活性污泥法的基本原理

活性污泥法的基本原理
活性污泥法的基本原理

活性污泥法的基本原理

一、活性污泥法的基本工艺流程

1、活性污泥法的基本组成

①曝气池:反应主体

②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。

③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。

④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。

⑤供氧系统:提供足够的溶解氧

2、活性污泥系统有效运行的基本条件是:

①废水中含有足够的可容性易降解有机物;

②混合液含有足够的溶解氧;

③活性污泥在池内呈悬浮状态;

④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥;

⑤无有毒有害的物质流入。

二、活性污泥的性质与性能指标

1、活性污泥的基本性质

①物理性能:“菌胶团”、“生物絮凝体”:

颜色:褐色、(土)黄色、铁红色;

气味:泥土味(城市污水);

比重:略大于1,(1.002~1.006);

粒径:0.02~0.2mm;

比表面积:20~100cm2/ml。

②生化性能:

1) 活性污泥的含水率:99.2~99.8%;

固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。

2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分,

主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等;

基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌;

2) 在好氧条件下,具有很强的分解有机物的功能;

3) 具有较高的增殖速率,世代时间仅为20~30分钟;

4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。

② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml

3、活性污泥的性能指标:

① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ):

MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3

② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ):

MLVSS = M a + M e + M i ;

在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85

③ 污泥沉降比(SV )(Sludge Volume ):

是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示;

能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀;

正常数值为20~30%。

④ 污泥体积指数(SVI )(Sludge Volume Index ):

曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。

)

/()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象;

城市污水的SVI 一般为50~150 ml/g ;

三、活性污泥的增殖规律及其应用

活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。

1、活性污泥的增殖曲线

注意:1)间歇静态培养;2)底物是一次投加;3)图中同时还表示了有机底物降解和氧的消耗曲线。

①适应期:

是活性污泥微生物对于新的环境条件、污水中有机物污染物的种类等的一个短暂的适应过程;经过适应期后,微生物从数量上可能没有增殖,但发生了一些质的变化:a.菌体体积有所增大;b.酶系统也已做了相应调整;c.产生了一些适应新环境的变异;等等。BOD5、COD等各项污染指标可能并无较大变化。

②对数增长期:

),所以有机底物非常丰富,营养物质不是微生物增殖的控F/M值高(>2.2d

/

kgVSS

kgBOD?

5

制因素;微生物的增长速率与基质浓度无关,呈零级反应,它仅由微生物本身所特有的最小世代时间所控制,即只受微生物自身的生理机能的限制;微生物以最高速率对有机物进行摄取,也以最高速率增殖,而合成新细胞;此时的活性污泥具有很高的能量水平,其中的微生物活动能力很强,导致污泥质地松散,不能形成较好的絮凝体,污泥的沉淀性能不佳;活性污泥的代谢速率极高,需氧量大;一般不采用此阶段作为运行工况,但也有采用的,如高负荷活性污泥法。

③减速增长期:

F/M值下降到一定水平后,有机底物的浓度成为微生物增殖的控制因素;微生物的增殖速率与残存的有机底物呈正比,为一级反应;有机底物的降解速率也开始下降;微生物的增殖速率在逐渐下降,直至在本期的最后阶段下降为零,但微生物的量还在增长;活性污泥的能量水平已下降,絮凝体开始形成,活性污泥的凝聚、吸附以及沉淀性能均较好;由于残存的有机物浓度较低,出水水质有较大改善,并且整个系统运行稳定;一般来说,大多数活性污泥处理厂是将曝气池的运行工况控制在这一范围内的。

④内源呼吸期:

内源呼吸的速率在本期之初首次超过了合成速率,因此从整体上来说,活性污泥的量在减少,最终所有的活细胞将消亡,而仅残留下内源呼吸的残留物,而这些物质多是难于降解的细胞壁等;污泥的无机化程度较高,沉降性能良好,但凝聚性较差;有机物基本消耗殆尽,处理水质良好;一般不用这一阶段作为运行工况,但也有采用,如延时曝气法。

2、活性污泥增殖规律的应用:

①活性污泥的增殖状况,主要是由F/M值所控制;

②处于不同增值期的活性污泥,其性能不同,出水水质也不同;

