(完整版)高二等差、等比数列基础练习题及答案

(完整版)高二等差、等比数列基础练习题及答案
(完整版)高二等差、等比数列基础练习题及答案

等差、等比数列基础练习题及答案

一、选择题

1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为()

A. 2013

B. 671

C. -671

D.

2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=()

A. B. C. D.

3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为()

A. 2

B. 3

C. 2017

D. 3033

4.已知正项数列{a n}满足,若a1=1,则a10=()

A. 27

B. 28

C. 26

D. 29

5.若数列{a n}满足:a1=2,a n+1=,则a7等于()

A. 2

B.

C. -1

D. 2018

6.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()

A. 49

B. 42

C. 35

D. 28

7.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则

a2+a1007+a2012=()

A. 10

B. 15

C. 20

D. 40

8.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=()

A. 2

B. 3

C. 4

D. 5

9.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a10,则k=()

A. 45

B. 46

C. 47

D. 48

10.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()

A. 66

B. 55

C. 44

D. 33

二、填空题

1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式

a n=______.

2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么

a n=______.

3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______.

4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______.

5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ .

6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ .

7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.

三、解答题

1.已知数列{a n}的前n项和为S n,且=1(n∈N+).

(1)求数列{a n}的通项公式;

(2)设(n∈N+),求的值.

2.数列{a n}是首项为23,第6项为3的等差数列,请回答下列各题:

(Ⅰ)求此等差数列的公差d;

(Ⅱ)设此等差数列的前n项和为S n,求S n的最大值;

(Ⅲ)当S n是正数时,求n的最大值.

3.已知数列{a n}的前n项和为S n,且S n=2a n-2(n∈N*).

(Ⅰ)求数列{a n}的通项公式;

(Ⅱ)求数列{S n}的前n项和T n.

4.已知数列{a n}具有性质:①a1为整数;②对于任意的正整数n,当a n为偶数时,;当a n为奇数时,.

(1)若a1=64,求数列{a n}的通项公式;

(2)若a1,a2,a3成等差数列,求a1的值;

(3)设(m≥3且m∈N),数列{a n}的前n项和为S n,求证:.

等差、等比数列基础练习题答案

【答案】(选择题解析在后面)

1. D

2. C

3. A

4. B

5. A

6. B

7. B

8. C9. B10. D

12. 2n13. 14. -6;-110 15. 2n-1;2n-1

16. -17. 18. 81

19. 解:(1)当n=1,a1=,

当n>1,S n+a n=1,S n-1+a n-1=1,

∴a n-a n-1=0,

即a n=a n-1,

数列{a n}为等比数列,公比为,首项为,

∴a n=.

(2)S n=1-a n=1-()n,

∴b n=n,

∴==-,

∴=1-+-+…+-=1-=.

20. 解:(Ⅰ)由a1=23,a6=3,所以等差数列的公差d=;(Ⅱ)=,

因为n∈N*,所以当n=6时S n有最大值为78;

(Ⅲ)由,解得0<n<.

因为n∈N*,所以n的最大值为12.

21. 解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n-2①.

则:S n+1=2a n+1-2②,

②-①得:a n+1=2a n,

即:(常数),

当n=1时,a1=S1=2a1-2,

解得:a1=2,

所以数列的通项公式为:,

(Ⅱ)由于:,

则:,

=,

=2n+1-2.

-2-2- (2)

=2n+2-4-2n.

22. 解:(1)由,可得,,…,,,

,a9=0,…,

即{a n}的前7项成等比数列,从第8起数列的项均为0.…(2分)

故数列{a n}的通项公式为.…(4分)(2)若a1=4k(k∈Z)时,,,

由a1,a2,a3成等差数列,可知即2(2k)=k+4k,解得k=0,故a1=0;

若a1=4k+1(k∈Z)时,,,

由a1,a2,a3成等差数列,可知2(2k)=(4k+1)+k,解得k=-1,故a1=-3;…(7分)

若a1=4k+2(k∈Z)时,,,

由a1,a2,a3成等差数列,可知2(2k+1)=(4k+2)+k,解得k=0,

故a1=2;

若a1=4k+3(k∈Z)时,,,

由a1,a2,a3成等差数列,可知2(2k+1)=(4k+3)+k,解得k=-1,故a1=-1;

∴a1的值为-3,-1,0,2.…(10分)

