热工保护拒动风险控制

热工保护拒动风险控制
热工保护拒动风险控制

热工保护拒动应急措施

1.概述

热工保护装置是热控监督的重要内容之一,保证机组安全运行的重要手段,是防止机组产生重大生产事故,导致事故扩大的重要保证。在机组运行中为保证保护装置动作可靠,防止保护系统失灵,造成停机、停炉构成机组非计划停运。

机组热工保护拒动是指机组主要设备的热工保护拒动,包括锅炉及汽机、发电机、高压加热器的热工保护。对于机组热工保护拒动可能造成的后果主要有三种:一是引起爆炸、火灾或由于设备损坏造成人员伤亡;二是造成电网事故,大面积停电;三是造成设备损坏。

2.机组热工保护拒动的原因:

(1)保护定值计算问题

(2)保护装置或二次回路问题

(3)保护配置问题

(4)电源问题

3. 机组热工保护拒动的预防

3.1对保护系统有关设备的检修应严格遵从热工检修标准,检修工艺符合要求。

3.2运行人员加强监视,发现涉及到机组保护系统异常的情况及时和热工分场联系,共同对存在问题进行分析,热工分场及时对问题进行处理。

3.3定期对热工电源系统进行工作/备用切换试验,保证电源切换正常,工作可靠。

3.4对涉及保护回路的仪表、压力开关、传感器等元件,应进行定期校验,校验周期符合规程规定。

3.5根据设备巡回检查制度规定,热工人员每日应对保护系统进行检查,发现问题及时消除。

3.6应对锅炉灭火保护装置定期进行保护定值的核实检查和保护试验,对锅炉灭火保护装置的动态试验(指在静态试验合格的基础上,通过调整锅炉运行状况达到MFT动作的现场整套炉膛安全监视保护系统的闭环试验)时间不得超过3年。

3.7在对锅炉灭火保护装置进行动态试验时必须将锅炉有关磨煤机、给煤机的连锁一并纳入试验中。

3.8加强对汽轮机仪表的监视,保证每台机组至少有两台相互独立的转速监视仪表,保证汽轮机转速监视的可靠性。

3.9汽轮机转速高、轴向位移、低油压、低真空灯保护每季度及每次机组检修启动前应进行静态试验,检查跳闸逻辑、报警及停机动作值,保证回路完好。

3.10若热工保护装置(系统、包括一次检测设备)故障,必须开具工作票经总工程师批准后迅速处理。

3.11锅炉灭火、汽包水位和汽轮机转速高、轴向位移、低油压、低真空灯重要保护装置在机组运行中严禁退出运行,其他热工保护装置被迫退出运行的,必须在24小时恢复,否则应停机、停炉。

3.12热工保护系统应建立专门的台账,检修、试验有详细记录。

热工保护与顺序控制

1.“三取二”信号法的好处?表达方式? 单个检测元件的误动作率p或拒动作率q很小时,可有效减小误动作率和拒动作率。 逻辑表达式: 2.中英文简称 计算机监视系统【CMS】数据采集系统【DAS】 模拟量控制系统【MCS】机组协调控制系统【CCS】 锅炉炉膛安全监控系统【FSSS】燃烧器管理系统【BMS】 汽轮机控制系统【TCS 】汽轮机数字电液调节系统【DEH】 汽轮机安全监视仪表【TSI 】旁路控制系统【BPS 】 顺序控制系统【SCS或SEQ】汽轮机紧急跳闸系统【ETS】 报警系统【ANN】 3.避免轴弯曲的有效方法 (1)正确投入盘车(2)当取闷缸措施 4.什么是差胀?汽轮机从前段到后段,差胀的变化特点 ①转子和汽缸之间的相对膨胀值差值,也可以说是主轴相对于汽缸某一点的膨胀差值。 ②从前段到后段,差胀越来越大 5.电涡流传感器测量系统的构成 6.汽轮机转速的测量方法 磁阻测速、磁敏测速、电涡流测速、霍尔转速传感器 7.双探头测轴震时,两个传感器在安装时要注意什么 在测轴的绝对振动时,应尽可能把绝对振动传感器放在同一个平面,或尽可能靠在一起。为了提高测量精度,应尽可 能减少轴的偏心度,椭圆度,轴颈上的缺口,刻痕等等因素。 8.大型单元机组对所发生的带有全局性影响的事故的保护方式 辅机故障减负荷(RB)、机组快速甩负荷(FCB)、主燃料跳闸(MFT) 9.暖炉油泄露试验 为了防止轻油泄露(包括漏入炉膛),通过油系统泄露试验对油母管快关阀,回油阀、油母管,各层各油角阀所做的密闭性试验。 操作人员可根据实际情况,在OIS上旁路油系统泄露试验,但是在油系统管路维修、初次投运或较长时间未投运油系统时,油泄露试验不得旁路。选择油泄露实验旁路时,OIS画面将警告提示。 10.电磁式继电器 (1)电流继电器(2)电压继电器(3)中间继电器(4)时间继电器 11.接触器的特点 特点:触点接触良好,接触压力足够大,触点通断速度快,并具有灭弧装置。 12.阀门的操作转矩特点 在开启(或关闭)阀门的初始(或终了)一瞬间出现最大转矩,而在整个开启(或关闭)阀门的过程中转矩是不大的。13.锅炉炉膛爆炸的方式及原因 炉膛外爆、炉膛内爆(用内外压差来回答) 14.什么是缸胀,缸胀的方向受什么影响 ①汽缸的绝对膨胀值,即汽轮机的汽缸相对于机座基准点的增长。 ②汽缸的绝对死和点滑销装置 15汽包水位高低保护,再热器壁温高保护及汽压高保护逻辑框图

