高二物理 第十五讲 牛顿运动定律应用(2)复习学案(无答案)

高二物理 第十五讲 牛顿运动定律应用(2)复习学案(无答案)
高二物理 第十五讲 牛顿运动定律应用(2)复习学案(无答案)

第十五讲 牛顿运动定律应用(2)

姓名 班级 学号

例题1:如图所示,将质量为m 的小球用轻绳挂在倾角θ的光滑斜面上。求:当斜面以加速度a 水平向右匀加速运动时,求绳子的张力。

例题2:一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重合。如图所示。已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2。先突然以恒定的加速度a 将桌布抽离桌面,加速度的方向是水平的且垂直于AB 边。若

圆盘最后未从桌面掉下,则加速度a 满足的条件是什

么?(以g 表示重力加速度)

B

例题3:如图所示,B A

是竖直平面内的光滑园弧面,一小物体从A 点静止释放,它滑上静止不动的水平皮带后,从C 点离开皮带做平抛运动,落在水平地面上的D 点,现使皮带轮转动,皮带的上表面以某一速率向左或向右匀速这运动,小物体

仍从A 点静止释放,则小物体可能落在地面上:

( )

A.、D 点右边的M 点 B 、D 点

C.、D 点左边的N 点 D 、右皮带轮边缘正下方的O 点

例题4:如图所示,传送带装置保持1 m/s 的速度水平向右平移,现将一质量m =0.5kg 的物体从离皮带很近的a 点,轻轻的放上,设物体与皮带间的摩擦因数μ=0.1,a 、b 间的距离L=2.5m ,则物体从a 点运动到b 点所经历的时间为 (g 取10m/s 2

): ( )

A 、5 s

B 、

(

)

16-s

C 、3s

D 、2.5s

例题5:如图所示,小物块从光滑斜面距底边0.8m 高处由静止下滑,经一与斜面相切的小圆弧滑上足够长正在匀速运转的水平传送带,传送带的速度为v,方向如图。经过一定时间后,物块从传送带上返回又冲上斜面。当v=3m/s 时物块能冲上斜面的高度h 1= m ,当v=5m/s 时物块能冲上斜面的高度h 2= m 。

M

O N

例题6:如图所示,传送带与地面倾角θ=37°,AB 长为16米,传送带以10米/秒的速度匀速运动。在传送带上端A 无初速地释放一个质量为0.5千克的物体,它与传送带之间的动摩擦系数为μ=0.5,求: (1) 传送带瞬时针转动,物体从A 运动到B 所需时间,

(2) 传送带逆时针转动,物体从A 运动到B 所需时间

第十五讲 牛顿运动定律应用(2)作业

1.如图3—60所示,一轻绳上端系在车的左上角的A 点,另一轻绳一端系在车左端B 点,B 点在A 点正下方,A 、B 距离为b ,两绳另一端在C 点相结并系一质量为m 的小球,绳AC 长度为2b ,

绳BC 长度为b 。两绳能够承受的最大拉力均为2mg 。求: (1)绳BC 刚好被拉直时,车的加速度是多大, (2)为不拉断轻绳,车向左运动的最大加速度是多大。

A

B

图3—60

2.如图所示,小木箱abcd的质量M=180g,高L=0.2m,其顶部离挡板E的竖直距离h=0.8m,在木箱内放有一个质量m=20g的小物体P(可视为质点),通过轻细绳对静止箱施加一个竖直向上的恒定拉力F,为使木箱能向上运动后,物体P不会和木箱顶ad 相碰,求拉力F的取值范围.(g=l0m/s2)

3、如图所示,铁块压着一张纸条放在水平桌面上,当以速度v抽出

纸条后,铁块掉在地上的P点,若以2v速度抽出纸条,则铁块落地点为:()

A、仍在P点

B、P点左边

C、P点右边不远处

D、P点右边原水平位移的两倍处

4.传送带被广泛地应用于码头、机场和车站,如图所示为一水平传送带的装置示意图,紧绷的传送带AB 始终保持恒定的速率Y=1m /s 运行.将一质量m=4kg 的行李无初速地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L=2m ,g 取1Om /s 2

. (1)行李被传到B 处所用的时间是多少?

