半导体材料导论结课复习题

半导体材料导论结课复习题
半导体材料导论结课复习题

半导体材料复习题

1、半导体材料有哪些特征?

答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。

(1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。

(2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。

(3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。

2、简述半导体材料的分类。

答:对半导体材料可从不同的角度进行分类例如:

根据其性能可分为高温半导体、磁性半导体、热电半导体;

根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体;

根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体,

但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。

3、化合物半导体和固溶体半导体有哪些区别。

答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。

4、简述半导体材料的电导率与载流子浓度和迁移率的关系。

答:s = nem

其中:

n为载流子浓度,单位为个/cm3;

e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。

m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s;

电导率s的单位为S/cm(S为西门子)。

5、简述霍尔效应。

答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。

6、用能带理论阐述导体、半导体和绝缘体的机理。

答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。

在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。

对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。

绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

不是没有,并且总有一些电子会从价带跃迁到导带,但数量极少。所以,在一般情况下,可以忽略在外场作用下它们移动所形成的电流。但是,如果外场很强,束缚电荷挣脱束缚而成为自由电荷,则绝缘体就会被“击穿”而成为导体。

7、什么是本征半导体和杂质半导体?

答:当半导体主要是靠热激发产生载流子时,导电称为本征导电,这种半导体称为本征半导体,其特点是自由电子数等于空穴数。另一种导电机制是靠电活性杂质形成的载流子导电,这种导电称为杂质导电,这种半导体称为杂质半导体。

8、什么是施主杂质和受主杂质?

答:施主杂质:以杂质导电为主的、能向导带贡献电子的杂质,称为施主杂质。对IV族元素半导体而言,V族元素就是施主杂质。

受主杂质:从价带俘获电子,而在价带形成空穴的杂质称为受主杂质。对IV族素半导体而言,III族元素就是受主杂质。

9、简述材料的载流子浓度与温度的关系。

答:以n型为例,I为高温区,这时本征激发的载流子浓度超过杂质所提供的载流子浓度。

II为中温区,为杂质载流子的饱和区,因为杂质的电离能比禁带宽度小得多,因此在相当大的温度范围内杂质全部电离,在此温度范围内,载流子浓度无变化。

III区是在温度相当低时,本征激发的载流子与杂质激发的载流子都随温度下降而减少所出现的载流子浓度与温度的关系。

10、简述材料的载流子的迁移率与温度的关系。

答:在低温段,以电离杂质散射为主,由于载流子运动与电离杂质的静电场相互作用的结果,迁移率随温度上升而增大;

在高温区,则晶格散射起主导作用,随温度升高,晶格振动的振幅增大,对载流子的运动的散射作用就增强,因此迁移率变低。

迁移率的最大时的温度,也就是从电离杂质散射转变到晶格散射的温度,取决于电离杂质含量,杂质含量愈高,其转变温度也愈高。

11、简述pn结原理。

答:当这两块半导体结合成一个整体时,p 型半导体中有大量的空穴,而n型半导体中有大量的电子,他们向相对方向扩散,但这种扩散并非无休止的,因为这种扩散打破了边界附近的电中性,空穴进入n型区与电子复合,而失去电子的离子便形成正电势;在p型区则因同样的道理而形成负电势,这样便在边界附近形成了电位差,称为内建势场(电场),或称扩散电势。这个势场根据同性相斥、异性相吸的原理,会防止空穴与电子的进一步扩散,而达到平衡,这个平衡的电势用V扩表示,这就构成pn结。

12、何为肖特基结和肖特基势垒?

答:一块n型半导体与金属相接触,一般半导体的逸出功比金属小,这样半导体中的电子就流入金属,达到平衡后形成势垒,称肖特基势垒,由此形成的结为肖特基结。

13、简述异质结形成的原理。

答:两种不同半导体材料所组成的结构为异质结,例如,材料A生长在材料B上,在A与B的交界处就形成了异质结。

异质结的材料A与B可以是同一导电类型的,即pp或nn,称同型异质结;也可以是不同导电类型的,即pn或np,称异型异质结。

14、简述量子阱的结构和形成的条件。

答:量子阱:如果半导体材料A与B组成多层异质结,A被夹在B之间,且A的导带E cA低于B的E cB,A的价带顶E vA高于B的E vB。当A层的厚度小至可以与量子力学中电子的德布罗意波长(~10nm)相当时,

就形成量子阱。

15、简述超晶格的种类。

答:超晶格种类:每种材料层的厚度通常为晶格常数的2~20倍。而周期数可以作到几十、几百甚至上千层。如果周期较多,由于电子波函数的耦合,使原来的各单量子阱的能级展宽成能带。超晶格材料可分为组分超晶格、掺杂超晶格、复型超晶格、应变层超晶格、短周期超晶格、非晶超晶格等。

16、何为热电效应?塞贝克效应和帕尔贴效应?