火力发电厂热工保护定值在线管理系统设计

火力发电厂热工保护定值在线管理系统设计 发表时间:2019-08-27T14:10:59.000Z 来源:《当代电力文化》2019年第7期作者:姚川 [导读] 对于智能控制技术的应用进行研究和分析有十分重要的意义。 新疆天富能源股份有限公司天河热电分公司石河子 832000 摘要:电厂热工自动化系统在近年来的运行当中经常出现问题,应用智能控制技术对于电厂热工自动化系统运行可以实现全面的提升,提高运行水平。尤其是可以加强热工设备的检测,所以对于智能控制技术的应用进行研究和分析有十分重要的意义。 关键词:SIS系统;热工保护定值;在线管理系统;设计 1智能控制技术在电厂热工中的应用方向 电厂热工工作复杂,单纯的人工控制已经不能够满足当前电厂热工的工作需求,并且增加了人工劳动力,同影响控制效率。智能控制技术的应用,可以根据实际情况调节,实现对电厂热工的远程控制。对设备的工作流程起到规范作用,尤其在受到环境影响时,实现设备的调节。既提升设备的运行效率、保证运行的安全,又能够延长设备使用寿命。智能控制可以通过计算机技术对各个仪表的数据进行自动检测,并通过计算机系统分析出各个设备在工作中是否存在异常和问题。对于电厂热工自动化的工作中,可以有效的自动检测温度、湿度、成分、流量等,为热工系统的工作运行提供安全性。另外,智能控制技术与热工系统中的自动功能结合,为系统提供系统运行的参数和实时数值,可以实现有效的自动调整,一方面便于自动报警,一方面为收益计算提供数值参考。 2系统总体设计 2.1系统设计架构 热工保护定值在线管理系统采用B/S方式,作为依托超(超)临界机组SIS系统的一个子系统进行开发与部署,嵌入SIS系统中作为一个子系统运行,其系统设计架构层次如图1所示。 2.2系统热工保护定值数据汇总 按照设备制造商给出的设备说明书、设计院的设备设计文件、经验总结、参考相似机组设备的热工保护、联锁、报警项的定值进行收集,初步形成最初的热工保护定值数据、并汇总成系统开发所要求的可导入的标准数据表格的形式,并导入进热工保护定值在线管理系统,建立初步的热工保护定值数据库。 3系统模块设计 3.1系统模块布局 热工保护定值在线管理系统针对发电厂热工保护定值精细化管理要求设计开发,并按照保护定值的在线监督、汇总管理和修编工作等需求,完成对热工保护定值精细化管理方面的研究功能,按照系统模块式的方法进行。 3.2热工保护定值展示 将机组建设初期的设备说明书及设计文件形成的设备保护设计值、联锁值、报警值或者根据经验设计的相关保护定值通过系统开发的数据采集功能,将这些数据导入进系统,导入时按照一定的规则和标准所形成的数据表格整体采集。然后对采集的数据进行归类整合,在系统内进行存储并建立保护定值项相关数据库,系统自动生成初始的热工保护定值数据清册,并且系统内的热工保护定值项数据库还具有模糊查询功能、生产系统筛选功能、SIS系统工艺流程图画链接功能,方便运维人员及时了解保护定值的数据情况。 (1)模糊功能查询。相关技术管理人员或者运维人员通过输入设备描述、KKS编码、或者保护定值项名称等查询选项,系统自动进行查询,并从数据库中罗列需要查询的相关的设备详细保护定值清单,方便用户的查看。 (2)生产系统筛选功能。相关技术管理人员或者运维人员可以输入按照设备所属系统进行查询,如查询汽轮机凝结水系统相关的保护定值,系统将自动罗列该系统相关的保护、报警、联锁等保护定值项内容,方便用户的查看。 (3)SIS系统工艺流程图画面链接功能。相关技术管理人员或者运维人员在查看SIS系统的生产工艺流程画面过程中,通过流程图中的相应设备测点右键点击查看选择其中的保护定值选项,系统自动链接进入热工保护定值在线管理系统查询界面,罗列出该测点相关的保护、报警、联锁保护定值项内容,方便用户的查看。 3.3热工保护定值智能分析 基于SIS系统平台的热工保护定值在线管理系统通过导入的保护定值标准数据表采集过来的保护定值及相关设备测点的信息进行智能分

防止分散控制系统失灵、热工保护拒动事故

编号:AQ-JS-00769 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 防止分散控制系统失灵、热工 保护拒动事故 Prevention of DCS failure and thermal protection failure

防止分散控制系统失灵、热工保护拒 动事故 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 为了防止分散控制系统(DCS)失灵、热工保护拒动造成的事故,要认真贯彻《火力发电厂热工仪表及控制装置技术监督规定》(国电安运[1998]483号)、《单元机组分散控制系统设计若干技术问题规定》(电规发[1996]214号)、《火力发电厂锅炉炉膛安全监控系统在线验收测试规程》(DL/T655-1998)、《火力发电厂汽轮机控制系统在线验收测试规程》(DL/T656-1998)、《火力发电厂模拟量控制系统在线验收测试规程》(DL/T657-1998)、《火力发电厂顺序控制系统在线验收测试规程》(DL/ T658-1998)、《火力发电厂分散控制系统在线验收测试规程》(DL /T659-1998)等有关技术规定,并提出以下重点要求:1分散控制系统配置的基本要求。

1.1DCS系统配置应能满足机组任何工况下的监控要求(包括紧急故障处理),CPU负荷率应控制在设计指标之内并留有适当裕度。 1.1.1所有控制站的CPU负荷率在恶劣工况下不得超过60%。所有计算机站、数据管理站、操作员站、工程师站、历史站等的CPU 负荷率在恶劣工况下不得超过40%,并应留有适当的裕度。 1.1.2CPU的负荷率应定期检查统计,如超过设计指标,应迅速采取措施处理。 1.1.3控制站、操作员站、计算机站、数据管理站、历史站或服务器脱网、离线、死机,在其它操作员站监视器上应设有醒目的报警功能,或在控制室内设有独立于DCS系统之外的声光报警。 1.2控制器,FSSS、ETS系统的I/0卡应采用冗余配置,重要I/O点应考虑采用非同一板件的冗余配置。 1.2.1分配控制回路和I/0信号时,应使一个控制器或一块I/0板件损坏时对机组安全运行的影响尽可能小。I/0板件及其电源故障时,应使I/0处于对系统安全的状态,不出现误动。 1.2.2冗余I/0板件及冗余信号应进行定期检查和试验,确保处

