光电管特性的研究讲义

光电管特性的研究讲义
光电管特性的研究讲义

课题光电管特性的研究

1.了解光电效应实验的基本规律和光的量子性;

教学目的 2.测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系;

3.测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。重难点 1.光电管的伏安特性和光电特性;

2.最小二乘法处理数据。

教学方法讲授、讨论、实验演示相结合。

学时 3个学时

一、前言

光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光

电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸

收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒

子性。

1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应

的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并

测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得

1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例

如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量

来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的

元件。

二、实验仪器

暗匣(内装光电管及小灯泡及米尺);光电效应实验仪(包括24V稳压电源、12V

可调稳压电源、1

3位数子电压表和电流表,分别指示光电管电压、光源电流和光电

2

流、调节光电管电压的电位器、调小灯电流的可变电阻)。

三、实验原理

金属或金属化合物在光的照射下有电子逸出的现象,称为光电效应,或称为光电发射。产生光电发射的物体表面通常接电源负极,所以又称为光电阴极,光电阴极往往不由纯金属制成,而常用锑钯或银氧钯的复杂化合物制成,因为这些金属化合物阴极的电子逸出功远较纯金属小,这样就能在较小光照下得到较大的光电流。把光电阴极和另一个金属电极-阳极仪器封装在抽成真空的玻璃壳里就成了光电管。光电管在现代科学技术中如自动控制、有声电影、电视、以及光讯号测量等方面都有重要的应用。

1905年爱因斯坦提出“光子”概念,光是由一些能量E h ν=的粒子组成的粒子流。按照光子理论,光电效应是光子与电子碰撞,光子把全部能量(h ν)传给电子,电子获得的能量,一部分用来克服金属表面对它的束缚,另一部分成为该电子(光电子)逸出金属表面后的动能。根据能量守恒有

2

max 12

h mv W ν=+

该式就是著名的爱因斯坦光电效应方程。由于

一个电子只能吸收一个光子的能量,该式表明光电子的初动能与入射光的频率呈线性关系,与入射光子数无关。

本实验是利用真空光电管来研究这一实验的基本规律,验证爱因斯坦的光电子理论。实验原理图如图5.12-1所示,C 为光电管的阴极,A 为光电管的阳极,调节R ,可在A 、C 两极间获得连续变化的电压。光的强弱决定于光子的多少,当用一定强度的光照射到光电管阴极时,光子(h ν)流

射到C 上打出光电子,阴极释放的电子在电场的作用下向阳极迁移,回路中将形成光电流。光电流的大小与光电管两极间电压及光电管阴极的光通量(光通量与光强成正比)都有关。

1. 光电流与加速电压的关系

保持光源与光电管的距离一定,如果阳极A 为高电

势,则电子将加速飞向阳极,光电流I 随两极间的加速电压改变而改变。如图5.12-2所示,开始光电流随加速电压增加而增加,当加速电压增加到一定值后,光电流不再增加,这是因为在一定光照度下单位时间内所产生的光电子数目一定,而且这些电子在电场的作用下已全部跑出阳极,从而达到饱和。此时的光电流称饱和光

电流,用H I 表示。对不同的光强,饱和光电流H I 与入射光强i 成正比。

由于光电流从阴极表面逸出时具有一定的初速度0v ,所以,当两极间电压为零时,仍有光电流0I 存在,若阳极A 为低电势,则电子被减速。当减速电压加到某一值时,飞出的电子被遏制,光电流随之减少为零,此时的减速电压a U 称为临界截止电压(亦称遏止电压)。则有

2

max

12

a eU mv = 由爱因斯坦光电效应方程有 a h eU W ν=+ 上式说明临界截止电压与光的强度无光。

2.光电流与阴极表面光通量的关系

设光电管的阴极面积为S ,阴极与发光强度为

的点光源间的距离为r ,由光度学理论可知,点光源到达的光通量为

2S

i

r

Φ= 上式表明,点光源在光电管阴极表面S 的光通量与光源的发光强度成正比,与S 到光源的距离r 的平方成反比。

当光电管两极间的加速电压在能产生饱和光电

流的某一定值时,保持点光源发光强度不变,光电流与阴极表面的光通量的关系可根据该式来进行研究。改变点光源与光电管之间的距离r ,测出饱和光电流H I 与21/r 的关系曲线即可知H I 与Φ的关系。若H I 与21/r 的关系为一直线,如图5.12-3所示,即验证了光电流与入射光光通量的线性关系。