(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处以最短时间传送到B 处时传送带对应的最小运行速率.

5、如图20-2所示,传送带与水平面成α=30?角且始终以v =2 m/s 的速度向上移动,两端点A 、B 的间距为L =5 m ,一质量为m =1 kg 的物体从离传送带很近处轻轻放在传送带底端的A 处,经t =2.9 s 到达顶端B 点,求:物体与皮带间的摩擦力和动摩擦因数。

B

图20-2

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

高考物理总复习--物理牛顿运动定律的应用含解析

高考物理总复习--物理牛顿运动定律的应用含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带的皮带轮逆时针匀速转动,使传送带上表面以u =2.0m/s 匀速运动。传送带的右边是一半径R =1.25m 位于竖直平面内的光滑 14圆弧轨道。质量m =2.0kg 的物块B 从1 4 圆弧的最高处由静止释放。已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。取g =10m/s 2。求: (1)物块B 滑到 1 4 圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能; (3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。 【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】 (1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得: 2 012 mgR mv = 代入数据解得: v 0=5m/s 在圆弧最低点C ,由牛顿第二定律得: 20 v F mg m R -= 代入数据解得: F =60N 由牛顿第三定律可知,物块B 对轨道的压力大小:F′=F =60N ,方向:竖直向下; (2) 在传送带上,对物块B ,由牛顿第二定律得: μmg =ma 设物块B 通过传送带后运动速度大小为v ,有

(完整版)牛顿运动定律解题方法总结(教师版),推荐文档

牛顿运动定律解题方法总结(教师版) 1、正交分解法:把矢量(F ,a )分解在两个互相垂直的坐标轴上的方法。 例1、如图4-45所示,一自动电梯与水平面之间的夹角θ=30°,当电梯加 速向上运动时,人对梯面的压力是其重力的6/5,试求人与梯面之间的摩擦力是其重力的多少倍?解析:在动力学的两类基本问题中,本题应属于已知物体的运动状态求解 物体的受力情况。 人受力如图4-46所示,建立直角坐标系,将a 分解在x 轴和y 轴上, 由牛顿第二定律得:f =macosθ,N -mg =masinθ,N =6mg/5联立解得f =√3mg/5 说明:可见,当研究对象所受的力都是互相垂直时,通常采用分解加速度的方法,可以使解题过程更为简化。 2、整体法和隔离法:主要对连接体问题要用整体法和隔离法。 例2、如图4-47所示,固定在水平地面上的斜面倾角为θ,斜面上放一个带有支架的木块,木块与斜面间的动摩擦因数为μ,如果木块可以沿斜面加速下滑,则这一过程中,悬挂在支架上的小球悬线和竖直方向的夹角α为多大时小球可以相对于支架静止? 解析:要使小球可以相对于支架静止,说明二者具有相同的加速度。 视小球、木块为一整体,其具有的加速度为a ,由牛顿第二定律得: a =gsinθ-μgcosθ,对小球受力分析如图4-48所示,建立水平竖直方向坐标系,由牛顿第二定律得:Tsinα=macosθmg -Tcosα=masinα消去T ,得:tanα=acosθ/(g -asinα) 将a 代入得:tanα=(sinθ-μcosθ)/(cosθ+μsinθ) 3、瞬时分析法:主要求某个力突然变化时物体的加速度时用此法。 例3、质量为m 的箱子C ,顶部悬挂质量为m 的小球B ,小球B 的下方通过一轻弹簧与质量为m 的小球A 相连,箱子C 用轻绳OO ′悬于天花 板上处于平衡状态,如图4-49所示,现剪断OO ′,在轻绳被剪断的瞬 间,小球A 、B 和箱子C 的加速度分别是多少?B 、C 间绳子的拉力T 为多少? 解析:细绳剪断瞬间,拉力消失,A 、B 间弹簧弹力未变,B 、C 间绳子 拉力发生突变,所以A 仍受重力mg 和弹簧拉力F =mg 作用而平衡, 故a A =0。 剪断OO ′时,B 、C 间拉力也要突变,但B 、C 将同步下落,所以: a B =a C =3mg/2m =1.5g 。 对C 由牛顿第二定律得:T +mg =ma C ,∴T =0.5mg 。 4、程序法:按时间先后顺序对题目给出的物体运动过程(或不同状态)进行分析计算的解 题方法叫做程序法。 图4- 图4- 图4-图 4-图4-