电厂热工自动化技术及其应用

电厂热工自动化技术及其应用分析 摘要:电力系统自动化是我国电力技术近年来的主要发展方向,本文针对电厂热工自动化技术及其应用情况展开了论述与探讨。文章首先就电厂热工自动化的概念及其在我国的发展现状进行了阐述,在此基础上就电厂热工自动化技术的构成及应用情况进行了论述与分析。?关键词:电力系统;热工自动化;自动化技术;技术应用??随着科学技术的发展,我国电力系统自动化程度越来越高。电厂热工自动化随火力发电技术的发展而不断进步,是我国的电力系统的重要组成部分。目前,我国电厂热动自动化已经得到了很大的发展。从自动装置看,组装仪表已经向现在的数字仪表发展,系统控制设备也提升到了新的档次,一些机组有专门的小型计算机进行监督和控制,配以crt显示,监控水平较以前大大提高。??一、电厂热工自动化及其在我国的发展?(一)电厂热工自动化的概念?火力发电厂热工自动化的主要概念是以火力发电过程中数据的测量、信息的处理、设备的自动控制、报警和自动保护为基础,通过自动化系统的控制来达到无人操作的过程。在火力发电厂生产过程中为了使发电设备的安全有所保障,需要对设备进行自动化控制,以避免重大事故的发生,同时也减少了一定的人力资源。一般的火电自动化系统都分为四个子系统,其中以自检系统、控制系统、报警系统、保护系统为主。?(二)电厂热工自动化在我国的发展?我国火力发电厂的热工自动化技术近年来得到了非常迅猛的发展,其核心技术 distributed control system(dcs)更是被我国发电企

业所应用。dcs技术主要是通过设备的分散控制来达到数据和信息的自动化处理,在我国350mw以上的火电机组上应用较为广泛,其经济性和安全性被我国发电企业所认同。近年来随着计算机软件可视化效果的提高,dcs技术得到了极大的发展和应用,通讯接口的识别和管理系统数据的共享为火力发电厂的信息化处理提供了必要保障,同时dcs的分散控制也起到了非常好的效果。 二、电厂热工自动化技术构成?(一)热工测量技术方面 1、温度测量,火电厂热工测量控制系统中的温度测量传感器(s enser),采用热电偶热电阻,少数地方采用其他热敏元件如金属膜(双金属膜)水银温包等作为温度测量的一次元件; 2、压力(真空)测量,传感器为应变原理的膜片,弹簧管,变送器为位移检测原理或电阻电容检测原理,(4-20ma),二次仪表以数显为多; 3、流量测量,以采用标准节流件依据差压原理测量为主,少数地方采用齿轮流量计或涡轮流量计,如燃油流量的测量。大机组中的主蒸汽流量测量许多地方不用节流件,利用汽机调节级的压力通用公式计算得出;4、液位(料位)测量,液位测量以差压原理经压力补偿测量为主流,电接点,工业电视并用。料位测量以称重式或电容式传感器配4-20ma变送器测量,也有用浮子式或超声波原理。 ?(二)关于dcs??目前大机组的仪控系统大多选用dcs系统。dcs系统在火电厂发电机组控制中的应用已有10多年的历史了,而且正在越来越多地得到应用。dcs系统是相对于计算机集中控制系统而言的计算机(或微机)控制系统,它是在对计算机局域网的研

热工保护拒动风险控制

热工保护拒动应急措施 1.概述 热工保护装置是热控监督的重要内容之一,保证机组安全运行的重要手段,是防止机组产生重大生产事故,导致事故扩大的重要保证。在机组运行中为保证保护装置动作可靠,防止保护系统失灵,造成停机、停炉构成机组非计划停运。 机组热工保护拒动是指机组主要设备的热工保护拒动,包括锅炉及汽机、发电机、高压加热器的热工保护。对于机组热工保护拒动可能造成的后果主要有三种:一是引起爆炸、火灾或由于设备损坏造成人员伤亡;二是造成电网事故,大面积停电;三是造成设备损坏。 2.机组热工保护拒动的原因: (1)保护定值计算问题 (2)保护装置或二次回路问题 (3)保护配置问题 (4)电源问题 3. 机组热工保护拒动的预防 3.1对保护系统有关设备的检修应严格遵从热工检修标准,检修工艺符合要求。 3.2运行人员加强监视,发现涉及到机组保护系统异常的情况及时和热工分场联系,共同对存在问题进行分析,热工分场及时对问题进行处理。 3.3定期对热工电源系统进行工作/备用切换试验,保证电源切换正常,工作可靠。 3.4对涉及保护回路的仪表、压力开关、传感器等元件,应进行定期校验,校验周期符合规程规定。 3.5根据设备巡回检查制度规定,热工人员每日应对保护系统进行检查,发现问题及时消除。 3.6应对锅炉灭火保护装置定期进行保护定值的核实检查和保护试验,对锅炉灭火保护装置的动态试验(指在静态试验合格的基础上,通过调整锅炉运行状况达到MFT动作的现场整套炉膛安全监视保护系统的闭环试验)时间不得超过3年。 3.7在对锅炉灭火保护装置进行动态试验时必须将锅炉有关磨煤机、给煤机的连锁一并纳入试验中。 3.8加强对汽轮机仪表的监视,保证每台机组至少有两台相互独立的转速监视仪表,保证汽轮机转速监视的可靠性。

防止分散控制系统失灵、热工保护拒动事故措施

编号:AQ-JS-03501 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 防止分散控制系统失灵、热工保护拒动事故措施 Measures to prevent DCS failure and thermal protection failure

