适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定。 要点有二: A、选用伺服电机的出力轴径不能大于表格上最大使用轴径。 B、若经扭力计算工作,转速可以满足平常运转,但在伺服全额输出时,有不足现象时,我们可以在电机侧之驱动器,做限流控制,或在机械轴上做扭力保护,这是很必要的。 通用减速机的选型包括提出原始条件、选择类型、确定规格等步骤。 相比之下,类型选择比较简单,而准确提供减速机的工况条件,掌握减速机的设计、制造和使用特点是通用减速机正确合理选择规格的关键。

规格选择要满足强度、热平衡、轴伸部位承受径向载荷等条件。1、按机械功率或转矩选择规格(强度校核) 通用减速机和专用减速机设计选型方法的最大不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速机的额定功率)打铭牌;后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速机的额定功率即可,方法相对简单。 通用减速机的额定功率一般是按使用(工况)系数KA=1(电动机或汽轮机为原动机,工作机载荷平稳,每天工作3~10h,每小时启动次数≤5次,允许启动转矩为工作转矩的2倍),接触强度安全系数SH≈1、单对齿轮的失效概率≈1%,等条件计算确定的。 所选减速机的额定功率应满足PC=P2KAKSKR≤PN 式中PC———计算功率(KW);PN———减速机的额定功率(KW);P2———工作机功率(KW);

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

基于MATLAB的交流电动机调速系统仿真

1 绪论 1.1课题研究背景及目的 1.1.1 研究背景 直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。在相当长时期内,高性能的调速系统几乎都是直流调速系统。尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展。 交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美。 与直流调速系统相比,交流调速系统具有以下特点: (1)容量大; (2)转速高且耐高压; (3)交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小; (4)交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用; (5)高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标; (6)交流调速系统能显著的节能; 从各方面看,交流调速系统最终将取代直流调速系统。 1.1.1研究目的 本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性。本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境。 1.2 文献综述

相关文档
最新文档