③通过调整F/M值,可以调控曝气池的运行工况,达到不同的出水水质和不同性质的活性污泥;

④活性污泥法的运行方式不同,其在增值曲线上所处位置也不同。

3、有机物降解与微生物增殖:

活性污泥微生物增殖是微生物增殖和自身氧化(内源呼吸)两项作用的综合结果,

活性污泥微生物在曝气池内每日的净增长量为:

v r bVX aQS x -=?;

式中: =?x 每日污泥增长量(VSS ),d kg /;r w X Q ?=;

Q ——每日处理废水量(d m /3);

e i r S S S -=;

i S ——进水5BOD 浓度(35/m kgBOD 或l mgBOD

/5); e S ——出水5BOD 浓度(35/m kgBOD 或l mgBOD

/5)。 a , b ——经验值:对于生活污水活与之性质相近的工业废水,65.0~5.0=a ,1.0~05.0=b ;

——或试验值:通过试验获得。

4、有机物降解与需氧量:

活性污泥中的微生物在进行代谢活动时需要氧的供应,氧的主要作用有:① 将一部分有机物氧化分解;② 对自身细胞的一部分物质进行自身氧化。

因此,活性污泥法中的需氧量:

v r X V b S Q a O ?+?=''2

式中: 2O ——曝气池混合液的需氧量,d kgO /2;

'a ——代谢每5kgBOD 所需的氧量,d kgBOD kgO

?52/; 'b ——每kgVSS 每天进行自身氧化所需的氧量,d kgVSS kgO ?/2。

二者的取值同样可以根据经验或试验来获得。

5、活性污泥净化废水的实际过程:

在活性污泥处理系统中,有机污染物物从废水中被去除的实质就是有机底物作为营养物质被活性污泥微生物摄取、代谢与利用的过程,这一过程的结果是污水得到了净化,微生物获得了能量而合成新的细胞,活性污泥得到了增长。一般将这整个净化反应过程分为三个阶段:① 初期吸附;② 微生物代谢;③ 活性污泥的凝聚、沉淀与浓缩。

BOD

曝气过程

所谓“初期吸附”是指:在活性污泥系统内,在污水开始与活性污泥接触后的较短时间(10~30min)内,由于活性污泥具有很大的表面积因而具有很强的吸附能力,因此在这很短的时间内,就能够去除废水中大量的呈悬浮和胶体状态的有机污染物,使废水的BOD 5值(或COD 值)大幅度下降。但这并不是真正的降解,随着时间的推移,混合液的BOD 5值会回升,再之后,BOD 5值才会逐渐下降。

活性污泥吸附能力的大小与很多因素有关:

① 废水的性质、特性:对于含有较高浓度呈悬浮或胶体状有机污染物的废水,具有较好的效果;

② 活性污泥的状态:在吸附饱和后应给以充分的再生曝气,使其吸附功能得到恢复和增强,一般应使活性污泥微生物进入内源代谢期。

四、活性污泥法的基本工艺参数

1、容积负荷(Volumetric Organic Loading Rate ):

V C Q L i vCOD ?=)(3d m kgCOD ?; V B Q L i vBOD ?=5)(35d m kgBOD ?

2、污泥负荷(Sludge Organic Loading Rate ):

V MLSS C Q L i

sCOD ??=d kgMLSS kgCOD ?; V MLSS B Q L i sBOD ??=5d kgMLSS kgBOD ?5

3、水力停留时间(Hydraulic Retention Time ): V H R T = (h )

4、污泥龄或污泥停留时间(Sludge Retention Time ):r w X Q X V S R T

??=(h 或 d )

5、回流比:r Q Q R =

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法运行中的常见问题及对策

活性污泥法运行中的常见问题及对策 活性污泥法是常用的好氧法,所以能够做好其运营管理非常重要,本文总结了活性污泥法运行过程中的5大常见问题以及对策,具有很强的实用价值。 01污泥膨胀的概念及其解决办法有哪些? 污泥膨胀的原因: ①丝状菌膨胀 活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH值低;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。 ②非丝状菌膨胀 由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400%(正常为100%左右),呈黏性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的黏性物质,形不成絮体,也无法分离。 解决办法: 组成废水的各种成分由于比例失调,也可引起污泥膨胀,如废水中C/N 比失调,若由于碳水化合物的含量过高,可适当的投加尿素、碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。至于曝气池的环境(如pH、温度溶解氧等)对活性污泥的性质也有一定的影响。其他如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少地充氧或搅动不充分,都可引起膨胀。由此可知,为防止污