(3)由(m≥3),可得,,

若,则a k是奇数,从而,

可得当3≤n≤m+1时,成立.…(13分)又,a m+2=0,…

故当n≤m时,a n>0;当n≥m+1时,a n=0.…(15分)

故对于给定的m,S n的最大值为a1+a2+...+a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3-1)+...+(21-1)=(2m+2m-1+2m-2+ (21)

-m-3=2m+1-m-5,

故.…(18分)

1. 解:∵数列{a n}满足a1=a2=1,,

∴从第一项开始,3个一组,则第n组的第一个数为a3n-2

a3n-2+a3n-1+a3n

=cos=cos(2nπ-)=cos(-)=cos=-cos=-,

∵2013÷3=671,即S2013正好是前671组的和,

∴S2013=-×671=-.

故选D.

由数列{a n}满足a1=a2=1,,知从第一项开始,3个一组,则第n组的第一个数为a3n-2,由

a3n-2+a3n-1+a3n=cos=-,能求出S2013.

本题考查数列的递推公式和数列的前n项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.

2. 解:∵a n+1=,a1=,∴-=1.

∴数列是等差数列,首项为2,公差为1.

∴=2+2016=2018.

则a2017=.

故选:C.

a n+1=,a1=,可得-=1.再利用等差数列的通项公式即可得出.

本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

3. 解:∵S n=2n-1(n∈N+),

∴a2017=S2017-S2016=2×2017-1-2×2016+1=2

由a2017=S2017-S2016,代值计算即可.

本题考查了数列的递推公式,属于基础题.

4. 解:∵,∴a n+12-2a n a n+1+a n2=9,

∴(a n+1-a n)2=9,

∴a n+1-a n=3,或a n+1-a n=-3,

∵{a n}是正项数列,a1=1,

∴a n+1-a n=3,即{a n}是以1为首项,以3为公差的等差数列,

∴a10=1+9×3=28.

故选B.

由递推式化简即可得出{a n}是公差为3的等差数列,从而得出a10.本题考查了等差数列的判断,属于中档题.

5. 解:数列{a n}满足:a1=2,a n+1=,则a2==,

a3==-1 a4==2

a5==,a6==-1.a7==2.

故选:A.

利用数列的递推关系式,逐步求解即可.

本题考查数列的递推关系式的应用,考查计算能力.

6. 解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,

∴2(a1+5d)=a1+7d+6,

∴a1+3d=6,∴a4=6,

∴=42.

故选:B.

由已知条件利用等差数列的通项公式能求出a4,由此利用等差数

列的前n项和公式能求出S7.

本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.7. 解:∵a1,a2013为方程x2-10x+16=0的两根

∴a1+a2013=10

由等差数列的性质知:a1+a2013=a2+a2012=2a1007

∴a2+a1007+a2012=15

故选:B

由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.

本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10是关键.

8. 解:已知数列{a n}的前n项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,

n=1满足a n,

∴a n=2n-4,

∵它的第k项满足2<a k<5,即2<2k-4<5,解得3<k<4.5,因为n∈N,

∴k=4,

故选C;

先利用公式a n=求出a n=,再由第k项满足4<a k<7,建立不等式,求出k的值.

本题考查数列的通项公式的求法,解题时要注意公式

a n=的合理运用,属于基础题.

9. 解:∵a k=a1+a2+a3+…+a10,

∴a1+(k-1)d=10a1+45d

∵a1=0,公差d≠0,

∴(k-1)d=45d

∴k=46

故选B

由已知a k=a1+a2+a3+…+a10,结合等差数列的通项公式及求和公式即可求解

本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题

10. 解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.

则S11==11×3=33.

故选:D.

利用等差数列的通项公式与性质与求和公式即可得出.

本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.

12. 解:由S n=n2+n,得

a1=S1=2,

当n≥2时,

a n=S n-S n-1=(n2+n)-[(n-1)2+(n-1)]=2n.

当n=1时上式成立,

∴a n=2n.

故答案为:2n.

由数列的前n项和求得首项,再由a n=S n-S n-1(n≥2)求得a n,验证首项后得答案.