答:热电效应:是由温差引起的电效应(塞贝克效应)和由电流引起的可逆热效应(帕尔贴效应)的总称,因此也称之为温差电效应。

1821 年,德国人塞贝克(Seebeck)发现在锑与铜相接触所形成的回路中,如果一个接触点与另一个接触点的温度不同,就会产生电动势,此即塞贝克效应。

1834年,法国人帕尔帖(Peltier)发现当电流通过两种金属的接点时,往一个方向使触点放热,换成相反方向,则使触点吸热,此现象称为波尔帖效应。

17、何为光电导?

答:既然光子可形成本征激发,那么所形成的电子--空穴对就增大了材料的电导率,这种现象就称为光电导。

18、何为本底纯度?

答:在材料中杂质的行为多种多样,而所需要的杂质的种类很少,却要求有准确的含量。所以可行的办法是先把半导体材料进行提纯,把其中所有的杂质降到一定的水平,使材料获得较高的本底纯度,然后再掺入所需的杂质。

19、详述缺陷的种类和内容。

答:晶体缺陷通常可分为:

(1)点缺陷这主要是单个原子之间的变化,如空位、间隙原子、反位缺陷、替位缺陷,和由它们构成的复合体。

(2)线缺陷呈线状排列,例如位错就是这类缺陷。

(3)面缺陷呈面状,在另一个方向上尺寸较小,如晶界、堆垛层错、相界等。

(4)体缺陷如空洞、夹杂物、杂质沉淀物等。

(5)微缺陷几何尺寸在微米级或更小,如点缺陷的聚集物、微沉积物等。

缺陷如按其形成过程,可分为原生缺陷(在晶体制备过程中所引入的缺陷)和二次缺陷(在晶体加工过程,包括器件制备过程所引入的缺陷)。

20、电导率的测量法。

答:电阻率为电导率的倒数,用W.cm(欧姆.厘米)作单位。测量电阻率可用四探针法、两探针法。也可以直接切成矩形样品测其电阻,再用尺寸换算。在测量电阻率均匀性时,也可用上述方法。但在测量微观电阻率不均匀性时,因要求其分辨率达mm级,故采用扩展电阻法及电子束感应电流(EBIC)法等。

21、如何测定半导体材料的导电类型?

答:测量导电类型一般使用热探针法。将一个热探针和一个冷探针放在半导体材料上,保持一定距离,因热端的多数载流子的扩散速度比冷端快,因此产生电位差,这电位差的正负取决于多数载流子带正电荷还是带负电荷,从此可测出材料是n型还是p型。

22、纯度的本征方法有哪几种?各有何优缺点?

答:材料的纯度可分为目的纯度与整体纯度两种。

◆目的纯度是指对某种(些)特定杂质的含量要严格低于某些数值,而对其他杂质的含量则要求较宽

的情况下的纯度。整体纯度是指要控制材料中所有的或绝大部分杂质的情况。

◆表征整体纯度是一般用(1-SXi)×100% 来表示,其中Xi为分析所得各杂质的含量。

◆得到的结果可简化为若干个”9”,因为“9“的英文是nine, ”9”常用”N “ 来表示。例如杂质总含量为

0.00035%,用上式计算得99.99965,称为5个“9” 或5N 纯度。

◆ 这种表征方法的缺点是,对同一个对象而言,分析的杂质种类愈多,则SXi 的值愈大,其表征纯度

愈低,如果漏掉一个含量高的杂质,那它的表征数值不能确切地反映其真实的纯度。

◆ 为了弥补这一缺点,常常在用上述方法标出其纯度的同时,说明分析了哪些元素及其含量。

◆ 因此要较全面地表征一些高纯元素,既要标出各种杂质的分析结果,即几个“9”,又要列出其RRR

值。

23、提纯的方法有哪些?

答:用于半导体材料的提纯方法较多,可分为两大类:

? 一类是有其他物质参加化学反应的,称为化学提纯。化学提纯的方法有电解法、萃取法、化合物精

馏法、络合物法、化学吸附法等。

? 另一类是不改变其化学主成分而直接进行提纯的,称为物理提纯。物理提纯的方法有真空蒸发法、

区熔法、直拉单晶法等。

24、何为分凝现象和分凝系数?