实际上,实验中使用的点光源都不是理想的点光源,而具有一定的发光面积,但只要光电管与光源足够远,可以近似地把它看作点光源。

另外,对于一般的光电管,其阴极是蒸镀在玻璃壳内表面的锑铯化合物,因它的逸出功很不均匀,光电流没有一个截止点,又由于光电管结构上的原因,故有下述三种因素产生实验误差:

(1)在光电管的制造中,免不了有些光阴极物质溅到阳极上,而当光照射在阴极时,部分漫反射到阳极上的光使之也发射光电子。而反向电压对这些光电子则是加速场,使它们到达阴极,形成反向电流。

(2)无光照时,加上外加电压,光电管中仍有微弱的电流流过,称为暗电流。形成暗电流的主要原因是阴极在常温下的热电子发射,以及阴极和阳极之间的绝缘不良造成漏电。

(3)阳极和阴极材料不同引起不同的接触电势差。

由于上述因素,实验中所测得的光电管临界截止电压要比真正的临界截止电压值小。光电特性曲线也存在着截距a (理论上在r →∞时,0H I →),对此我们应加以分析。

四、实验内容与步骤

1.测光电管的伏安特性曲线

(1)按图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。

(2)选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始

间距0r

,并记录。使光源与光电管阴极的距离为r ,并保持不变,顺时针调节电压调

节旋钮,达到最大值,给光电管加的电压,再顺时针调节电流调节旋钮,保证光电流不逸出即可,记下小灯电流值。

(3)研究光电管正向伏安特性。记下暗箱滑板距离1r (一般取5cm 左右,注意小灯泡与阴极间距r 应为01r r ,并保持不变,调节电压调节旋钮,观察光电管加上正向电压时的伏安特性,然后使电压由24.0V 逐步降到0.0V 。每降低2.0V (或1.0V )测读一次相应的光电流值,测量次数不少于20次。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。

(4)测临界截止电压。光电管电压为零时光电流不为零,这是因为电子在获得光子能量后就有了动能,仍能到达阳极形成电流。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。注意:这时指示的电流极性与实际电流极性相反。

(5)研究光电管在不同光强照射下的伏安特性,采用两种方法。

①使小灯电流降低10mA ,重复步骤(3)、(4),测读并记录实验数据。注意不要改变光源与光电管的距离。

②使暗箱滑板距离为2r (一般取7cm 左右),重复步骤(3)、(4),测读并记录实验数据。注意不要改变灯电流值的大小。

(6)根据记录数据,绘制三条伏安特性曲线。

2.测定饱和光电流与阴极上光通量的关系

(1)根据光电管伏安特性的实验结果,在产生饱和光电流的电压区域中取一电压值(注意不要取拐点,取饱和区域中间点),加在光电管的两极上并保持不变。注意光源电流值不改变。

(2)将光源放在离光电管较近的位置,通过拖动暗箱滑板,使光电管阴极逐渐远离光电管,记下暗箱滑板读数i r (每次改变0.50cm 或1.00cm )及对应的饱和光电流值H I 。至少测读10组数据。

五、数据表格及数据处理

1.伏安特性

(1)初始距离

00.05

r m

=小灯电流

1310

i mA

=米尺读数

10.05

r m =

(2)小灯电流

2300

i mA

=距离

10.05

r m =

(3)小灯电流

2300

i mA

=距离

20.1

r m

=

2.光电特性

极间电压20

U V

=小灯电流300

i mA

=

2.用测得的数据作曲线

(1)在同一坐标纸上以光电流I 为纵轴,加速电压U 为横轴,绘制光电管的三条伏安特性曲线,并作曲线分析。

(2)在坐标纸上以饱和光电流H I 为纵轴,点光源到阴极距离的平方的倒数21/r 为横轴,绘制光电管的光电特性曲线。(见下面)