本题考查了由数列的前n项和求数列的通项公式,是基础题.13. 解:由=(n∈N*),可得a2n+1=a n?a n+2,

∴数列{a n}为等比数列,

∵a1=1,a2=,

∴q=,

∴a n=,

故答案为:

由=(n∈N*),可得a2n+1=a n?a n+2,即可得到数列{a n}为等比数列,求出公比,即可得到通项公式

本题考查了等比数列的定义以及通项公式,属于基础题.

14. 解:∵对于任意的m,n∈N*,都有a m+n=a m+a n,

∴取m=1,则a n+1-a n=a1=-2,

∴数列{a n}是等差数列,首项为-2,公差为-2,

∴a n=-2-2(n-1)=-2n.

∴a3=-6,

∴数列{a n}前10项的和S10==-110.

故答案分别为:-6;-110.

对于任意的m,n∈N*,都有a m+n=a m+a n,取m=1,则a n+1-a n=a1=-2,可得数列{a n}是等差数列,首项为-2,公差为-2,利用等差数列的通项公式及其前n项和公式即可得出.

本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

15. 解:在数列{a n}中,由,

可知数列是公差为2的等差数列,又a1=1,

∴a n=1+2(n-1)=2n-1;

由,

可知数列是公比为2的等比数列,又a1=1,

∴.

故答案为:2n-1;2n-1.

由已知递推式a n-a n-1=2,可得数列是公差为2的等差数列,由,可知数列是公比为2的等比数列,然后分别由等差数列和等比数列的通项公式得答案.

本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.

16. 解:由题意,a n+1-a n=-,

利用叠加法可得a n-a1=1-=,

∵a1=-1,

∴a n=-,

故答案为-.

由题意,a n+1-a n=-,利用叠加法可得结论.

本题考查数列的通项,考查叠加法的运用,属于基础题.

17. 解:数列{a n}满足a1=5,-=5(n∈N+),

可知数列{}是等差数列,首项为,公差为:5.

可得=+5(n-1),

解得a n═.

故答案为:.

判断数列{}是等差数列,然后求解即可.

本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.

18. 解:等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,

∴3a4=33,3a6=21;

∴a4=11,a6=7;

数列{a n}前9项的和:

故答案为:81.

根据等差数列项的性质与前n项和公式,进行解答即可.

本题考查了等差数列项的性质与前n项和公式的应用问题,是基础题目.

19. (1)根据数列的递推公式可得数列{a n}为等比数列,公比为,首项为,即可求出通项公式,

(2)根据对数的运算性质可得b n=n,再根据裂项求和即可求出答案

本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.

20. (1)直接利用等差数列的通项公式求公差;

(2)写出等差数列的前n项和,利用二次函数的知识求最值;(3)由S n>0,且n∈N*列不等式求解n的值.

本题考查了等差数列的通项公式和前n项和公式,考查了数列的函数特性,是基础的运算题.

21. (Ⅰ)直接利用递推关系式求出数列的通项公式.

(Ⅱ)利用数列的通项公式,直接利用等比数列的前n项和公式求出结果.

本题考查的知识要点:数列的通项公式的求法,等比数列前n项和的公式的应用.

22. (1)由,可得{a n}的前7项成等比数列,从第8起数列的项均为0,从而利用分段函数的形式写出数列{a n}的通项公式即可;

(2)对a1进行分类讨论:若a1=4k(k∈Z)时;若a1=4k+1(k∈Z)时;若a1=4k+2(k∈Z)时;若a1=4k+3(k∈Z)时,结合等差数列的性质即可求出a1的值;

(3)由(m≥3),可得a2,a3,a4.若,则a k是奇数,可得当3≤n≤m+1时,成立,又当n≤m时,a n>0;当n≥m+1时,a n=0.故对于给定的m,S n的最大值为2m+1-m-5,即可证出结论.

本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.

等差等比数列基础练习题

针对练习A1:等差数列 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。 二、选择题 1. 一架飞机起飞时,第一秒滑跑 2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米, 则滑跑的时间一共是( ) A. 15秒 B.16秒 C.17秒 D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( c ) A.84 B.72 C.60 D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为(A ) A.6 B.3 C.12 D.4 4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于( ) A.160 B.180 C.200 D.220 5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 6. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

二-等差等比数列性质练习题(含答案)以及基础知识点

一、等差等比数列基础知识点 (一)知识归纳: 1.概念与公式: ①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列; 2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n n n =+1 }{满足 (常数),则}{n a 称等比数列;2°.通项公式:;11k n k n n q a q a a --==3°.前n 项和公式:),1(1) 1(111≠--=--= q q q a q q a a S n n n 当q=1时.1na S n = 2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a 1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质: 1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2 b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质: 1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则 组成公差为n 2d 的等差数列;