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高中物理牛顿运动定律的应用解题技巧及练习题(1)

高中物理牛顿运动定律的应用解题技巧及练习题(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求: (1)m 、M 之间的动摩擦因数; (2)M 的质量及它与水平地面之间的动摩擦因数; (3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】 (1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有: 11mg ma μ= 由乙图知 214m /s a = 解得 10.4μ= (2)对M 由牛顿第二定律有 122()F mg M m g Ma μμ--+= 即 12122()()F mg M m g mg M m g F a M M M μμμμ--+--+= =+ 乙图知 11 4 M = 12()9 4 mg M m g M μμ--+=- 解得 M = 4 kg μ2=0. 1

(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左, 设m 运动t 1时间速度减为零,则 11 1s v t a = = 位移 2101111 2m 2 x v t a t =-= M 的加速度大小 2122()5m /s F mg M m g a M μμ--+= = 方向向左, M 的位移大小 2 2211 2.5m 2 x a t = = 此时M 的速度 2215m /s v a t == 由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落, 设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律 23F Mg Ma μ-= 可得 2325 m /s 4 a = 在t =2s 时m 与M 右端的距离 2321311 ()()8.125m 2 x v t t a t t =-+-=. 2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37o=0.6,cos37o=0.8,求:

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

高一物理牛顿运动定律的解题技巧

高一物理牛顿运动定律的解题技巧 Revised on November 25, 2020

牛顿运动定律的综合应用 一、临界问题 在运用牛顿运动定律解动力学问题时,常常讨论相互作用的物体是否会发生相对滑动,相互接触的物体是否会发生分离等等,这类问题就是临界问题。 解决临界问题的基本思路 1.分析临界状态 一般采用极端分析法,即把问题中的物理量推向极值,就会暴露出物理过程,常见的有A.发生相对滑动;B.绳子绷直;C.与接触面脱离。 所谓临界状态一般是即将要发生质变时的状态,也是未发生质变时的状态。此时物体所处的运动状态常见的有:A.平衡状态;B.匀变速运动;C.圆周运动等。 2.找出临界条件 (1)相对滑动与相对静止的临界条件是静摩擦力达最大值; (2)绳子松弛的临界条件是绳中拉力为零; (3)相互接触的两个物体将要脱离的临界条件是相互作用的弹力为零。 3.列出状态方程 将临界条件代到状态方程中,得出临界条件下的状态方程。 4.联立方程求解 有些临界问题单独临界条件下的状态方程不能解决问题,则需结合其他规律联立方程求解。 1、如图所示,质量为m=1kg的物块放在倾角为θ=37的斜面体上,斜面质量为 M=1kg,斜面与物块间的动摩擦因数为μ= ,地面光滑,现对斜 面体施一水平推力F,要使物体m相对斜面静止,试确定推力F 的取值范围。(g取10m/s2)