泥膨胀,首先应加强管理操作,经常检测污水水质、曝气池内溶解氧、污泥沉降比、污泥指数和进行显微镜观察,如发现异常情况应及时采取措施,如加大空气量、及时排泥、在有可能时采取分段进水,以减轻二沉池的负荷。 02污泥上浮的概念及其解决办法有哪些? 污泥上浮:主要是指污泥脱氮上浮。污水在二沉池中经过长时间停留会造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮气逸出时,污泥吸附氨和氮气而上浮使污泥沉降性降低。 解决办法: 污泥上浮现象和活性污泥的性质无关,只因污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。具体解决办法有: ①降低进水盐浓度,控制高负荷COD的冲击。 ②准确地控制曝气池内的COD负荷。因此,在运行操作上要控制曝气池进水量。通过准确地控制MLSS(建议6~8g/L)和曝气池进水量,将COD负荷控制在0.2~0.4kg/(m3·d)的适当范围,以减少污水的冲击,如果该污水经过均质池后的COD浓度仍然超过设计标准,应将该股污水引入事故池以待日后处理。 ③完善新建污水预处理工艺,控制污水厌氧与兼氧酸化水解池是保障后续曝气池正常运转的关键步骤,污水中的难降解有机物在此得到降解后,可以保证曝气池污水的出水要求,也改善了二沉池的沉降性能。应采取以下措施:完成潜水搅拌机配电系统的改造,尽快泵污泥至酸化池,进行酸化池的调试和酸化污泥的驯化。一次投加剩余污泥约为池容的1/5,投加量约为100m3,使池内混合液浓度在4~6g/L。 ④控制氧曝池的溶解氧浓度,适当降低氧曝池MLSS,基本控制在10g/L以内,与之相应的溶解氧浓度控制应根据进水有机负荷及时调整。⑤增加污泥回流量,及时排除剩余污泥,降低混合液污泥浓度,缩短污泥龄,降低溶解氧浓度,但不能进入消化阶段。

活性污泥法污水处理

水污染控制工程课程设计 城镇污水处理厂设计 指导教师刘军坛 姓名秦琪宁 目录 摘要 (3) 第一章引言...................................... 1.1设计依据的数据参数........................................................................................ 1.2设计原则............................................................................................................ 1.3设计依据............................................................................................................ 第二章污水处理工艺流程的比较及选择错误!未定义书 签。 2.1 选择活性污泥法的原因................................................................................... 第三章工艺流程的设计计算.. (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房............................................................................................................ 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

8.1活性污泥法工艺流程

活性污泥法工艺流程 (活性污泥法、微孔曝气器、管式曝气器、污水厂、水处理工艺)活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。 活性污泥法工艺流程图: 一、活性污泥法由五部份组成: ①曝气池:反应主体;②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度;③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况;④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行;⑤供氧系统:提供足够的溶解氧。 污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。 第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。 第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。 经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。

