一阶线性微分方程的研究与应用毕业论文

一阶线性微分方程的研究与应用毕业论文
一阶线性微分方程的研究与应用毕业论文

阶线性微分方程的研究与应用

摘要:本文分析了一阶线性微分方程的几种初等解法类型以及应用,总结出了这些不同类型方程可借助变量变换或积分因子化成变量分离方程和恰当方程两种类型,从而归纳了一阶微分方程的求解问题以及应用领域。

矢键i司:变量变换积分因子变量分离方程恰当方程

引言

对于一阶微分方程的初等解法,通常我们把他们归结为方程的积分问题,虽然一般的一阶方程没有初等解法,但是对于一些有限的有初等解法的类型,它们却反映了实际问题中出现的微分方程的相当部分,因此,掌握这些类型方程的解法还是有重要实际意义的,下面我们就对这些类型方程的解法一作以总结。

微分方程

微分方程就是联系着自变量、未知函数及其导数的尖系式,形如

般)”

的方程,称为一阶线性微分方程。

1、变量变换方法

形如的方程,称为变量分离方程,这里的(1?1) f(x))g(y)分别x, y的连续函数. 如果g(y) 土0,我们将(1?1)改写成二f(x)dx,两边积分得,gCy)

(1-2)

其中c任意常数。

例1求方程

£=pa)y

的通解,其中P(X)是X的连续函数。

解将变量分离,得到

—=p(x)dx y

两边积分,即得

In |y|= / p(x) dx+ C 这里c是任意常数,由对数定义,即有

lyl y=

g/ p(x)dx+c 土gCgJ p(x)dx

求解方程生一¥ dx y

将变量分离,得到

y d y=?x d x,

两边积分,即得

因而,通解为

这里c是任意正常数。或者解出y,写出显函数形式的解

y=

dy y | . y

例3求解方程〒=-+tan- dx X X

y dy du

解这是齐次微分方程,以?二u及子二X —+U代入,则原方程变为

K dx dx

du I

A+u=u+anu

du tan u

dx X

将上式分离变量,即有

cot udu =—

x

两边积分,得到

n I sm U1 = n I xl +c,

这里F是任意常数,整理后得到原方程的通解为

例4 求方程X+2jxy=y (x<0)

y 以一P及二曙X半+ (LI代入,则原方程变为dx

临甥P

(1-3)

分离变量,

du dx

两边积分,得到(1-3)的通解

Jp- = In(-x) + c 于是

p = In(-x) + c .2

(In (?x)+c>0)

其中c是任意常数。即得原方程的通解

y = X In C-x) + c 12

(ln(=x) + c > 0)

及解

y=0 (in (=x) + c < 0

解将方程改写为半

dx

2、常数变易法

1求方程空二丄访的通解。

dx 2x=y A

解 原方程不是未知函数y 的线性微分方程,但我们可将它改写为

dx 2x - y2

dy y dx2

把x 看作未知函数,y 看作自变量,首先,求出齐次线性微分方程

dx2

爲二尹

的通解为

其次,利用常数变易法求非齐次线性微分方程(1)的通解。把

c 看成cCy ), 微分⑵'得到

代入(1),得到

dy

积分之,即可求得

从而,原方程的通解为

X 于 2(E - In II y II)

这里的c 为任意常数。

3、 积分因子法

例1 求解方程y d x+(y ?x)d y=0.

A A JV nil

dx dy

y2 + 2c(y)y,

----- ,N=y-x,—— 1, — = — 1,方程不是恰当的°

3yox

___ 3N_

因为a y#dx二一■只与y有尖,故方程有只与y有尖的积分因子y

J(-訓y

以p = w乘方程两边,得到

Ydx—xdy dy

因而,通解为

一阶微分方程的应用

一般来说,用常微分方程去解决某些实际问题的过程分以下三个步骤:l、建立方程对所研究的问题,根据已知定律或公式以及某些等量尖系列出微分方程和相应的初值条件

n、求解方程

m、分析问题

通过已求得的解的性质,分析实际问题。

应用一:等角轨线

求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度. 这样的曲线称为己知曲线的等角轨线?当所给定的角为直角时,等角轨线就称为正交轨线?等角轨线在其它很多学科(如天文、气象等)中都有应用?下面就来介绍求等角轨线的方法.

应用二:动力学问题

前面已经说过,动力学的基本定律是牛顿第二定律fsa,这也是用微分方程来解决动力学的基本矢系式,的右端明显地含有加速度a,a是位移对时间的二阶导数?列出微分方程的矢键就在于找到外力f和位移及对时间的导数一一速度的尖系?只要找到这个尖系,就可以由f=ma列出微分方程了?

在求解动力学问题时,要特别注意力学问题中的定解

条件,如初值条件等.

例2物体由高空下落,除受重力作用外,还受到空气阻力的作用,在速度不太大的情况下(低于音速的4/5),空气阻力可看做与速度的平方成正比?试证明在这种情况下,落体存在极限速度

V_1。

解设物体质量为m空气阻力系数为k,又设在t时刻物体的下落速度为V,于是在时刻物体所受的合外力为

f=mg-k

这里,建立的坐标系,使得重力m前向向下,与运动方向一致,空气阻力方向向上,与

运动方向相反。从而,根据牛顿第二定律可列出微分方程

唸F ■加

因为是自由落体,所以有

v(0)= 0

解得上式得

积分得

即可求出V的大小。

应用三:光学问题

例1抛物线的光学性质车灯的反射镜面一■旋转抛物面解如图设旋转轴0X轴光源在(0,0)

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

微分方程习题及解答

第十二章 微分方程 §12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .

2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5.'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2 sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解: 3*.设连续函数20()d ln 22x t f x f t ?? =+ ????,求()f x 的非积分表达式. 答:()ln 2x f x e =?.

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

微分方程习题及解答

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是 . 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解:

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

相关文档
最新文档