2、一斜面放在水平地面上,倾角为θ=53°,一个质量为 kg的小球用细绳吊在斜面顶端,如图所示.斜面静止时,球紧靠在斜面上,绳与斜面平行.不计斜面与水平面间的摩擦,当斜面以10 m/s2的加速度向右运动时,求细绳的拉力及斜面对小球的弹力。(g取10 m/s2) 3、如图所示,两个质量都为m的滑块A和B,紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面与水平面成θ角,所有接触面都光滑无摩擦,现用一个水平推力作用于滑块A,使A、B一起向右做加速运动。求: (1)要使A、B间不发生相对滑动,它们共同向右运动的最大加速度是多大 (2)要使A、B间不发生相对滑动,水平推力的大小应在什么 范围内 二、滑块-木板模型的动力学分析 1、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。变式1.若拉力F作用在A上呢如图2所示。 变式2.在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 3、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则( ) A.当拉力F<12N时,两物体均保持静止状态 B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动 C.两物体间从受力开始就有相对运动 D.两物体间始终没有相对运动

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

应用牛顿运动定律解题的方法和步骤

应用牛顿运动定律解题 的方法和步骤 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是 将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果 还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这m 图3-4-1

就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。一般情况下选取合力,如物体在斜面上 受到重力,一般不说它受到下滑力和垂直面的两个力。在—些特 殊情况下,物体其合力不能先确定,则可用两分力来代替它,如 图3-4-2横杆左端所接铰链对它的力方向不能明确之前,可用水 平和竖直方向上的两个分力来表示,最后再求出这两个分力的合 力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一对相互作用力处理。 (3)分析物体运动状态及其变化 ①运用牛顿定律解题主要是分析物体运动的加速度a ,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a 而求物体所受的力。 图3-4-2

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

高考物理牛顿运动定律的应用解题技巧及练习题含解析(1)

高考物理牛顿运动定律的应用解题技巧及练习题含解析(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,质量为1kg m =的物体置于倾角为37θ?=的固定且足够长的斜面上,对物体 施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2 10/,sin 370.6,cos370.8g m s ? ? ===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少? 【答案】(1)0.5 (2)30N 【解析】 【详解】 (1)由速度时间图象得:物体向上匀减速时加速度大小: 22110-5 m/s 10m/s 0.5 a = = 根据牛顿第二定律得: 1sin cos mg mg ma θμθ+= 代入数据解得: 0.5μ= (2)由速度时间图象得:物体向上匀加速时: 2220m /s v a t ?= =? 根据牛顿第二定律得: 2sin cos F mg mg ma θμθ--= 代入数据解得: 30N F = 2.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。已知A 、B 两物体与车面的动摩擦因数都是0.20,取g =10m/s 2,求:

(1)A 、B 两物体在车上都停止滑动时车的速度; (2)车的长度是多少? (3)从A 、B 开始运动计时,经8s 小车离原位置的距离. 【答案】(1)0.6m/s (2)6.8m (3)3.84m 【解析】 【详解】 解:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律有: ()()122m v v M m v -=+ 代入数据解得:v =0.6m/s ,方向向右. (2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系有: ()()22 212121 11 2222 mg L L mv mv M m v μ+=+- + 又L ≥L 1+L 2 代入数据解得L ≥6.8m ,即L 至少为6.8m (3)当B 向左减速到零时,A 向右减速,且两者加速度大小都为12a g μ==m/s 2 对小车受力分析可知,小车受到两个大小相等、方向相反的滑动摩擦力作用,故小车没有动 则B 向左减速到零的时间为2 11 1v t a = =s 此时A 的速度为1113A v v a t =-=m/s 当B 减速到零时与小车相对静止,此时A 继续向右减速,则B 与小车向右加速,设经过t s 达到共同速度v 对B 和小车,由牛顿第二定律有:()2mg m M a μ=+,解得:20.5a =m/s 2 则有:12A v v a t a t =-=,代入数据解得:t =1.2s 此时小车的速度为20.6v a t ==m/s ,位移为2 1210.362 x a t = =m 当三个物体都达到共同速度后,一起向右做匀速直线运动,则剩下的时间发生的位移为 ()28 3.48x v t =-=m 则小车在8s 内走过的总位移为12 3.84x x x =+=m 3..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

相关文档
最新文档