活性污泥法工艺参数控制方面问题

活性污泥法工艺参数控制方面问题 问:污泥回流比是回流污泥量与进水量之比,相关专业书认为活性污泥工艺中污泥回流比应该相对稳定,如果这样的话,回流污泥量就要根据进水量的变化而变化,实际运行中是否应该这样控制? 答:不能这样做,在运行管理中,污泥回流比只能起参考作用,我们说的回流污泥量也不含有浓度的概念,实际上回流污泥量是不可任意调节的,它受限于污泥性质和二沉池运行状态等因素。 问:为什么你说回流污泥量不含浓度的概念? 答:这就要说到二沉池的作用,二沉池的作用主要是泥水分离和回流污泥浓缩,如要增加回流污泥量,必须增加二沉池的出泥量,这样二沉池的污泥层会下降,使污泥在二沉池的浓缩时间减少,此时,进曝气池的回流污泥量虽增加,但回流污泥的浓度却下降,回流至曝气池的污泥绝对量并不会增加。 问:按你这样说,如果进水水量增加了,为了使污泥负荷相对稳定,又如何来增加曝气池污泥浓度呢? 答:增加曝气池污泥浓度的办法就是停止剩余污泥排放或少排泥。 问:不少专业书上都介绍了回流污泥量的估算式,如:用污泥沉降体积、污泥指数等方法来估算回流污泥量,按你前面所说的,难道这些估算方法都不对吗? 答:也不能这样说,书上的这些估算式中不可能都考虑到污泥性质和二沉池的运行状况等诸多因素的,是纯理论性的,它可使我们了解主要参数的相互间关系,从这个意义上说没有错,如果在日常运行中完全按估算式来控制,那就错了,有时甚至会造成严重的负面影响和后果。 问:能解释一下“有时甚至会造成严重的负面影响和后果”这话的意思吗? 答:由于活性污泥系统的污泥是在曝气池和二沉池之间循环流动的,按前面的计算法,污泥沉降性能差是就要增加污泥回流比,这样的话,由于回流量增加,废水在曝气池的实际停留时间相对减少,而进二沉池混合液量又增加,使二沉池进水水能增大,严重影响泥水分离,更易造成漂泥,从而造成恶性循环。 问:以你之见,在日常运行中回流污泥量应该如何控制呢? 答:尽可能稳定回流污泥量,污泥回流比可以变化,当然回流污泥量的稳定也是相对而言的,可根据二沉池污泥层的高度来小范围调节,而不是有些专业书说的根据进水量来调节。 如前所述,二沉池的作用主要是泥水分离和回流污泥浓缩。故在这种情况下,应该在不影响泥水分离的前提下,二沉池的污泥层应该适当高一些,这样回流污泥量虽然减少,但其浓度会提高,进入曝气的污泥量并不会减少。

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

25个活性污泥法运行中的常见问题及故障解答

25个活性污泥法运行中的常见问题及故障解答 (一)氧化沟泥少,微生物因为天气寒冷,难培养,怎么办? 答:1.如果是在系统刚刚启动时的培养,污泥量少是正常的,随着培养的进行,污泥量会增多。培养时,曝气过度是很不利于污泥培养的。 2.当然微生物的量是和你的源水中的碳氢含量有关,碳氢不足自然无法使微生物数量上升。还请检查。 3.如果你的系统早就启动了,想要提高微生物数量。我觉得没有太大必要的。达到平衡就行了,重要的是处理出水的情况。 4.特意地提高微生物数量将使污泥老化,反而不利于出水水质的。 5.温度的问题,我觉得出水水温不低于10度,微生物活性是没有太大问题的。 6.根据F/M值的大小,可以知道你的微生物数量是否太低,该值不大于0.25,就说明你的微生物数量不是太低。 (二) 在CASS工艺设计时应注意些什麽,同时出水堰如何设计(负荷取多大比较合适)?同时,在该工艺中,所用到的设备,都有那些,我初次接触该工艺,对所涉及到的设备不太了解,请你多多指教!同时活性污泥如何进行培养驯化,整个工程在调试运行适应注意些什麽?如何能实现很高的自控技术。在曝气过程中,哪种曝气装置比较好? 答: 1.CASS工艺有点像我们比较了解的SBR工艺,属批次处理范畴。为了提高脱氮除磷的效果并抑制丝状菌的增生。曝气池前又加设了厌氧和缺氧段。 2.设计中应该根据水量和负荷来确定各池的大小及比例。 3.出水堰大多由泌水器代替的,保证排水时液面均匀下降。排水量可根据设定的排水时间来确定选择。 4.所用到的设备与SBR工艺接近,泌水器和厌缺氧段的潜水式搅拌机要设置的。当然还要一套自动控制装置。 5.污泥培养也没有太大的特殊之处,首先接种污泥,24小时闷曝,而后正常曝气(不要过度)先少量排水少量进水,然后逐渐提高进水即可。 6.调试和运行过程中要自己总结合理的操控参数,如进水、反应、沉淀、泌水的时间;回流污泥量等。 7.曝气装置选择,对曝气头选择应保证沉淀时不堵塞,也可选射流曝气器,搅拌和充氧都比较好,也很少发生堵塞。 (三)如何降低污水厂的能耗?政府拨的经费可怜,希望您能介绍一下运营管理方面的经验。 答: 污水厂运行费用最大的应该是电费,如果污泥委托处理其费用也很高的。针对以上问题: 1.降低曝气量,以减少电费。我的经验是,理论上的曝气池溶解氧控制在3ppm,不利于节能降耗,通常,我认为,若生物系统是低负荷运行(F/M小于0.15),溶解氧控制在 1.5ppm已经足够了。由此可产生节电效果。 2.系统有调节池、中段提升泵站的,可发挥其储水能力,以进行间隙运行来降低运行费用。 3.污泥费用如有产生,可根据情况用于厂内花木堆肥。由此只需增加点工费用即可。 (四)溶解氧控制在1.5ppm,在北方的冬季会不会影响一些高效的微生物繁殖(氧化沟工艺),降低出水水质?