防止分散控制系统失灵、热工保护拒 动事故措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 为了防止分散控制系统(DCS)失灵、热工保护拒动造成的事故,要认真贯彻《火力发电厂热工仪表及控制装置技术监督规定》(国电安运[1998]483号)、《单元机组分散控制系统设计若干技术问题规定》(电规发[1996]214号)、《火力发电厂锅炉炉膛安全监控系统在线验收测试规程》(DL/T655-1998)、《火力发电厂汽轮机控制系统在线验收测试规程》(DL/T656-1998)、《火力发电厂模拟量控制系统在线验收测试规程》(DL/T657-1998)、《火力发电厂顺序控制系统在线验收测试规程》(DL/T658—1998)、《火力发电厂分散控制系统在线验收测试规程》(DL/T659-1998)等有关技术规定,并提出以下重点要求:1分散控制系统配置的基本要求。

1.1DCS系统配置应能满足机组任何工况下的监控要求(包括紧急故障处理),CPU负荷率应控制在设计指标之内并留有适当裕度。 1.1.1所有控制站的CPU负荷率在恶劣工况下不得超过60%。所有计算机站、数据管理站、操作员站、工程师站、历史站等的CPU 负荷率在恶劣工况下不得超过40%,并应留有适当的裕度。 1.1.2CPU的负荷率应定期检查统计,如超过设计指标,应迅速采取措施处理。 1.1.3控制站、操作员站、计算机站、数据管理站、历史站或服务器脱网、离线、死机,在其它操作员站监视器上应设有醒目的报警功能,或在控制室内设有独立于DCS系统之外的声光报警。 1.2控制器,FSSS、ETS系统的I/0卡应采用冗余配置,重要I/O点应考虑采用非同一板件的冗余配置。 1.2.1分配控制回路和I/0信号时,应使一个控制器或一块I/0板件损坏时对机组安全运行的影响尽可能小。I/0板件及其电源故障时,应使I/0处于对系统安全的状态,不出现误动。 1.2.2冗余I/0板件及冗余信号应进行定期检查和试验,确保处

热工保护控制系统论文

热自1101班李海龙 201159060132 炉膛安全监控系统(FSSS)分析 摘要:炉膛安全监控系统(FurnaceSafeguardSupervisorySystem,以下简称FSSS),目前已成为我国大型电站锅炉必不可少的控制系统,其主要功能是保护锅炉炉膛,避免发生爆炸事故,对油、煤燃烧器进行程控等管理。炉膛安全监控系统主要包括:联锁系统、主燃料跳闸系统、燃油系统和制粉系统。FSSS系统能够连续地在线监控燃烧系统的大量参数和工况,不断地进行实时逻辑运算和判断,必要时发出动作指令,通过联锁装置,防止锅炉和任何部分形成可爆的燃料和空气混合物,以保障锅炉运行的安全性。由此可见,FSSS系统是保护锅炉安全的重要控制手段,火电厂锅炉装设了炉膛安全监控系统后极少发生炉膛爆燃事故。 关键词:锅炉爆燃;炉膛安全监控系统(FSSS);主燃料跳闸(MFT);联锁系统;吹扫。 一、概述 电厂锅炉需要控制数量众多的燃烧设备,如点火装置、油燃烧器、煤粉燃烧器、一次风挡板、二次风挡板等等。燃烧设备的操作过程也趋于复杂化,如油枪的投运操作包括:点火油枪的推入、雾化蒸汽阀开启、进油阀开启、电点火枪的投入与断开等。在锅炉启停工况和事故工况下,燃烧器的操作更加频繁,如果操作不当很容易造成意外事故。过去,国内锅炉由于缺少燃烧安全控制系统,每年锅炉发生炉膛爆炸事故几十起,损失巨大。为了防止锅炉事故的发生,减少电力生产的损失,在电厂锅炉上安装炉膛安全监控系统(FurnaceSafeguardSupervisorySystem,简称FSSS)成为必然趋势。

二、FSSS的功能 2.1炉膛点火前的吹扫锅炉停炉以后,尤其是长期停炉后,闲置的炉膛里必然会积聚一些燃料、杂物等,给重新运行带来不安全因素。因此,系统设置了点火前炉膛吹扫的功能。在吹扫许可条件满足后,由操作人员启动一次为时5min的炉膛吹扫过程,这些吹扫许可条件的满足实际上是全面检查锅炉是否能投入运行的条件。为了防止操作人员的疏忽,系统设置了大量的连锁,锅炉如果不经吹扫,就无法进行点火。同时,5min的吹扫时间必须满足,如果因为吹扫许可条件失去而引起吹扫中断,必须等待条件重新满足后,再启动一次5min的吹扫,否则,锅炉也无法点火。 2.2燃油投入许可及控制 在锅炉完成点火前吹扫后,控制系统即开始对投油点火所必备的条件进行检查,如:吹扫是否完成、油系统泄漏试验是否成功、油源条件、雾化介质条件、油枪和点火枪机械条件等。上述条件经确认以后,系统即向运行人员发出点火许可信号,一旦运行人员发出点火指令后,系统即对将要投入的燃油 层进行自动程序控制,内容包括:总油源、汽源打开,编排油角启动顺序,油枪点火器推进,油枪阀控制,点火时间控制,点火成功与否判断,点火完成后油枪的吹扫,油层点火不成功跳闸等。 2.3煤粉投入许可及控制 系统成功进行了锅炉点火及燃油低负荷运行之后,即开始对投入煤粉所有设备的条件进行检查,完成大量的条件扫描工作。这主要包括:锅炉参数是否合适,煤粉点火能量是否充足,燃烧器工况,给粉机工况,有关风门挡板工况等。待上述诸方面条件满足以后,系统向运行人员发出投粉允许信号。当运行人员发出投粉指令后,系统开始对将要启动的煤层进行自动程序控制,内容包括:编排设备启动顺序,控制启动时间,启动各有关设备,监视各种参数,启动成功与否判断,煤层自动启动,启动不成功跳闸等。系统还对煤层正常停运进行自动程序控制。 2.4持续运行监视 当锅炉进入稳定运行工况后,系统全面进入安全监控状态(实际上从点火前吹扫开始锅炉就置于系统的安全监控之下了)。系统连续监视锅炉主要参数,如汽包水位、炉膛压力、汽轮机运行状态、全炉膛火焰以及各种辅机工况等。若发现各种不安全因素时给予声光报警,