答:如果在A 熔体中存在着微量的B 杂质,并且它们在固体的状况下是形成固溶体,则在冷却析晶时,微量的B 杂质将有一部分凝入固相中,但杂质在晶体中的浓度和在熔体中的浓度是不一样的,在熔体中B 的浓度是C L ,在晶体中B 的浓度是C s 。由于液相线和固相线近似地看成直线,所以很容易证明在平衡时,二者的比值是一个常数,即:K = C s /C L 。

K 称为分配/分凝系数,上述现象称为分凝现象。

25、何为有效分凝系数?

答:为了描述界面处杂质浓度的偏离对固相中杂质浓度的影响,把固体杂质浓度C S 与熔体杂质浓度C L 定义为有效分凝系数L S eff C C k =

。当界面不移动或生长速率极其缓慢时00,k k C C eff L L →→。当结晶有一定速率时,0000,,L eff S L S eff C k C C k C k k =≠≠而则。

晶体生长的同时杂质不断地析出(k 0>1)留在熔体中,如果杂质析出的速率大于它通过扩算或搅拌而散开的速率,那么将在界面形成浓度梯度。已知分凝系数k 0=C s /C l (0),有效分凝系数k e 定义为C s 与远离界面的参杂浓度的比值k e =k 0=C s /C l (∞)

26、何为定向凝固?

答:将B 杂质含量为C o 的混合物放入舟形容器内,全部熔化,然后从一端到另一端逐渐凝固。如果这种凝固满足以下三个条件:

(a )杂质的分凝系数K 是常数;

(b )杂质在固体中的扩散可以忽略不计;

(c )杂质在液体中的分布是均匀的。

那么就称为正常凝固(或定向凝固 /结晶)

27、何为区熔提纯?其原理如何?

答:区域提纯是用电阻炉或高频炉加热的方法,使一些含有杂质的材料条的某一区域熔化,然后使熔化区域由一端逐步移向另一端。材料的杂质由于分凝作用,就朝着一定方向集中,反复多次进行,最后杂质被聚集在端头的一个很小的范围内,而使大部分材料达到提纯的目的。这一过程称为区域提纯。

区域提纯之所以能多次重复,是由于熔化局限在一个很小的区域(不像定向凝固需全部熔化),其余都处在固体状态,扩散极慢。在第二遍熔区移动时,杂质不可能恢复原来均匀分布,只能进一步把杂质往一端集中。

28、何为直拉法?

答:直拉法又称乔赫拉斯基法(Czochralski method ,因J. Czochralski 于1917年首先提出而得名),是在半导体领域中应用最广、产量最大的单晶制备方法。其基本原理是利用单晶籽晶从坩埚熔体中向上提拉,使晶体按籽晶的晶向垂直向上生长成所需直径的单晶。

29、何为外延生长?

答:外延生长是指在单晶衬底上与衬底的晶体结构按一定的关系连续生长单晶层的过程。

30、何为化学气相外延?

答:在气相状态下,将半导体材料淀积在单晶片上,使它沿着单晶片的结晶轴方向生长出一层厚度和电阻率合乎要求的单晶层,这一工艺称为气相外延。

31、硅在半导体领域中占绝对优势的原因有哪些?

答:1. 优异的半导体性质。它具有适度的禁带宽度和良好的电子迁移率,这样既可以获得高的电阻率(>1×105欧姆.厘米),较高的工作温度(125o C),又有利于制作大功率器件,做到器件的压降不高,可在功率、频率上满足很大范围的要求。

2. 良好的化学性质。它无毒,在地壳中的丰度最大,不存在资源问题,材料本身不会造成公害,生产过程中的三废也较易处理,这就保证了生产的低成本。

在Si本体上容易形成SiO2,且与结合得很牢,这一点是别的半导体材料所没有的。所形成的SiO2在光刻工艺中可起到隔离的作用,也可作为介电薄膜,还能作器件的保护层,这些都可使器件工艺,特别是集成电路(IC)的工艺大为简化。

3. 良好的力学与热学性质。

硅在常温下的硬度及机械强度高,在高温下亦有较高的屈服强度,还具有较高的热导率。这就使得拉制大直径无位错单晶成为可能,在这方面其他半导体材料都望尘莫及。目前直拉法已生产出直径f300mm无位错单晶,区熔法生产出f150mm无位错单晶。

同时良好的力学性能使得Si片在器件加工中能防止引入二次缺陷,而使器件有较高的成品率。

导热性能好,可以提高器件的功率及单位面积上的功率密度,这对提高电力电子器件的功率和IC的集成度是十分重要的。

北京科技研究生半导体材料导论复习题

1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子不是没有,并且总有一些电子会从价带跃迁到导带,但数量极少。所以,在一般情况下,可以忽略在外场作用下它们移动所形成的电流。但是,如果外场很强,束缚电荷挣脱束缚而成为自由电荷,则绝缘体就会被“击穿”而成为导体。 7、什么是本征半导体和杂质半导体? 答:当半导体主要是靠热激发产生载流子时,导电称为本征导电,这种半导体称为本征半导体,其特点是自由电子数等于空穴数。另一种导电机制是靠电活性杂质形成的载流子导电,这种导电称为杂质导电,这种半导体称为杂质