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

(完整版)高二等差、等比数列基础练习题及答案

等差、等比数列基础练习题及答案 一、选择题 1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为() A. 2013 B. 671 C. -671 D. 2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=() A. B. C. D. 3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为() A. 2 B. 3 C. 2017 D. 3033 4.已知正项数列{a n}满足,若a1=1,则a10=() A. 27 B. 28 C. 26 D. 29 5.若数列{a n}满足:a1=2,a n+1=,则a7等于() A. 2 B. C. -1 D. 2018 6.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=() A. 49 B. 42 C. 35 D. 28 7.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则 a2+a1007+a2012=() A. 10 B. 15 C. 20 D. 40 8.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=() A. 2 B. 3 C. 4 D. 5

9.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a10,则k=() A. 45 B. 46 C. 47 D. 48 10.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么 a n=______. 3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______. 4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______. 5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ . 6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ . 7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a ++ += A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等差等比数列基础练习题一

等差数列练习题 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、 -101 C、101 D、-89 2.等差数列{a n}中,a15=33, a45=153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为() A、4 B、5 C、 6 D、不存在 4、等差数列{a n}中,a1+a7=42, a10-a3=21,则前10项的S10等于() A、 720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于() A、 B、 C、或 1 D、 6、已知数列{a n}的前n项和S n=2n2-3n,而a1,a3,a5,a7,……组成一新数 列{C n},其通项公式为() A、 C n=4n-3 B、 C n=8n-1 C、C n=4n-5 D、C n=8n-9 7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有() A、 6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1=25, b1=75,且a100+b100=100,则数列{a n+b n}的前100项和为() A、 0 B、 100 C、10000 D、505000

二、填空题 9、在等差数列{a n}中,a n=m,a n+m=0,则a m= ______。 10、在等差数列{a n}中,a4+a7+a10+a13=20,则S16= ______ 。 11.在等差数列{a n}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到 a30的和是 ______ 。 12.已知等差数列 110, 116, 122,……,则大于450而不大于602的各 项之和为 ______ 。 三、解答题 13.已知等差数列{a n}的公差d=,前100项的和S100=145 求: a1+a3+a5+……+a99的值。 14.已知等差数列{a n}的首项为a,记 (1)求证:{b n}是等差数列 (2)已知{a n}的前13项的和与{b n}的前13的和之比为 3 :2,求{b n}的公差。

等差数列、等比数列基础题

等差、等比数列 一、选择题: 1.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = A.-2 B.-12 C.12 D.2 2、在等比数列{n a }中,44a =,则26a a ?等于( ) A. 4 B. 8 C. 16 D. 32 3、在等比数列{n a }中,333S a =,则其公比q 的值为( ) A. 12- B. 12 C. 1或12- D.1-或12 4.已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.7 5、如果-1,a,b,c,-9成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9 6、设{}n a 是公比为正数的等比数列,若a 1=1,a 5=16,则数列{}n a 的前7项的和为( ) A.63 B.64 C.127 D.128 7.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B 53 C.- 2 D 3 8、设等比数列{}n a 的公比q=2,前n 项和为n S ,则24a S 等于( ) A.2 B.4 C.215 D.2 17 9、设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A.3 B.4 C.5 D.6 10、已知各项均为正数的等比数列{}n a ,123a a a =5,789a a a =10,则456a a a =( ) A. 52 B. 7 C. 6 D. 42 二、填空题: 11、已知{}n a 是等比数列,22=a ,434=-a a ,则此数列的公比=q _________; 12、设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则=k _________; 13、若数列{}n a 的前n 项和n S a n -=3,数列{}n a 为等比数列,则实数a 的值是_________;

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等比数列知识点总结与典型例题-(精华版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(完整版)高二等差、等比数列基础练习题及答案.doc