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法日常运行7大指标(二)

活性污泥法日常运行7大指标(二) 上周我们讨论了好氧系统日常运行中的4个常见指标,今天我们来接着讨论其余三个常见指标的日常控制。 1、剩余污泥排放 随着处理水量的不断增加,曝气池内的活性污泥量也会不断增长,MLSS值和SV值都会升高。为了保证曝气池内MLSS值相对稳定,必须将增加的污泥量及时排出,排放的剩余污泥量应大致等于污泥的增长量,排放量过大或过小都会导致曝气池内MLSS的波动。 剩余污泥排放量与采用的活性污泥法及具体的进水水质有关,在没有经验的情况下,可大致按进水量的1%左右排放剩余污泥,确切适宜的排放值应根据一定时期的实际运行结果来确定。 2、回流污泥量 调节回流污泥量的目的也是为了保证曝气池内MLSS值相对稳定,而污水处理厂的回流量一般也是相对固定的。活性污泥法的回流污泥浓度一般介于7-10g/l。纯氧曝气活性污泥法的回流污泥浓度可超过15g/l,回流污泥沉降比一般在90%左右。因此在进水水质水量比较稳定的情况下,实际上是根据每日测定的SV值为依据,

通过调整剩余污泥的排放量来达到维持污泥回流量固定的目的。在进水水量发生大的波动时,就需要调整回流量,以保证曝气池内MLSS值不因进水量的增大或减少而出现大的波动。 3、观察二沉池 应经常观察二沉池泥面的高低、上清液的透明程度及液面和出水中悬浮物的情况。正常运行时二沉池上清液的厚度应不少于0.5-0.7m。如果泥面上升,往往说明污泥沉降性能差;如果上清液浑浊,说明进水负荷过高,污水净化效果差;如果上清液透明但带有小污泥絮片,说明污泥解絮;如果液面不连续大块污泥上浮,说明池底局部厌氧或出现反硝化;如果大范围污泥上浮,说明污泥可能中毒。 上周和本周,我们连续讨论了好氧系统日常运行中的7个常见指标,希望对大家的日常运行具有参考意义。下周,我们将继续介绍生物相观察的相关内容,若有任何疑问或者建议,欢迎在公众号留言,我们将尽快回复。

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

活性污泥法工艺流程2

活性污泥法 一.二级处理的详细工艺流程 污水的二级处理又称为生物处理 污水的生物处理就是利用微生物的氧化分解及转化功能,以污水的有机物(少数以无机物)作为微生物的营养物质,采取一定的人工措施,创造一种可控制的环境,通过微生物的代谢作用,使污水中的污染物质被降解、转化,污水得以净化。污水生物处理分类:好氧生物处理、厌(兼)氧生物处理 活性污泥法工艺流程其中工艺有: (1)传统的SBR法:SBR工艺即间歇活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后 ,上清液排出池外即完成一个运行周期。每个工作周期顺序完成进水、反应、沉淀、排放 4 个工艺过程。 SBR工艺的特点是具有一定的调节均化功能,可缓解进水水质、水量波动对系统带来的不稳定性。工艺处理简单,处理构筑物少,曝气反应池集曝气、沉淀、污泥回流于一体,可省去初沉池、二沉池及污泥回流系统,且污泥量少,易于脱水,控制一定的工艺条件可达到较好的除磷效果,但也存在自动控制和连续在线分析仪器仪表要求高的缺点。