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

半导体器件导论_4

《半导体器件导论》 第4章载流子输运和过剩载流子现象 例4.1 计算给定电场强度下半导体的漂移电流密度。T=300K时,硅的掺杂浓度为N d=106cm,N a=0。电子和空穴的迁移率参见表4.1。若外加电场强度ε=35V cm ?,求漂移电流密度。 【解】 因为N d>N a,所以在室温下,半导体是n型的。若假设掺入杂质完全电离,则 n≈N d=1016cm?3 少数载流子空穴的浓度为 P=n i 2 n =(1.5×1010) 2 1016 =2.25×104cm?3 既然n?p,漂移电流密度 J drf=e(μn n+μp p)ε≈eμn nε 因此 J drf=(1.6×10?19)(1350)(1016)(35)=75.6A cm2 ? 【说明】 在半导体上施加较小的电场就能获得显著的漂移电流密度。这个结果意味着非常小的半导体器件就能产生mA量级的电流。 例4.2 确定硅在不同温度下的电子和空穴迁移率。利用图4.2分别求出以下两种情况载流随机热速度增加子的迁移率。 (a) 确定(i)N d=1017cm?3,Τ=150℃及(ii)N d=1016cm?3,Τ=0℃时的电子迁移率。 (b) 确定(i)N a=1016cm?3,Τ=50℃及(ii)N a=1016cm?3,Τ=150℃时的空穴迁移率。【解】 由图4.2可知: (a)(i)当N d=1017cm?3,Τ=150℃时,电子迁移率μn≈500cm2V?s ?; (ii)当N d=1016cm?3,Τ=0℃时,电子迁移率μn≈1500cm2V?s ?。 (b)(i)当N a=1016cm?3,Τ=50℃时,空穴迁移率μp≈380cm2V?s ?; (i)当N a=1017cm?3,Τ=150℃时,空穴迁移率μp≈200cm2V?s ?。 【说明】 由本例可见,迁移率随温度升高而降低。 例4.3 为了制备具有特定电流—电压特性的半导体电阻器,试确定硅在300K时的掺杂浓度。考虑一均匀受主掺杂的条形硅半导体,其几何结构如图4.5所示。若外加偏压为5V时,电流为2mA,且电流密度不大于J drf=100A cm2 ?。试确定满足条件的截面积、长度及掺杂浓度。 图4.6 硅中电子浓度和电导率与温度倒数的关系曲线(引自S ze[14]) 【解】 所需截面积为

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子 的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

半导体概论

半導體概論 作業(一) 能帶形成原因 組員: 1.499L0005 黃炯睿 (WORD製作) 2.499L0009 林杰翰 (統整資料) 3.499L0010 吳旻葦 (WORD製作) 4.499L0012 劉榮軒 (統整資料) 5.499L0045 黃志傑 (蒐集資料)

何謂能帶 能階由下而上增加,越上面能階越高,為何材料能導電,當導電帶裡有電子時,材料就會導電,一般電子都是處在價電帶中的,而從價電帶到導電帶就有一個能量差,叫做能階。也就是說電子要從價電帶跳躍至導電帶是需要能量,所以當能隙越大時,電子越不容易跳躍至導電帶。因此,絕緣體就是因為能隙很大,電子跳不過去導電帶裡,所以無法導電,但半導體的能隙較小,電子比較容易跳躍進入導電帶,所以只要施嘉一些能量,就可以讓電子進入導電帶來讓材料從不導電很容易變成導電,而導体的導電帶能階底部和價電帶能階頂部重疊,所以電子一