电厂热工保护误动的原因及应对

电厂热工保护误动的原因及应对 摘要:热工保护系统在整个电厂系统中对维护机组的安全运行有着至关重要的 作用,同时也是整个电厂中的核心部分,但是在实际的电厂机组运行过程中,经 常会因为突发事件造成电厂热工保护出现误动的情况,进而导致整个机组停机, 给相企业带来一定的经济损失,为此,需要加强热工系统的稳定性和可靠性的研究。在日益激烈的电厂竞争中,为保证企业能够占据有利的地位,需要相关工作 人员能在设备运行强对热工保护系统进行全面检查,并提前做好相应的应急措施,使相关热点设备能够正常的运行,进而实现创造经济效益的目的。 关键词:热工保护;误动;原因 Abstract:the thermal protection system in the whole power system to maintain safe operation of the unit have a vital role,is also the core part in the whole plant,but in the process of the actual power plant unit operation,often because of emergencies caused by thermal power plant protection maloperation situation,leading to the entire machine stop and bring that enterprise certain economic loss,therefore,need to strengthen the stability of the thermal system and the reliability of the research. In the increasingly fierce competition in the power plant,in order to ensure the enterprise to occupy the advantageous position,to relevant personnel can run on the device for thermal protection system to conduct a comprehensive inspection,and the corresponding emergency measures in advance,make relevant hot equipment can normal run,and then to realize the purpose of creating economic benefits. Key words:thermal protection;Misoperation. Why 在整个电厂系统中,热工保护对于维护整个机组的安全有着至关重要的作用,随着科技的进步,相关的热工工艺水平和设备的质量方面都得到有效的提高,但 是从当期的多发的事故中看来,该技术还是存在一定的问题。 1 提高热工保护系统可靠性的重要性 要想使热工保护拒动、误动减少,必须是DCS系统的失灵发生率降低。近几 年来,不断更新的电厂机组设备,不断增加的性能,主要表现在以下几个方面: 不断增加的发电机组容量,不断提高的参数,逐渐提升的热工自动化程度等。不 断发展和应用的DCS分散控制系统,拥有强大的优势和功能,对机组的稳定性、 经济性、可靠性、安全性有极大的提高。不断增大的机组容量导致参与保护的热 工参数也在增加,这样就提高了设备或机组拒动、误动的发生。所以,提高热工 保护系统可靠性对热工误动的降低有很大的促进作用。 2 热力保护误动的现象分析 在当前的电厂安全运行事件中因为热控专业造成的事件占同比的20%,而造 成热控的最主要原因是因为电工保护误动现象的发生。其中主要是以新投资生产 的机组为准,这部分机组在最初的建设期间因为对热工的保护设计以及配置等方 面不够重视,进而导致误动事件的发生,严重时部分机组一年会发生7次以上的 误动现象,本文下面将列举近几年较为典型误动事件进行分析: 2.1某电厂的故障原因是主汽温度故障,在进行相关“三取二”的逻辑判断 中出现失误,将错误降温信号发送至相关的设备中,使发电机和发电系统中其余 部分之间失去联系且无法恢复同步以及锅炉主燃烧跳闸(MFT)的现象发生。 2.2因为某电厂的发电机主开关中只有一个用于发送“合闸”的反馈信号,

热工仪表与自动装置安装工艺及技术.

热工仪表与自动装置安装工艺及技术 一.热控取源部件及敏感元件的安装 1.概述:包括温度、压力、差压、流量等仪表的取样点选择、取样孔开孔、取源部件安装等工作。 2.仪表测点的开孔和插座的安装 2.1测点开孔位置的选择 a测点开孔位置应以设计或制造厂的规定进行。如无规定时,可根据工艺流程 系统图中测点和设备、管道、阀门等的相对位置,依据《电力建设施工及验收规范》(热工仪表及控制装置篇)的规定按下列规则选择: b、测孔应选择在管道的直线段上。测孔应避开阀门、弯头、三通、大小头、挡板、人孔、手孔等对介质流速有影响或会造成泄漏的地方。 c、不宜在焊缝及其边缘上开孔及焊接。 d、取源部件之间的距离应大于管道外径,但不小于200mmo压力和温度在同一地点时,压力测孔必须选择在温度测孔的前面(按介质流动方向而言。下同),以避免因温度计阻挡使流体产生漩涡而影响测压。 e在同一处的压力或温度测孔中,用于自动控制系统的测点应选择在前面。 f、高压(>6M P a管道的弯头处不允许开凿测孔,测孔距管道弯曲起点不得小于管子的外径,且不得小于100mm。 g、取源部件及敏感元件应安装在便于维护和检修的地方,若在高空处,应有便于维修的设施。 2.2测点开孔:测点开孔,一般在热力设备和管道正式安装前或封闭前进行,禁止在已冲洗完毕的设备和管道上开孔。如必须在已冲洗完毕的管道上开孔时,需证实其内没有介质,并应有防止异物掉入管内的措施。当有异物掉入时,必须设法取

出。测孔开孔后一般应立即焊上插座,否则应采取临时封闭措施,以防止异物掉入。 根据被测介质和参数的不同,在金属壁上开孔可用下述方法: 在压力管道和设备上开孔,应采用机械加工的方法; 风压管道上可用氧乙炔焰切割,但孔口应磨圆锉光。 使用不同的方法开孔时,应按下列步骤进行: 使用氧乙炔焰切割开孔的步骤:用划规按插座内径在选择好的开孔部位上划圆;在圆周线上打一圈冲头印;用氧乙炔焰沿冲头印内边割出测孔(为防止割下的块掉入本体内,可先用火焊条焊在要割下的铁块上,以便于取出割下的铁块);用扁铲剔去溶渣,用圆锉或半圆锉修正测孔。 使用机械方法(如板钻或电钻)开孔的步骤:用冲头在开孔部位的测孔中心位置上打一冲头印;用与插座相符的钻头进行开孔,开孔时钻头中心线应保持与本体表面垂直;孔刚钻透,即移开钻头,清除孔壁上的铁片;用圆锉或半圆锉修去测孔四周的毛刺。 2.3插座的安装:测温元件插座在安装前,必须核对插座的形式、规格和材质,应与设计相符,丝扣应与测温元件相符。对于材质为合金钢的插座必须进行光谱分析并作记录和标识。 插座安装应遵照焊接与热处理的有关规定及下列要求进行: a插座应有焊接坡口,焊接前应把坡口及测孔的周围用锂或砂布打磨,并清除测孔内边的毛刺。 b、插座的安装步骤为找正、点焊、复查垂直度、施焊。焊接过程中禁止摇动焊 件。 c、合金钢插座点焊后,必须先预热方可施焊。焊接后的焊口必须进行热处理。