(3)设有直线方程21

(

)H I b a r

=+,根据所测数据用最小二乘法求出该直线的斜率b 、

截距a 以及相关系数γ,由拟合的方程在(2)中的坐标纸上绘制光电管的21/H I r -曲线,并作曲线分析。

2

()()0.09()i

i i

x x y x b x x --=

=-∑∑

1.4a y b x =-?=

()()0.996x x y x γ--=

=

0.025b S =

=

1.98

a b S S =

=0.15y S =

=

22

10.09

(

) 1.4H I b a r r

=+=+

六、注意事项

1.实验仪器在打开后要预热10分钟。

2.光源电流不得超过400mA ,如光源电流过大,容易烧坏灯泡。

3.注意光源与光电管的距离,应为光源与光电管阴极的初始距离加上暗箱滑板的读数的值(即01r r +)。

4. 在研究伏安特性中,需确定光源电流值,应先将电压调至最大,再调光电源电流到达合适位置,以保证光电流不溢出。

? 5. 在研究光电特性中,选取饱和光电流的电压值最好不要选取拐点,因为拐点不稳定,一般选取饱和区域中间值,以确保能够获得饱和光电流。

6.在研究光电特性中,暗箱滑板从里往外拉,以保证光电流不溢出。

7.仪器使用完后,将电压旋钮和光源电流调至最小,以免启动仪器时,电流过大烧坏灯泡。

七、教学后记

1.实验测量光电管伏安特性时,比书上要多一条曲线,这是因为实验中我们通过两种方式(改变光源电流和光源到光电管的距离)来改变照在光电管的光强,因此在检查预习和讲课中要提醒学生多画一个表格记录数据。

2.学生上学期理论课中已经对光电效应知识进行了学习,因此这个实验的授课多采用提问和讨论的方式,和学生共同探讨本实验的意义,以及光电管的伏安特性曲线的特点和物理解释。

3.该实验仪器使用简单,因此学生都能成功顺利完成实验,在检查数据时要求他们粗略画出图象,回去后再用坐标纸描点。

4.在实验中最易出现的错误有:①测量数据时,没有关闭暗箱;②测量伏安特性时,同时改变光源电流和光源到光电管阴极间距,或在第二次测量时减小光源电流,第三次测量时减小光源到光电管阴极间距。

光电管特性的研究讲义

课题光电管特性的研究 1.了解光电效应实验的基本规律和光的量子性; 教学目的 2.测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系; 3.测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。重难点 1.光电管的伏安特性和光电特性; 2.最小二乘法处理数据。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光 电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸 收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒 子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应 的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并 测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得 1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例 如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量 来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的 元件。 二、实验仪器 暗匣(内装光电管及小灯泡及米尺);光电效应实验仪(包括24V稳压电源、12V 可调稳压电源、1 3位数子电压表和电流表,分别指示光电管电压、光源电流和光电 2 流、调节光电管电压的电位器、调小灯电流的可变电阻)。

三、实验原理 金属或金属化合物在光的照射下有电子逸出的现象,称为光电效应,或称为光电发射。产生光电发射的物体表面通常接电源负极,所以又称为光电阴极,光电阴极往往不由纯金属制成,而常用锑钯或银氧钯的复杂化合物制成,因为这些金属化合物阴极的电子逸出功远较纯金属小,这样就能在较小光照下得到较大的光电流。把光电阴极和另一个金属电极-阳极仪器封装在抽成真空的玻璃壳里就成了光电管。光电管在现代科学技术中如自动控制、有声电影、电视、以及光讯号测量等方面都有重要的应用。 1905年爱因斯坦提出“光子”概念,光是由一些能量E h ν=的粒子组成的粒子流。按照光子理论,光电效应是光子与电子碰撞,光子把全部能量(h ν)传给电子,电子获得的能量,一部分用来克服金属表面对它的束缚,另一部分成为该电子(光电子)逸出金属表面后的动能。根据能量守恒有 2 max 12 h mv W ν=+ 该式就是著名的爱因斯坦光电效应方程。由于 一个电子只能吸收一个光子的能量,该式表明光电子的初动能与入射光的频率呈线性关系,与入射光子数无关。 本实验是利用真空光电管来研究这一实验的基本规律,验证爱因斯坦的光电子理论。实验原理图如图5.12-1所示,C 为光电管的阴极,A 为光电管的阳极,调节R ,可在A 、C 两极间获得连续变化的电压。光的强弱决定于光子的多少,当用一定强度的光照射到光电管阴极时,光子(h ν)流 射到C 上打出光电子,阴极释放的电子在电场的作用下向阳极迁移,回路中将形成光电流。光电流的大小与光电管两极间电压及光电管阴极的光通量(光通量与光强成正比)都有关。