直都在導電帶中,因此材料隨時都可以導電 那能帶是如何形成的呢?? 半導體概念與能帶(Semiconductor Concepts and Energy Bands) 國立彰化師範大學光電科技研究所張淑貞碩士生/國立彰化師範大學物理學系洪連輝教授責任編輯 在半導體晶格中,電子的能量跟金屬有明顯的不同。以矽為例子,由於矽原子之間以價電子方式鍵結,在相鄰的矽原子之間,彼此價電子互相作用之下,導致晶體中電子能量會分裂成兩個可以明顯區分的能帶,此即所謂的價電帶和導電帶,此兩個能帶的間隙即為能帶間隙,由於在能帶間隙中電子的存在是不被容許的,此代表著在晶體中禁止的電子能量。 而價電帶代表晶體中兩個互相鍵結原子的電子波函數,佔據這些波函數的電子我們稱他為價電子。在絕對零度時,所有的鍵結都被價電子佔據,所以在價電帶中所有的電子能階都會被這些電子填滿。當電子處於導電帶中的時候,電子可以在晶體中自由的移動,同時也會對電場做出回應,所以在周圍會有很多空的能階。而電子可以容易的從電場中得到能量,進而能躍遷到比較高的能階裡。因為只有在導電帶裡才有空的能態,所以想要將價電帶中的電子激發到導電帶中需要能量,此能量須大於等於能帶間隙。當電子獲得足夠能量可以克服能帶間隙時,電子就會躍遷到導電帶中,所以在導電帶中會產生一個自由的電子,則在導電帶中會遺失一個電子即為電洞。 在導電帶中的自由電子,可以在晶體中自由的移動,所以外加電場的時候,會產生導電的情形。由於帶負電的電荷從晶體電中性區域脫離出,即會造成在價電帶中生成一個帶正電荷的電洞。而從近代物理的原子中,我們可知能量被量子化,並且具有特定不連續值,例如鋰原子有兩個電子位於1s殼層和一個電子位於2s 殼層。此相同的概念我們可應用到數個原子中分子的電子能量,同理電子的能量是呈量子化的。因此將多到1023個緊密排列大小的鋰原子聚集在一起以形成金屬,會因為原子間的作用力生成電子能帶。而2s能階會分裂成1023個緊密排列的能階,此會有效的形成一個能帶,即命名為2s能帶。同理,其他較高的能階也會形成能帶,而這些能帶彼此會互相重疊而形成代表金屬能帶結構的連續能帶。由於鋰原子的2s能階為半填滿的,這是因為2s次殼層需要兩個電子才能填滿,所以這意謂著如果晶體中的2s能階也是半填滿的話,此金屬即具有半填滿能帶的特性。 參考資料:光電子學與光子學-原理與應用

1.1-1概述及半导体材料基础知识同步练

课题1:概述及半导体材料基础知识 【任务一】概述 1.电子技术中所说的“信号”是指变化的或,称为电信号。 2.电信号可以分为两类,即振幅随时间呈连续变化的信号,称为信号;振幅在时间上是离散的信号,称为信号。 3.向信号(或数据)处理系统送入的信号称为,处理后得到的信号称为。4.集成电路(IC)又叫,它是把和一体化的电路系统,在集成电路中,把大量的元器件,如、、及它们之间的,全部集中制作在一小块半导体硅片上。 5.集成电路的特点有:、、、,而且电路工作的可靠性,组装和调试。 6.识别下列信号是模拟信号还是数字信号 ()() 【任务二】半导体器件基础知识 1.自然界中物质,按导电能力的不同,可分为____________ 、和。2.半导体是一种导电能力介于与之间的物质,它的导电能力会随着、____________ 、和的不同而发生很大的变化。 3.半导体按导电类型分为型半导体和型半导体;按材料分为半导体和半导体。 4.PN结具有__________ 性,即加正向压降时,PN结_________,加反向压降时,PN结________ 。5.PN结的正向接法指的是P区接电源的极,N区接电源的极。 6.P型半导体的多数载流子是,少数载流子是;N型半导体的多数载流子是,少数载流子是。 7.PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的。

8.PN结中存在着电容,该电容称为。 9.不掺杂任何杂质的纯净半导体称为() A.N型半导体B.P型半导体C.电子型半导体D.本证半导体 10.N型半导体是指在本征半导体中掺入微量的() A.硅元素B.硼元素C.磷元素D.锂元素 11.当PN结两端加正向电压时,那么参加导电的是() A.多数载流子B.少数载流子C.既有多数载流子又有少数载流子 12.什么是PN结?PN结具有什么特性? 【任务拓展】 1.扩散电流是由载流子运动而形成的,漂移电流是由载流子在作用下运动而形成的。 2.PN结反向击穿中,什么称为电击穿?什么称为热击穿? 3.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是空穴,那么能否说N型半导体带负电,P型半导体带正电?为什么?