热工自动控制B-总复习2016

热工自动控制B-总复习2016

在电站生产领域,自动化(自动控制)包含的内容有哪些? 数据采集与管理;回路控制;顺序控制及联锁保护。 电站自动化的发展经历了几个阶段,各阶段的特点是什么? 人工操作:劳动密集型;关键生产环节自动化:仪表密集型;机、炉、电整体自动化:信息密集型;企业级综合自动化:知识密集型; 比较开环控制系统和闭环控制系统优缺点。 开环:不设置测量变送装置,被控制量的测量值与给定值不再进行比较,克服扰动能力差,结构简单,成本低廉;闭环:将被控制量的测量值与给定值进行比较,自动修正被控制量出现的偏差,控制精度高,配备测量变送装置,克服扰动能力强; 定性判断自动控制系统性能的指标有哪些?它们之间的关系是什么? 指标:稳定性、准确性、快速性。关系:同一控制系统,这三个方面相互制约,如果提高系统快速性,往往会引起系统的震荡,动态偏差增大,改善了稳定性,过渡过程又相对缓慢。 定性描述下面4 条曲线的性能特点,给出其衰减率的取值范围。 粉:等幅震荡过程,ψ=0;绿:衰减震荡过程,0<ψ<1;红:衰减震荡过程,0<ψ<1;蓝:不震荡过程,ψ=1; 在热工控制系统中,影响对象动态特性的特征参数主要有哪三个?容量系数,阻力系数,传递迟延 纯迟延与容积迟延在表现形式上有什么差别,容积迟延通常出现在什么类型的热工对象上? 容积迟延:前置水箱的惯性使得主水箱的水位变化在时间上落后于扰动量。纯迟延:被调量变化的时刻,落后于扰动发生的时刻的现象。纯延迟是传输过程中因传输距离的存在而产生的,容积迟延因水箱惯性存在的有自平衡能力的双容对象 建立热工对象数学模型的方法有哪些? 机理建模:根据对象或生产过程遵循的物理或化学规律,列写物质平衡、能量平衡、动量平衡及反映流体流动、传热等运动方程,从中获得数学模型。实验建模:根据过程的输入和输出实测数据进行数学处理后得到模型 了解由阶跃响应曲线求取被控对象数学模型的方法、步骤及注意事项,能对切线法、两点法做简单的区分。 注意事项:1实验前系统处于需要的稳定工况,留出变化裕量;2扰动量大小适当,既克服干扰又不影响运行;3采样间隔足够小,真实记录相应曲线的变化;4实验在主要工况下进行,每一工况重复几次试验;5进行正反两个方向的试验,减小非线性误差的影响。方法:有自平衡无延迟一阶对象:切线发和0.632法;有自平衡有延迟一阶对象:切线发和两点法;有自平衡高阶对象:切线发和两点法;无自平衡对象:一阶近似法和高阶近

浅谈防止热工保护误动拒动的技术对策

浅谈防止热工保护误动、拒动的技术对策摘要:随着DCS控制系统的成熟发展,热工自动化程度越来越高,凭借其巨大的优越性,使机组的可靠性、安全性、经济性运行 得到了很大的提高。但热工保护误动和拒动的情况还有时发生。如 何防止DCS系统失灵和热工保护误动、拒动成为电厂甚至大型旋转 机械设备控制的日益关注的焦点。 关键词:热工保护;误动;拒动;技术 热控保护系统是火力发电厂不可缺少的组成部分,它对提高机 组主辅设备的可靠性和安全性具有十分重要的作用。热工保护系统 的功能是当机组主辅设备在运行过程中参数超出正常可控制的范围时,自动紧急联动相关的设备,及时采取相应的措施加以保护,从 而软化机组或设备故障,避免出现重大设备损坏或其他严重的后果。主辅设备正常运行时,保护系统因自身故障而引起动作,造成主辅 设备停运,称为保护误动;在主辅设备发生故障时,保护系统也发 生故障而不动作,称为保护拒动。随着热工技术水平的进步和设备 的质量的提高,控制理论的快速发展与不断完善,使得电厂热工控 制系统的控制品质和自动化水平都得到了极大的改善与提高。但从 近几年热工保护情况统计来看,由于热工保护误动引起机组跳闸,

造成非计划停运的比例还是较大的。如何避免热工保护误动、拒动 成为火力发电厂同益关注的问题。 1 热工保护误动、拒动原因分类 热工保护误动、拒动的原因大致可以概括为:DCS软、硬件故障;热控元件故障;中间环节和二次表故障;电缆接线短路、断路、虚接;热控设备电源故障;人为因素;设计、安装、调试存在缺陷。 2 热工保护误动、拒动原因分析 2.1 DCS软件、硬件故障。 随着DCS控制系统的发展,为了确保机组的安全、可靠,热工 保护里加人了一些重要过程控制系统(如:DEH、CCS、BMS等),两个控制器同时故障时停机保护,由此,因DCS软、硬件故障而引起 的保护误动也时有发生。主要是控制器、输出模块、设定值模块、 网络通讯等故障引起。