等差、等比数列基础练习题及答案 一、选择题 1. 数列 { a n } 满足 a 1=a 2=1, ,若数列 { a n } 的前 n 项和为 S n 2013 ) ,则 S 的值为( A. 2013 B. 671 C. -671 D. 2.已知数列 { a n } 满足递推关系: a n+1= , a 1= ,则 a 2017=( ) A. B. C. D. 3.数列 { a n } 的前 n 项和为 S n ,若 S n =2n-1(n ∈N +),则 a 2017 的值为 ( ) A. 2 B. 3 C. 2017 D. 3033 4. 已知正项数列 { a n } 满足 ,若 a 1=1,则 a 10= ( ) A. 27 B. 28 C. 26 D. 29 5. 若数列 {a n } 满足: a 1=2 ,a n+1= ,则 a 7 等于( ) A. 2 B. C. -1 D. 2018 6. 已知等差数列 { a n n 6 3 7 ) } 的前 n 项和为 S ,若 2a =a +6,则 S =( A. 49 B. 42 C. 35 D. 28 7. 等差数列 { a n } 中,若 a 1,a 2013 为方程 x 2 -10x+16=0 两根,则 a 2+a 1007+a 2012=( ) A. 10 B. 15 C. 20 D. 40 8. 已知数列 { a n } 的前 n 项和 ,若它的第 k 项满足 2<a k <5, 则 k=() A.2 B.3 C.4 D.5

9.在等差数列 { a n} 中,首项 a1=0,公差 d≠0,若 a k=a1+a2+a3+ +a10,则 k=() A. 45 B. 46 C. 47 D. 48 10.已知 S n是等差数列 { a n} 的前 n 项和,则 2(a1+a3+a5)+3(a8+a10)=36,则 S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列 { a n} 的前 n 项和 S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列 { a n} 中,满足 a1=1,a2= , = (n∈N*),那么 a n=______. 3.若数列 {a n} 满足 a1=-2,且对于任意的 m,n∈N*,都有 a m+n=a m+a n,则 a3=______;数列 { a n} 前 10 项的和 S10=______. 4. 数列 { a n} 中,已知 a1=1,若,则 a n=______,若,则 a n =______. 5.已知数列{ a n 1 n+1 n *,则通项公式a n = } 满足 a =-1 ,a =a + ,n∈N ______ . 6. 数列 { a n} 满足 a1=5,- =5(n∈N+),则 a n= ______ . 7. 等差数列 { a n} 中, a1+a4+a7=33,a3+a6+a9=21,则数列 { a n} 前 9 项的和 S9等于 ______.

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

高中数学典型例题大全数列等比数列的前n项和

【例1】 设等比数列的首项为a(a >0),公比为q(q >0),前n 项和为80,其中最大的一项为54,又它的前2n 项和为6560,求a 和q . 解 由S n =80,S 2n =6560,故q ≠1 a q q a q q n n () ()11112----????????=80=6560 q =81n ① ②③ ∵a >0,q >1,等比数列为递增数列,故前n 项中最大项为a n . ∴a n =aq n-1=54 ④ 将③代入①化简得a=q -1 ⑤ ③ ④ 化简得⑥3a =2q 由⑤,⑥联立方程组解得a=2,q=3 【例2】求证:对于等比数列,有++.S S =S (S S )n 22n 2 n 2n 3n 证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n ) 类似地,可得S 3n =S n (1+q n +q 2n ) ∴++++S +S =S [S (1q )] =S (22q q )n 22n 2n 2n n 2n 2n 2n S (S S )=S [S (1q )S (1q q )] =S (22q q ) S S =S (S S ) n 2n 3n n n n n n 2n n 2n 2n n 22n 2 n 2n 3n +++++++∴++ 说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地

处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例3】 一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析 设等比数列为{a n },公比为q ,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q 2,首项分别为a 1,a 1q . 解 设项数为2n(n ∈N*),因为a 1=1,由已知可得q ≠1. ∴① ② a q q a q q q n n 122 1221111() ()----???????=85=170 ① ②得:把代入① 得 ∴q =2q =2=85 4=256 n =4 n 14 14 --n 即公比为2,项数为8. 说明 运用等比数列前n 项和公式进行运算、推理时,对公比q 要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的. 【例4】 选择题:在等比数列{a n }中,已知对任意正整数n ,有S n =2n -,则++…+等于1a a a 1222n 2 [ ] A (21) B (21) C 21 D (41) n 2n 2 n n .-.-.-.-1 3 13 解 D . ∵a 1=S 1=1,a n =S n -S n-1=2n-1 ∴a n =2n-1

相关文档
最新文档