半导体导论翻译(精)

半导体导论翻译(精)

半导体导论 P124-125 CHAPTER 3 The Semiconductor in Equilibrium (d) T = 400 K, N d = 0, N a = 1014 cm-3 (e) T = 500 K, N d = 1014 cm-3, Na = 0 3.37 Repeat problem 3.36 for GaAs. 3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0. 3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015cm-3and with arsenic at a concentration of 8 X 1014cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration. 3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015 cm-3 .Determine the thermal-equilibrium electron concentration .Is the material n type or p type? 3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d. 3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K (d) T = 450 K, and (e) T = 500 K. 3.43 Consider a sample of silicon doped at N d = 0 and Na = 1014 cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K. 3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3. 3.45 Repeat problem 3.44 for GaAs. 3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations. 3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016cm-3and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority and

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

半导体概论

半导体生产流程 所谓的半导体,是指在某些情况下,能够导通电流,而在某些条件下,又具有绝缘体 效用的物质;而至于所谓的IC,则是指在一半导体基板上,利用氧化、刻蚀、扩散等 方法,将众多电子电路组成各式二极管、晶体管等电子组件,作在一微小面积上,以 完成某一特定逻辑功能(例如:AND、OR、NAND等),进而达成预先设定好的电路 功能。自1947年12月23日第一个晶体管在美国的贝尔实验室(Bell Lab)被发明出来,结束了真空管的时代,到1958年TI开发出全球第一颗IC成功,又意谓宣告晶体管的时代结束,IC的时代正式开始。从此开始各式IC不断被开发出来,集成度也不断提升。从小型集成电路(SSI),每颗IC包含10颗晶体管的时代;一路发展MSI、LSI、VLSI、ULSI;MSI(Middle-scale integration)中等规模集成电路;LSI(Large-scale integration)大规模集成电路;VLSI(Very-Large-scale integration)甚大规模集成电路;ULSI(Ultra-Large-scale integration)超大规模集成电路再到今天,短短50年时间,包含千万个以上晶体管的集成电路已经被大量生产,并应用到我们的生活的各领 域中来,为我们的生活带来飞速的发展。不能想象离开半导体产业我们的生活将会怎样,半导体技术的发展状况已成为一个国家的技术状况的重要指针,电子技术也成为 一个国家提高国防能力的重要途径。 半导产品类别 目前的半导体产品可分为集成电路、分离式组件、光电半导体等三种。 A.集成电路(IC),是将一电路设计,包括线路及电子组件,做在一片硅芯片上,使其 具有处理信息的功能,有体积小、处理信息功能强的特性。依功能可将IC分为四类产品:内存IC、微组件、逻辑IC、模拟IC。 B.分离式半导体组件,指一般电路设计中与半导体有关的组件。 常见的分离式半导体组件有晶体管、二极管、闸流体等。 C.光电式半导体,指利用半导体中电子与光子的转换效应所设计出之材料与组件。 主要产品包括发光组件、受光组件、复合组件和光伏特组件等。 1.IC产品介绍 IC产品可分为四个种类,这些产品可细分为许多子产品, 分述如下: 内存IC:顾名思义,内存IC是用来储存资料的组件,通常用在计算机、电视游乐器、电子词典上。依照其资料的持久性(电源关闭后资料是否 消失)可再分为挥发性、非挥发性内存;挥发性内存包括DRAM、SRAM,