分析热工DCS保护误动原因及措施

分析热工DCS保护误动原因及措施 发表时间:2019-10-28T15:16:14.587Z 来源:《电力设备》2019年第12期作者:程明 [导读] 摘要:计算机技术和自动控制技术等在电网中应用范围的不断扩大,推动了智能电网的发展,但DCS在应用的过程中,产生保护误动和拒动的可能性较大,影响设备运行的可靠性,甚至在设备发生故障后无法正常启动保护动作,造成故障的扩大,所以尽可能的降低 DCS保护误动和拒动的发生概率至关重要。 (山西省晋城市阳城国际发电有限责任公司山西省晋城市 048102) 摘要:计算机技术和自动控制技术等在电网中应用范围的不断扩大,推动了智能电网的发展,但DCS在应用的过程中,产生保护误动和拒动的可能性较大,影响设备运行的可靠性,甚至在设备发生故障后无法正常启动保护动作,造成故障的扩大,所以尽可能的降低DCS 保护误动和拒动的发生概率至关重要。 关键词:热工DCS保护;误动原因;措施 当机组在正常运行中重要的主辅设备出现异常或参数超过正常可控的范围时,热工保护可紧急联动相关的设备,采取相应的措施对主辅设备加以保护,将设备损失和机组故障降到最低,从而避免发生机组重要设备受损的严重后果。目前由于热工保护系统的原因,依然存在着保护误动和保护拒动的情况。保护误动指因系统自身原因或故障引起系统保护动作,从而造成机组主辅设备故障停运,保护拒动是指机组主辅设备出现故障时,保护系统因各种原因发生系统故障造成系统保护未动作。 1.概述 DCS也称为分布式控制系统,主要包括人机接口、控制站、通讯网络及现场仪表四大部分。其中人机接口是计算机和操作人员建立关联的主要渠道,可以实现信息输入和输出作用。不同制造厂家的DCS设备中,配置也有所差异。一般供电状况下人机接口才会良好运行。现场控制站是核心部件,可完成所有相关方案的设置和处理。通讯网络则包括通信模块、交换机等部分。当下DCS厂家制造中,系统多个部件可与整个单元同时供电,但是交换机内部的网络单元较为特殊,一般是单独供电。最后现场仪表、阀门等对整个系统运行和功能的实现起到保障作用。 2.电厂热工DCS保护误动和拒动原因分析 2.1系统软硬件故障 电厂热工DCS控制系统,是基于各项机械硬件与软件的配合使用而实现的,因此此系统的基础就在于其软硬件,而当软硬件出现了故障,就可能造成保护功能的误动和拒动。此外,火力发电厂会对DCS系统进行一系列的启停检测,此项检测的实施主要是通过DCS本身的查询电压来完成的,而大多数的DCS控制系统,其为了防治外部电路对系统再次影响,会在每个端子板上设置保险丝,以此在短路或受到强电压时,保险丝会自行熔断,以此对整体电路进行保护,但保险丝为了起到保险的作用,其熔点往往较低,时常会因为设备高频率运作而熔断,此时电路通知系统保护功能就会启动或因为无法检测具体原因而产生误动、拒动。 2.2电缆接线故障分析 在现代社会发展的观念之下,多数的火力发电厂为了实现更高效率的运行,会对自身工作环境进行优化,以此来提高自身运作的频率,这样的做法在有相应的技术支撑前提下,确实可以良好的实现目的,但是因为火力发电站本身运行的特点,其环境当中可能产生高温、粉尘、潮湿等现象,此类现象会对发电厂内的电缆接线造成侵蚀,在时间的推移之下,电缆接线就容易出现老化现象,进而频繁发生短路等电力故障,例如,机头高温区穿过的电缆绝缘性被破坏的概率较高,由此诱发的保护误动概率也相对较高。此时DCS保护功能也会因为此类现象就产生保护误动、拒动的现象。 2.3人为操作不规范 相关工作人员在进行日常维护等操作的过程中,如果对万用表的使用、两票三制制度的落实、接线操作过程等不规范可能诱发DCS系统误动或拒动问题的发生。例如操作人员在不确定测量信号状态的前提下,直接投入汽机真空低保护,可能直接导致保护误动的发生。 2.4热工元件故障 热工元件处于阀门位置灯位置或承受的温度、压力等发生变化,在运行的过程中可能会出现错误的信号,诱发保护误动、拒动,包括多方面元件:温度、液位、压力等会造成的主机、辅机保护的误动,而原因正是误发出保护信号。有的元件出现了老化现象和质量问题,没有冗余设置和识别这些其实都是热工元件发生故障最重要的原因。设备的电源有时候也会出现一些故障,热工自动化水平一直在提高,DCS系统中的一些过程节制站电源故障的停机保护会在热工的保护被插手。因此我们看到电源故障引发的热工误动也是越来越多。热控设备的电源插件接触不良和电源系统设计的不完善是造成电源故障的最主要原因。 3.预防DCS保护功能误动和拒动的对策 3.1注重DCS电源切换的问题 在DCS系统当中其供电主要是通过两个独立的冗余电源来实现的,此两条供电线路在进行切换时,很容易造成设备电源的故障,例如电源环流等,而为了对此类现象进行预防,就需要在电源切换时重视其中的原理。在电源切换时,首先需要将某一电源作为主要负荷电源,在将另外的电源作为辅助电源,在此基础上将电源切换机制设置为:只要主电源正常运行,那么辅助电源则不会开启,以此首先可以降低电源切换的频率,其次当主电源失效时,辅助电源可以及时跟上,进而避免DCS保护功能误动和拒动现象。 3.2提升系统的抗干扰性 系统在运行的过程中,会受到多方面的干扰,提升其抗干扰性可以提升其稳定性,减少保护误动、拒动等问题的发生。笔者以系统接地抗干扰能力提升为例,电厂操作人员在进行接地的过程中,选用截面在20平方毫米以上的通道线,并将接地电阻、接地极与建筑物的距离、接地点与强设备的距离分别控制在2Ω以下、15米左右和10米以上,这样可以使系统接地受强设备、电压、电流等方面的干扰降至最低,降低保护拒动、误动的发生概率。 3.3建立严格的人工管理制度 虽然电厂的智能化、自动化水平大幅提升,但人工操作任务仍较多,人工操作不规范不仅会导致电力设备、电路性能的下降和使用寿命的缩减,而且可能诱发更加严重的电力事故,所以在降低保护拒动和误动发生的过程中,电厂应认识到通过制度规范、系统培训等措施提升操作人员的安全意识和操作技能,并利用健全的权责机制,提升操作人员对操作规范性的重视程度的重要性。严格的人工管理制度内