(2)CASS工艺:CASS工艺是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,且除磷脱氮效果明显。这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域 ,在各分格中溶解氧、污泥浓度和有机负荷不同 ,各池中的生物也不相同。整个过程实现了连续进、出水。同时在传统的SBR池前或池中设置了选择器及厌氧区 , 提高了除磷脱氮效果(3)MSBR 法:MSBR工艺是20世纪80,年代初期发展起来的污水处理工艺,经过不断改进和发展,目前最新的工艺是第三代工艺。 二.工艺设计和运行参数 1.污泥负荷 在活性污泥法中,一般将有机污染物量与活性污泥量的比值(F/M),也就是曝气池内单位质量(1kg)的活性污泥,在单位时间(1 d)内,能够接受,并将其 技降解到预定程度的有机污染物(BOD)的量,称为污泥负荷常用N s 表示。即: F/M=N s=OS a/VX [kg BOD/(kg MLSS.d)] 式中: Q—污水流量,m3/d s—原污水中有机污染物(BOD) 浓度,mg/L V—曝气池容积,m3

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ① 曝气池:反应主体 ② 二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③ 回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④ 剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤ 供氧系统: 提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ① 废水中含有足够的可容性易降解有机物; ② 混合液含有足够的溶解氧; ③ 活性污泥在池呈悬浮状态; ④ 活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤ 无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ① 物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水 中难于生物降解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: 剩余活性污泥 回流污泥 二次 沉淀池 废曝气池 初次 沉淀池 出水 空气

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法处理系统的观测与运行

活性污泥法处理系统的观测与控制运行 一实验目的 1.通过观察完全混合式活性污泥处理系统的运行,加深对该处理系统特点的认识; 2.学会测定活性污泥浓度的方法; 3.掌握污泥沉降比和污泥容积指数的测定和计算方法; 4.进一步明确污泥沉降比、污泥容积指数、污泥浓度三者之间的关系以及它们对活性污泥法处理系统的设计和运行的指导意义。 二实验原理 1.完全混合式活性污泥法 活性污泥法是当前污水生物处理技术领域中应用最广泛的技术之一,了解和掌握活性污泥法处理系统的特点和实验方法十分重要。活性污泥法主要是采用必要的措施,创造适宜的条件,满足微生物生化作用的需要,并使有机物、微生物、溶解氧三相充分混合,从而强化微生物的新陈代谢作用,加速对水中有机物的分解,以达到净化水质的作用。 2.污泥的沉降性能 二沉池是活性污泥法处理系统的重要组成部分,二沉池的运行状态,直接影响处理系统的出水质量和回流污泥的浓度。影响二沉池沉淀效果的因素主要是混合液(活性污泥)的沉降性能。活性污泥的沉降性能通常用污泥沉降比和污泥容积指数表示。 (1)污泥沉降比(Sludge V olume,SV%)是指一定量的曝气池混合液静置30min后,沉淀污泥的体积与原混合液的体积比(用百分数表示),即 污泥沉降比(SV)=(经30min静置沉淀后的污泥体积/混合液的体积)×100%。 (2)污泥容积指数(Sludge V olume Index,SVI)是指曝气池混合液经30min沉淀后,1克干污泥所占的沉淀污泥的容积(以ml计),即 污泥容积指数(SVI)=经30min静置沉淀后的污泥体积(ml/L)/ 污泥干重(g/L) 污泥沉降比在一定程度上反映了活性污泥的沉降性能,测定方法简单、快速、直观,是评价活性污泥性能的重要指标之一。在处理系统受到水质变化或其它有毒有害物质的冲击以及环境因素发生变化时,曝气池中的混合液浓度或污泥容积指数都可能发生较大的变化,这时,单纯地用污泥沉降比来评价污泥的沉降性能则很不充分。这种情况下,常用污泥容积指数(SVI)来判断系统的运行情况。简单地说,污泥容积指数就是经30min静置沉淀后污泥密度的倒数,它能客观地评价活性污泥的松散程度、絮凝、沉降性能,并及时反映是否有污泥膨胀倾向或已经发生污泥膨胀。 三实验设备及试剂 1.完全混合式活性污泥处理装置; 2.MLSS分析装置;

活性污泥法工艺分类

活性污泥法工艺分类

————————————————————————————————作者:————————————————————————————————日期:

活性污泥法主要工艺分类 类型具体工艺 普通活性污泥法及其变型普通活性污泥法硝化工艺 A/O脱氮工艺 A/O脱磷工艺 A2/O脱氮除磷工艺AB法 氧化沟卡鲁赛尔氧化沟双沟式氧化沟三沟式氧化沟奥贝尔氧化沟一体化氧化沟 SBR工艺传统SBR工艺ICEAS CAST DAT-JAT UNITANK 各种工艺的主要优缺点和最佳适用条件 工艺名称主要优缺点最佳适用条件 优点: 1、去除有机物效果好 2、硝化工艺可去除氨氮 3、技术成熟,十分安全可靠

普通活性污泥法及硝化工艺4、污泥经厌氧消化达到稳定 5、用于大型污水厂费用较低 6、沼气可回收利用 缺点: 1、生物脱氮除磷效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 不要求脱氮除磷的大 型和较大型污水处理 厂 A/O除磷工艺优点: 1、去除有机物的同时可生物除磷 2、污泥沉降性能好 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 4、污泥渗出液需化学除磷 要求除磷但不要求硝 化脱氮的大型和较大 型污水处理厂 A/O脱氮工艺优点: 1、去除有机物的同时可生物除氮,效率高 2、污泥经厌氧消化达到稳定 3、用于大型污水厂费用较低 4、根据不同的脱氮要求可灵活调节运行工况 要求脱氮但不要求除

5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、反应池和二沉池容积较普通活性污泥法大幅增加 3、污泥内回流量大,能耗较高 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差磷的大型和较大型污水处理厂 A2/O脱氮除磷工艺优点: 1、去除有机物的同时可生物脱氮除磷 2、出水水质很好,有利于回用 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、污泥内回流量大,能耗较高 2、反应池容积比A/O脱氮工艺还要大 3、污泥渗出液需化学除磷 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差 要求脱氮除磷或硝化 除磷的大型和较大型 污水处理厂 优点: 1、污水有机物浓度高时刻显著节省基建投资和 运行费用 2、污泥经厌氧消化达到稳定 3、有利于分期修建

活性污泥法的运行管理及常见问题与对策

活性污泥法的运行管理及常见问题与对策 一、活性污泥法的启动与试运行 1、活性污泥的培养与驯化: 接种污泥:①同类污水厂的剩余污泥;②粪便污水等。 方法:①全流量连续直接培养法;②流量分阶段直接培养法;③间歇培养法; 活性污泥的驯化:a.异步驯化法; b.同步驯化法 2、活性污泥法的试运行: 试运行的目的是确定最佳的运行条件;作为变数考虑的因素:①MLSS、空气量、污水注入方式;②如是吸附再生法,则吸附与再生的时间比;③N、P的投加。根据上述各种参数的组合运行结果,找出最佳运行条件。 二、活性污泥系统重要运行参数的调节与观测 1、对活性污泥状况的镜检观察; 2、对曝气时间(HRT)的调节; 3、对供气量的调节: 4、SV的测定与调节: 5、剩余污泥排放量的调节: 6、回流污泥量的调节 三、活性污泥系统的水质管理 四、活性污泥系统的常见异常现象与对策

1、污泥腐化: 现象:活性污泥呈灰黑色、污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化; 原因:1)负荷量增高;2)曝气不足;3)工业废水的流入等; 对策:1)控制负荷量;2)增大曝气量;3)切断或控制工业废水的流入。 2、污泥上浮: 现象:污泥沉淀30 60分钟后呈层状上浮,多发生在夏季; 原因:硝化作用导致在二沉池中被还原成N2,引起污泥上浮; 对策:1)减少污泥在二沉池的HRT;2)减少曝气量。 3、污泥解体: 现象:在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降; 原因:污泥解体;曝气过度;负荷下降,活性污泥自身氧化过度; 对策:减少曝气;增大负荷量。 4、泥水界面不明显: 原因:高浓度有机废水的流入,使微生物处于对数增长期;污泥形成的絮体性能较差; 对策:降低负荷;增大回流量以提高曝气池中的MLSS,降低F/M值。 5、污泥膨胀: 是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。 ①因丝状菌异常增殖而导致的丝状菌性膨胀; 主要是由于丝状菌异常增殖而引起的,主要的丝状菌有:球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些丝状菌如芽孢杆菌属等、某些霉菌;

相关文档
最新文档