材料概论试题

1.何为材料,为何材料是人类社会生活的物质基础? 材料是人类用于制造物品、器件或其他产品的物质。是人类要生存需要的最基本的物质生活资料。物质生产活动是人类从事其他各种社会活动的先决条件。 2.材料科学与工程的四个基本要素是什么?请说明他们之间的关系。 材料的四个基本要素:结构与成分、性质、合成与制备、用途与性能 3. 复合材料设计的基本思想是什么?举一例说明。 达到功能复合,能保留原组成原料的特性,并通过复合效应得到原来所不具有的更为优越的新性能。碳纤维复合材料制造大飞机;轮胎是由橡胶、碳黑、帘子线等材料构成的。 4. 从燕子造窝到人用草拌泥造房、再到我们用碳纤维复合材料制造大飞机的过程,你得到了哪些启示?这些复合材料的制备都还停留在经验的层面上,而碳纤维复合材料制造大飞机虽然使用了一贯的复合思想,但相比之下更具有系统性、科学性。如今我们创造新的复合材料不再需要像过去一样完全依靠试错法,而有相关的理论指导,所以我们在探索新领域时可以从一些已有的思想中获取灵感,再用理论化地手段将其转化为材料科学。 5.绿色建筑的基本涵义? 绿色建筑指在建筑的全寿命周期内,最大限度地节约资源,保护环境和减少污染,为人们提供健康、舒适和高效的使用空间,与自然和谐共生的建筑物。 6.建筑生态环境材料的基本涵义? 生态环境材料是指那些具有良好的使用性能和优良的环境协调性的材料 7.看《终结者2》推测那个人材料的性能与特点,并推测由什么方法合成。(描述电影中未来人材料的特点和性能,并设想可由什么方式合成? 终结者2中的机器人由液态金属构成,具有流动性和高强度性,韧性好,可再组合。 合成方法: 合金合成法,置于电解液中的镓基液态合金在和铝合金结合后,能长期高速运转。 8.试说明金属材料在民航飞机中的应用情况 铝合金用作承力件,钛合金用于具有一定耐热性和耐腐蚀性的板材结构件,高强度结构钢,用于前后起落架;不锈钢,用于发动机的一些装置。高温合金用于耐高温的板材结构件和螺栓,螺母等固件和排气孔的蜂窝结构 9.说明燃料电池的工作原理及其特点。 燃料电池的工作原理是通过氧化还原反应将化学能直接转化为电能。 燃料范围广,不受卡诺循环限制、能量转换效率高、超低污染、运行噪声低、可靠性高、维护方便等 10.说明质子交换膜燃料电池的特性 a.可低温运行。 b.比能量和比功率高;c.结构紧凑、质量小,水易排出。 d.采用固态电解质不会出现变形、迁移或从燃料电池中气化,无电解液流失。 e.可靠性高,寿命长。 f.因唯一的液体是水,本质上可避免腐蚀。 11.什么是有机半导体? 具有半导体性质的有机材料,即导电能力介于金属和绝缘体之间 12.导电机理是什么,为什么有机物能导电? 含有共轭基团的有机分子之间形成连续共轭的大结构,用来传导电子和空穴,然后在电场的作用下,载流子可以沿聚合物链作定向运动,从而使高分子材料导电 13.有机导体的优点和缺点是什么? 优点:成膜技术更多、器件尺寸更小,集成度更高、有机物易于获得、柔韧性好,质量轻、可修饰性强。缺点:电阻率的变化受杂质含量的影响极大.电阻率受外界条件(如热、光等)的影响很大 14.有机导体有哪些应用方向? 光盘、有机发光二极管、传感器、有机太阳能电池等。 15.生物医用材料的定义及其主要性能特征

1.1半导体材料

1.1半导体材料 半导体是导电性能介于金属和绝缘体之间的一种材料。半导体基本上可分为两类:位于元素周期表Ⅳ族的元素半导体材料和化合物半导体材料。大部分化合物半导体材料是Ⅲ族和V 族元素化合形成的。表1.1是元素周期表的一部分,包含了最常见的半导体元素。表1.2给出了—些半导体材料(半导体也可以通过Ⅱ族和Ⅵ族元素化合得到,但本文基本上不涉及)。 由一种元素组成的半导体称为元素半导体,如Si 和Ge 。硅是集成电路中最常用的半导体材料,而且应用越来越广泛。 双元素化合物半导体,比如GaAs 或GaP ,是由Ⅲ族和V 族元素化合而成的。GaAs 是其中应用最广泛的一种化合物半导体。它良好的光学性能使其在光学器件中广泛应用,同时也应用在需要高速器件的特殊场合。 我们也可以制造三元素化合物半导体,例如1x x Al Ga As ,其中的下标x 是低原子序数元素的组分。甚至还可形成更复杂的半导体,这为选择材料属性提供了灵活性。 表1.1 部分元素周期表 表1.2 半导体材料

GaP 磷化镓 GaAs 砷化镓 InP 磷化铟 1.2 固体类型 无定型、多晶和单晶是固体的三种基本类型。每种类型的特征是用材料中有序化区域的大小加以判定的。有序化区域是指原子或者分子有规则或周期性几何排列的空间范畴。无定型材料只在几个原子或分子的尺度内有序。多晶材料则在许多个原子或分子的尺度上有序,这些有序化区域称为单晶区域,彼此有不同的大小和方向。单晶区域称为晶粒,它们由晶界将彼此分离。单晶材料则在整体范围内都有很高的几何周期性。单晶材料的优点在于其电学特性通常比非单晶材料的好,这是因为晶界会导致电学特性的衰退。图1.1是无定型、多晶和单晶材料的二维示意图。 1.3空间晶格 我们主要关注的是原子排列具有几何周期性的单晶材料。一个典型单元或原子团在三维的每一个方向上按某种间隔规则重复排列就形成了单晶。晶体中这种原子的周期性排列称为晶格。 1.3.1 原胞和晶胞 我们用称为格点的点来描述某种特殊的原子排列。图1.2给出了一种无限二维格点阵列。重复原子阵列的最简单方法是平移。图1.2中的每个格点在某个方

半导体导论翻译

半导体导论 P124-125 CHAPTER 3 The Semiconductor in Equilibrium (d) T = 400 K, N d = 0, N a = 1014 cm-3 (e) T = 500 K, N d = 1014 cm-3, Na = 0 3.37 Repeat problem 3.36 for GaAs. 3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0. 3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015 cm-3and with arsenic at a concentration of 8 X 1014 cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration. 3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015cm-3.Determine the thermal-equilibrium electron concentration .Is the material n type or p type? 3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d. 3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K (d) T = 450 K, and (e) T = 500 K. 3.43 Consider a sample of silicon doped at N d= 0 and Na = 1014cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K. 3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3. 3.45 Repeat problem 3.44 for GaAs. 3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013 cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations. 3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016 cm-3 and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority and minority carriers. (b) Repeat part (a) if the impurity concentrations are 2 x1015 cm-3 phosphorus atoms and 3 x 1016 cm-3 boron atoms.