《热工过程自动控制》课程设计

(注意:保持清洁,设计结束后装订在设计说明书正文的第1页) 《热工过程自动控制》课程设计任务书 专业方向:热能与动力工程 班级: 学生姓名: 指导教师: 周数:1 学分:1 一、设计题目 600MW单元机组直流锅炉给水控制系统的组态设计 二、原始资料 1. 控制对象 600MW超临界机组直流锅炉给水控制系统采用两台分别带50%负荷的汽动给水泵作为正常负荷下的供水,设置一台可带50%负荷的电动给水泵,作为启动及带低负荷或两台汽动泵中有一台故障时作备用泵使用。 2. 控制要求 直流锅炉必须使燃烧率和给水量随时保持适当的比例。 (1)给水流量控制回路仅当锅炉运行在纯直流工况下,才能对锅炉出口的主蒸汽温度起到粗调的作用。为保证锅炉本身的安全运行,要求任何工况下省煤器入口给水流量不低于35%MCR; (2)给水泵串级控制回路的副调节器根据给水流量偏差输出给水泵控制指令,调节各台泵的转速以满足机组负荷变化的需要; (3)为保证给水泵的运行安全,给水流量调节阀控制回路通过调节给水阀门的开度维持泵出口母管的压力在适当范围内; (4)汽动给水泵再循环阀调节回路需保证通过每台汽泵的流量不低于最小允许流量。 三、设计任务 1、了解大型单元机组控制系统概貌和集散控制系统概貌及其组态原理;

2、了解ABB贝利公司Symphony集散控制设备及其重要功能模块的作用; 3、掌握控制对象(包括工艺流程)及控制任务; 4、根据控制系统原理进行相应集散控制系统的组态设计; 给水控制系统包括三个部分:(1)给水流量指令形成回路(2)汽动给水泵转速控制回路(3)给水流量调节阀控制回路,可任选其中两部分做组态设计。 5、对所设计的部分进行组态分析。 四、建议时间安排 课程设计时间安排 序号内容时间 1 收集资料,学习相关理论知识1天 2.5天 2 进行集散控制系统的组态设计 并绘制组态图 3 整理报告1天 4 答辩0.5天 5 合计5天 五、成果要求 1、课程设计报告 (1)字数约5000左右,统一用A4纸手工书写,字迹工整。 (2)主要内容及装订顺序:封面、扉页、成绩考核表、课程设计任务书、目录、正文、参考文献、设计体会及附录。 (3)正文部分应该包括以下几项内容:大型单元机组控制系统概述、集散控制系统概述及其组态原理、Symphony集散控制设备简介及重要功能模块的作用、系统控制对象(包括工艺流程)及控制任务、所选定部分的组态设计和组态分析。(4)设计报告严禁抄袭,即使是同一小组也不允许雷同,否则按不及格论。 2、图纸要求:图纸要求手绘,以附录的形式放在报告最后。 六、成绩评定 设计成果主要由设计报告体现,成绩评定等级为优、良、中、及格、不及格五级制。设计成绩根据以下四个方面综合确定:(1)设计报告(40%)(2)设计期间表现(20%)(3)设计答辩(40%)。

完善电厂热工保护系统可靠性措施浅析

完善电厂热工保护系统可靠性措施浅析 热工保护系统是火力发电机组不可缺少的重要组成部分,热工保护的可靠性对提高机组主辅设备的可靠性和安全性具有十分重要的作用。特别是在电力市场竞争日益激烈的今天,发电厂的热工保护成为越来越关键的技术,需要我们不断的加以研究和完善。 标签:热电厂设备热工保护可靠性意义 0 引言 热工保护作为发电厂至关重要的核心技术之一,在近几年得到快速提升,这在一定程度上为机组的安全稳定运行提供了保障,但是在机组的实际运行过程中,不可控的因素时常发生,使得热工保护出现误动,造成机组停机,这不仅给企业的运营带来额外损失,还会因危胁电网稳定而产生负面影响。 1 提高热工保护系统可靠性的意义 热工保护系统是火力发电机组不可缺少的重要组成部分,热工保护的可靠性对提高机组主辅设备的可靠性和安全性具有十分重要的作用。热工保护系统的功能是当机组主辅设备在运行过程中参数超出正常可控制的范围时,自动紧急联动相关的设备,及时采取相应的措施加以保护,从而软化机组或设备故障,避免出现重大设备损坏或其他严重的后果。但在主辅设备正常运行时,保护系统因自身故障而引起动作,造成主辅设备停运,称为保护误动,并因此造成不必要的经济损失;在主辅设备发生故障时,保护系统也发生故障而不动作,称为保护拒动,并因此造成事故的不可避免和扩大。 随着发电机组容量的增大和参数的提高,热工自动化程度越来越高,尤其是伴随着DCS分散控制系统在电力过程中的广泛应用和不断发展,DCS控制系统凭借其强大的功能和优越性,使机组的可靠性、安全性、经济性运行得到了很大的提高。但由于参与保护的热工参数也随着机组容量的增大而越来越多,发生机组或设备误动或拒动的几率也越来越大,热工保护误动和拒动的情况时有发生。因此,提高热工保护系统的可靠性,减少或消除DCS系统失灵和热工保护误动、拒动具有非常重要的意义。 2 热工保护误动和拒动的原因分析 热工保护误动、拒动的原因大致可以概括为:DCS软、硬件故障;热控元件故障;中间环节和二次表故障;电缆接线短路、断路、虚接;热控设备电源故障;人为因素;设计、安装、调试存在缺陷。 2.1 DCS软、硬件故障随着DCS控制系统的发展,为了确保机组的安全、可靠,热工保护里加入了一些重要过程控制站(如:DEH、CCS、BMS等)两个CPU均

相关文档
最新文档