二极管的伏安特性曲线详细说明

二极管的伏安特性曲线图解 二极管的性能可用其伏安特性来描述。在二极管两端加电压U,然后测出流过二极管的电流I,电压与电流之间的关系i=f(u)即是二极管的伏安特性曲线,如图1所示。 图1 二极管伏安特性曲线 二极管的伏安特性表达式可以表示为式1-2-1 其中iD为流过二极管两端的电流,uD为二极管两端的加压,UT在常温下取26mv。IS为反向饱和电流。 1、正向特性 特性曲线1的右半部分称为正向特性,由图可见,当加二极

管上的正向电压较小时,正向电流小,几乎等于零。只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。将Uon 称为死区电压。死区电压与二极管的材料有关。一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。 当正向电压超过死区电压后,随着电压的升高,正向电流将迅速增大,电流与电压的关系基本上是一条指数曲线。由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。通过在近似分析计算中,将这个电压称为开启电压。开启电压与二极管的材料有关。一般硅二极管的死区电压为0.7V左右,锗二极管的死区电压为0.2V左右。 2、反向特性 特性曲线1的左半部分称为反向特性,由图可见,当二极管加反向电压,反向电流很小,而且反向电流不再随着反向电压而增大,即达到了饱和,这个电流称为反向饱和电流,用符号IS 表示。 如果反向电压继续升高,当超过UBR以后,反向电流急剧增大,这种现象称为击穿,UBR称为反向击穿电压。

图2 二极管的温度特性 击穿后不再具有单向导电性。应当指出,发生反向击穿不意味着二极管损坏。实际上,当反向击穿后,只要注意控制反向电流的数值,不使其过大,即可避免因过热而烧坏二极管。当反向电压降低后,二极管性能仍可能恢复正常。 3、温度对二极管伏安特性的影响 温度升高,正向特性左移,反向特性下移;室温附近,温度每升高1℃;正向压降减少2-2.5mV;室温附近,温度每升高10℃,反向电流增大一倍。二极管的温度特性如图2所示。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

光电效应实验报告

用光电效应测普朗克常数 【实验简介】 光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 普朗克常数记为h,是一个物理常数,用以描述量子大小,约为62619 .6。在量子力学中占有重要的角色,马克斯?普朗克在1900年研10 ?-34 s J? 究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于,为辐射电磁波的频率。普朗克常数是自然科学中一个很重要的常量,它可以用光电效应简单而又准确地测量。 【实验目的】 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 【实验仪器】 GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。实验主机为:GD-4型光电效应(普朗克常数)实验仪,该仪器包含有微电流放大器和扫描电压源发生器两部分组成的整体仪器。

【实验原理】 1、普朗克常数的测定 根据爱因斯坦的光电效应方程: P s E hv W =- (1) (其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。)s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =)。实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即: s P eU E = (2) 这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式,得: 0s h U v v e =-() (3) (其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。若电子电荷e 已知,由斜率h k e = 可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求出截止频率0v 。如图(2)所示。 2、测量光电管的伏安特性曲线 在照射光的强度一定的情况下,光电管中的电流I 与光电管两端的电压AK U 之间存在着一定的关系。 理想曲线与实验曲线有所不同,原因有: ①光电管的阴极采用逸出电势低的材料制 成,这种材料即使在高真空中也有易氧化的趋向,使阴极表面各处的逸出电势不尽相等,同时,逸出具有最大动能的光电子数目大为减少。随着反向电压的增高, 光电流不是陡然截止,而是较快降低后平缓的趋近零点。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

半导体二极管伏安特性的研究(可编辑修改word版)