材料概论

一、名词解释 1、能源材料:能源开发、转换、运输、储存所需的材料。 2、信息材料:信息的接收、处理、储存和传播所需的材料。 3、结构材料:以力学性能为基础,用以制造各种以受力为主的构件材料。 4、功能材料:主要利用物质独特的物理性质、化学性质或生物功能等而形成的一类材料。 5、碳素钢:含碳量小于2%,除铁、碳和限量以内的硅、锰、磷、硫等杂质外,不含其 他合金元素的钢。 6、合金钢:为了改善钢的某些性能而加入一定量的某种或几种合金元素的钢。 7、调质钢:经过调质处理后使用的碳素结构钢和合金结构钢。 8、工具钢:用以制造各种工具用的高~中碳优质钢。 9、铸铁:铸造用生铁经重新熔炼~浇注后铸造机器零件的金属材料。 10、粉末冶金:将金属粉末经过成型和烧结制成金属材料或机械零件的一种工艺方法。 11、灰口铸铁:因其断口的外貌呈暗灰色。 12、蠕墨铸铁:将低碳低硅的铁水经过硅铁或硅钙孕育处理而得。 13、球墨铸铁:用灰口成分的铁水经过球化处理和孕育处理而得。二、填空 1、从材料的使用性能考虑,将材料分为结构材料和功能材料两类。 2、我国河南安阳殷墟出土的商代晚期的司母戊鼎,是使用锡青铜材料铸造的,主要是Cu 和Sn的合金。 3、元素周期表中,有84种元素是金属元素。 4、金属材料通常分为黑色金属和有色金属,其中黑色金属主要指铁及其合金。 5、按化学成分分类,钢分为碳素钢和合金钢。 6、按冶炼设备和方法的不同,工业用钢可分为平炉钢、转炉钢和电炉钢。 7、根据冶炼时脱氧程度的不同,钢可分为沸腾钢、半镇静钢、镇静钢。 8、按退火后的金相组织,钢可以分为亚共析钢、共析钢、和过共析钢。 9、按正火后的金相组织,钢可以分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。 10、低碳钢、中碳钢和高碳钢的含碳量分别为0.04%~0.25%C、0.25%~0.60%C和0.60%~1.35%C。 11、强碳化物形成元素有钒、锆、铌、钛、钽等。(举三例即可,中文名称或元素符合均得分。) 12、为了形成易切钢,常在钢中添加硫、铅、钙、磷等元素。 13、渗碳钢一般的热处理工艺都是在渗碳之后进行淬火,然后进行低温回火,以达到“表硬里韧”的性能。为了改善渗碳钢的淬透性,可加入铬、镍、锰、硼等元素。 14、大多数调质钢从碳含量上讲一般属于中碳钢。调质处理后,钢的组织为回火索氏体。 15、碳素弹簧钢的碳含量一般在0.60%~0.75%C之间,合金弹簧钢的含碳量一般在0.46%~0.70%C之间。弹簧钢中加入Si、Mn、Cr、V等,主要作用是提高钢的淬透性和回火稳定性。 16、铬轴承钢中的含铬量以0.40%~1.65%为宜,加入铬的主要目的是增加钢的淬透性。 17、不锈钢中主要包含铬(Cr)、镍(Ni)和钛等合金元素。按组织特征,不锈钢主要分为奥氏体型、奥氏体-铁素体型、铁素体型、马氏体型和沉淀硬化型。 18、硬质合金是用作工具材料的粉末合金,它具有高的硬度、耐磨性和红硬性。一般以 WC、TiC、TiN等熔点高、硬度高的难熔化合物为主体,加入一定量的钴做粘接剂,分为钨铬合金、钨钛合金、钨钛钽(铌)钴合金和碳化钛镍鉬四类。 19、超硬铝是Al~Cu~Mg~Zn系合金,是强度最高的一种合金。 20、工业纯铜具有玫瑰色,表面氧化后呈紫色,称为紫铜。在工业纯铜中加入合金元素可

相关文档
最新文档