半导体二极管伏安特性的研究 P101 【实验原理】 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1 的直线a。至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1 的曲线b、c。伏安法的主要用途是测量研究非线性元件的特性。一些传感器的伏安特性随着某一物理量的变化呈现规律性变化,如温敏二极管、磁敏二极管等。因此分析了解传感器特性时,常需要测量其伏安特性。 图 3–1 电学元件的伏安特性 在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电 压和通过的电流均不超过元件允许的额定值。此外,还必须了解测量时所需其他仪器的规格(如电源、电压表、电流表、滑线变阻器、电位器等的规格),也不得超过仪器的量程或使用范围。同时还要考虑,根据这些条件所设计的线路,应尽可能将测量误差减到最小。 测量伏安特性时,电表连接方法有两种:电流表外接和电流表内接,如图3-2 所示。 (a)电流表内接;(b)电流表外接 图 3–2 电流表的接法 电压表和电流表都有一定的内阻(分别设为R v和R A)。简化处理时可直接用电压表读

光电管特性研究

光电管特性的研究 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 一、教学目的 1、了解光电效应实验的基本规律和光的量子性。 2、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 3、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 二、教学要求 1、实验三小时完成。 2、观察光电管结构和光电效应现象,理解光的量子性。 3、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 4、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 5、用所学过的知识解释本次实验所测得的曲线,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:通过光电管的伏安特性和光电特性,掌握光电效应迈的实验原理。

2、难点:最小二乘法处理数据。 四、讲授内容(约20分钟) 采用讲授、讨论、演示相结合的教学方法。 1、光电效应的实验原理。 2、与学生们共同探讨光电效应在现代生产生活中的应用。 (1)光电管 利用饱和电流与照射光强的线性关系,实现光信号和电信号之间的转换。如:光控继电器、自动控制、自动计数、自动报警等。 (2)光电倍增管 光电倍增管可使光电阴极发出的光电子增至48 10~10倍,在探测弱光方面得到广泛的应用。 (3)光电成像器件 光电导摄像管等,可以将辐射图像转换成或增强为可观察、记录、传输、存储和进行处理的图像,广泛地应用于天文学、空间科学、电视等领域。 3、光电管的伏安特性曲线的特点和光电特性的特点,留给学生思考如何用所学知识解释这些特点,并在实验报告中回答。 4、结合仪器演示实验的主要步骤。 (1)测光电管的伏安特性曲线 ⑴按教材图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。 ⑵选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始间 r,并记录。 距0 ⑶研究光电管正向伏安特性。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。 ⑷测临界截止电压。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。 ⑸研究光电管在不同光强照射下的伏安特性,采用两种方法。

二极管伏安特性曲线的研究

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 U(V) I(A u) 电阻计算值(KΩ) 表1-2 正向伏安曲线测试数据表 正向伏安曲线测 试数据I(A m) U(V) 电阻直算值(KΩ) 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

二极管伏安特性曲线

模拟电子技术课程设计 本文档只需通过world文档繁转简工具,即可以把它 转化成简体字。 二極體伏安特性曲線的研究 一、設計目的 電路中有各種電學元件,如晶體二極管和三極管,光敏和熱敏元件等。人們通常需要瞭解它們的伏安特性,以便正確的選用它們。通常以典雅為橫坐標,電流為縱坐標作出元件的電壓——電流關係曲線,叫做該元件的伏安特性曲線。該設計通過測量二極體的伏安特性曲線,瞭解二極體的導電性的實質,使我們在設計電路時能夠準確的選擇二極體。 二、設計原理 1、二極體的伏安特性 (1)二極體的伏安特性方程為: 式中,Is為反向飽和電流,室溫下為常數;u為加在二極體兩端電壓;UT 為溫度的電壓當量,當溫度為室溫27℃時,UT≈26mV。 當PN結正向偏置時,若u≥UT,則上式可簡化為:IF≈ISeu/UT。 當PN結反向偏置時,若︱u︱≥UT,則上式可簡化為:IR≈-IS。可知- IS 與反向電壓大小基本無關,且IR越小表明二極體的反向性能越好。 對二極體施加正向偏置電壓時,則二極體中就有正向電流通過,隨著正向偏置電壓的增加,開始時,電流隨電壓變化很緩慢,而當正向偏置電壓增至接近其

導通電壓時,電流急劇增加,二極體導通後,電壓少許變化,電流的變化都很大。 對上述二種器件施加反向偏置電壓時,二極體處於截止狀態,其反向電壓增加至該二極體的擊穿電壓時,電流猛增,二極體被擊穿,在二極體使用中應竭力避免出現擊穿觀察,這很容易造成二極體的永久性損壞。所以在做二極體反向特性時,應串入限流電阻,以防因反向電流過大而損壞二極體。 二極體伏安特性示意圖1、2所示。 圖1鍺二極體伏安特性圖2矽二極體伏安特性 2、二極體的伏安特性曲線 下面我們以鍺管為例具體分析,其特性曲線如圖3所示,分為三部分: 圖3 半導體二極體(矽管)伏安特性

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

二极管伏安特性曲线测量方法

二极管伏安特性曲线 测量方法 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三 极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确 的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压一电 流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是 一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件 为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则 称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极 管的伏安特性曲线,了解二极管的单向导电性的实质。 1实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管, 且随正向偏置电压的增大而增大。开始 电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二 极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通 后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电 流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很 慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二 极管PN结被反 向击穿。 2、实验方法 2.1伏安法 IN4007 Re 电流表外接法:如图2.1.1所示(开关K打向2位置)⑴,此时电压表的读数等于二极管两端电压U D ;电流表的读数I是流过二极管和电压表的电流之和(比实际值大),即I = |D +lv。

匸V/Rv+V/ R D(1.1)由欧姆定律可得:

用V、I所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线, 所用此方法测量存在理论误差。在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。 2.1.1 电流表内接法:如图2.1.1所示(开关K打向1位置),这时电流表的读数I为通过二极管D的电流,电压表读数是电流表和二极管电压之和,U = U D + U A o 由欧姆定律可得:U =I ( R D+ R A) 此方法作曲线所用电压值是二极管和电流表电压之和,存在理论误差,在测量过程中随着电压 U提高,二极管的等效内阻R D减小,电流表作用更大,相对误差增加;小量程电流表内阻R A较大, 引起误差较大。但此方法在测量二极管反向伏安特性曲线时,由于二极管反向内阻特别大,故误差较小。 2.1.2 表2.1.3 此次测量在上图作标纸中绘出伏安曲线 采用伏安法测量时由于电压或电流总有其一不能准确测得,结果总存在理论误差,测量结果较粗略,但此方法电路简单,操作方便。 2.2补偿法 补偿法测量基本原理如图 2.2.1 所示[2]o

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

二极管伏安特性曲线的测定

实验四二极管伏安特性曲线的测定 【一】实验目的 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。 【二】实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。

二极管一般工作在正向导通或反向截止状态。当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。 测定二极管的电压与电流时,电压表与电流表有两种不同的接法。如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。因此,这两种接法都有测量误差。这种由于电表接入电路而引起的测量误差叫做接入误差。接入误差是系统误差,只要知道电压表的内阻R V 或电流表的内阻R A ,就可以把接法造成的测量误差算出来,然后选用测量误差较小的那种接法。电流表外接,造成的电流测量误差为: V D D V D D R R I I I I ==? 电流表内接,造成的电压测量误差为: D A D A D D R R V V V V ==? 其中R D 、R V 、R A 、分别是二极管的内阻,电压表的内阻和电流表的内阻。测量时究竟选用哪种接法,要看R D 、R V 、R A 的大小而定。显然,若R D /R V >R A /R D 应选用电流表内接,反之则选用电流表外接。 【三】 实验装置 直流稳压电源、直流电压表2个、直流电流表2个、滑线变阻器、待测二极管、开关、导线等。 注意事项: 1. 为保护直流稳压电源,接通或断开电源前均需先使其输出为零;对输出调节旋钮的调节 必须轻而缓慢。 2. 更换测量内容前,必须使电源输出为零,然后再逐步增加至需要值,以免损坏元件。 3. 测定2AP 型锗二极管的正、反向伏安特性曲线时,注意正向电流不要超过20mA ,反向 电压不要超过25V 。

非线性电阻伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。 关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。 结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用 九孔插件方板。

光电效应实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面 即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫 光电子,由光子形成的电流叫光电流,使电子逸出某种金属表 面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD为光电管,它 是一个抽成真空的玻璃管,管内有两个金属电极,K为光电管阴 极,A为光电管阳极;G为微电流计;V为电压表;R为滑线变 阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A迁移 形成光电流,由微电流计G可以检测光电流的大小。调节R可使A、K之间获得连续变化的电压AK U,改变 AK U,测量出光电流I的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。 图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的 AK -I U关系如图2(a)所示。从图中可见,对一定的频率,有一 图1 光电效应实验示意图

实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题

伏安特性实验报告

伏安特性实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。 (a)线性电阻 (b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表1 块 3.直流电流表1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管1 只 7.稳压二极管1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤, 在表1-2中记下相应的电压表和电流表的读数。 3 按图1-3接线,R为限流电阻,取200Ω,二极管的型号为1N4007。测二极

光电效应实验报告

1,实验目的: 1.了解光电效应的基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 2.通过对五种不同频率的反向截止电压的测定,由 直线图形,求出“红限”频率。

实验原理图1 光电管的起始I—V特性2

2,实验要求: 1.学习测定普朗克常量的一种实验方法; 2.学习用滤色片获得单色光的方法; 3.学习用实验研究验证理论的方法,加深光电效应对光量子理论的理解 3,实验原理 1.光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸

出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中, 为普朗克常数,它的公认值是 =6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中, 为入射光的频率, 为电子的质量, 为光电子逸出金属表面的初速度, 为被光线照射的金属材料的逸出功, 为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 被称为光电效应的截止电压。 显然,有 (2)

实验20-光电管特性测定

实验20-光电管特性测定

大学物理实验教案 实验名称:光电管特性测定 1 实验目的 1)掌握光电管的伏安特性和光电特性的测定方法。 2)进一步理解光电效应。 2 实验仪器 双路输出直流稳压电源、微电流测量仪、TH-V 型直流数字电压表、GD 型光电效应实验暗箱 3 实验原理 (一) 光电管的光电效应及伏安特性曲线 用一定频率的光照射在金属(或半导体)表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫做光电子,光电子定向流动形成光电流。本实验用的光电管是由光敏物质做阴极,金属网做阳极,封闭在玻璃管内而成。 按照爱因斯坦“光量子”的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子。电子所获得的能量一部分用来克服金属表面对它的束缚,其余的能量则成为该光电子逸出金属表面后的能量。光电方程如下式 A u m hv += 202 1 (1) 式中h 为普朗克常数,v 为光电子频率,hv 为光子能量,A 为金属的逸出功,u m 2 02 1为光电子初动能。由式中可知,若光子能量A hv <时,则不能产生光电子,刚好能使金属发射电子的照射光的

r P A 2 = 最低频率h A v = 0,称为该金属的“红限”,不同的金属材料有不同的“红限”。 实验发现,照射光的频率在“红限”以上,如果照射光越强,发射光电子数则越多,光电流也越大。在照射光强度一定情况下,加速电压增大则光电流也随着增加。 图38-1是光电管伏安特性曲线。图38-2是测试伏安特性曲线电路原理图。曲线(1)、(2)分别表示照射光强度不同的伏安特性曲线,曲线(1)照射光比(2)强,光电流较大。伏安特性曲线可分段解释,光电流随着加速电压增加而增加,到饱和点后,加速电压增加但光电流不再增加,此时的光电流被称为饱和光电流I H 。当加速电压0=V 时仍有光电流,这说明从阴极逸出的电子具有初动能,在没有加速电压作用仍有一部分光电子跑向阳极而形成电流。要使光电流为零必须加反向电压,光电流为零时的反向电压(负值)V a 称为截止(遏止)电压。 (二)光电流和照射光强度的关系 实验发现,饱和光电流强度I H 与照射光强度P 成正比。要测定光电流和照射光强度的关系有两 V I + Va 光强较大 光强较小 数字电压表 微电流表 电 图38—2 光电管伏图38—1 光电

相关文档
最新文档