中考数学压轴题(最新整理)百度文库

中考数学压轴题(最新整理)百度文库
中考数学压轴题(最新整理)百度文库

一、中考数学压轴题

1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ;

(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;

(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.

2.如图,已知抛物线()2

y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,

直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式;

(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;

(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.

3.已知抛物线217

22

2

y

x mx m

的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;

(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,

直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13. (1)求直线AD 和BC 之间的距离;

(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?

(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.

5.如图,在菱形ABCD 中,AB a ,60ABC ∠=?,过点A 作AE BC ⊥,垂足为E ,

AF CD ⊥,垂足为F .

(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;

(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;

②若1

2,(33)2

ADH

a S

==

+,求sin GAB ∠的值.

6.问题提出

(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.

问题探究

(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且

2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.

问题解决

(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.

7.如图,在ABC ?中,14AB =,45B ∠=?,4

tan 3

A =

,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.

(1)当t =_______秒时,点N 落在AC 边上.

(2)设正方形PQMN 与ABC ?重叠部分面积为S ,当点N 在ABC ?内部时,求S 关于

t 的函数关系式.

(3)当正方形PQMN 的对角线所在直线将ABC ?的分为面积相等的两部分时,直接写出

t 的值.

8.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系

(1)如图1,点C(1,0),D(-1,0),E(03,点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .

①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;

(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段

FG 与⊙O 满足限距关系,求b 的取值范围;

(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.

9.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线2

2(0)y ax ax a =->交x

轴正半轴于点C ,连结AO ,AB . (1)求点C 的坐标; (2)求直线AB 的表达式;

(3)设抛物线2

2(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .

①若2AE AO =,求抛物线表达式;

②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)

10.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =

4

3

AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .

(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示) (2)当x 为何值时,△AFD 是等腰三角形.

(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)

11.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,

8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A

开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,

08t <<.

(1)当t 为何值时,PQ

BD ?

(2)设五边形QPBCM 的面积为(

)2

S cm

,求S 与t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的11

15

?若存在,求出t 的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出

t 的值;若不存在,请说明理由.

12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k

y k x

=

<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.

(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;

②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.

(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.

13.如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.

(1)求证:DE=BO;

(2)如图2,当点D恰好落在BC上时.

①求点E的坐标;

②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;

③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.

14.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,

(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)

(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。请直接写出∠PQF、∠A、∠ACE 之间的关系.

15.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.

(1)求A ,B ,C 三点坐标;

(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;

(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).

16.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .

(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;

(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N . ①求证:DM 2+CN 2=CM 2;

②如图3,当AD=1,AB=10时,请直接写出....

线段ME 的长. 17.如图,平面直角坐标系中,抛物线2

28y ax ax a =--与x 轴交于B 、C 两点(点B 在

点C 右侧),与y 轴交于点A ,连接AB ,25AB =.

(1)求抛物线的解析式;

(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作

EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=?,在

射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.

18.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.

例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.

(1)当m =0时

①一次函数y =x ﹣1关于点P 的相关函数为 ; ②点(

1

2,﹣98

)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.

(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12

m 2

关于点P (m ,0)的相关函数的最大值为6,求m 的值.

19.如图,在?ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.

20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在

x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛

物线2

12y ax bx =++过D ,C ,E 三点.

(1)当//DE AB 时, ①求抛物线的解析式;

②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,

H ,F 为顶点的三角形与GHE △相似,求点m 的值.

(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在

x 轴上满足条件的G 点有且只有一个时,请直接写出....

点E 的坐标. 21.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ; (2)求∠AEB 的度数;

(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求

AF

DE

的值.

22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4

x 0x

y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4

x 0x

y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.

(1)点A’的坐标是 ,点B’的坐标是 ;

(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4

x 0x

y =

>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;

(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.

23.(操作发现)如图1,ABC ?为等腰直角三角形,90ACB ∠=?,先将三角板的90?角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0?且小于45?),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使

CF CD =,线段AB 上取点E ,使45DCE ∠=?,连接AF ,EF .

(1)请求出EAF ∠的度数? (2)DE 与EF 相等吗?请说明理由;

(类比探究)如图2,ABC ?为等边三角形,先将三角板中的60?角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0?且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使

30DCE ∠=?,连接AF ,EF .

(3)直接写出EAF

∠=_________度;

(4)若1AE =,2BD =,求线段DE 的长度.

24.如图,平行四边形ABCD 中,AB ⊥AC ,AB =2,AC =4.对角线AC 、BD 相交于点O ,将直线AC 绕点O 顺时针旋转α°(0°<α<180°),分别交直线BC 、AD 于点E 、F .

(1)当α=_____°时,四边形ABEF 是平行四边形;

(2)在旋转的过程中,从A 、B 、C 、D 、E 、F 中任意4个点为顶点构造四边形, ①当α=_______°时,构造的四边形是菱形;

②若构造的四边形是矩形,求该矩形的两边长. 25.如图,抛物线2

14

y x bx c =

++与x 轴交于点A (-2,0),交y 轴于点B (0,5

2

-

).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .

(1) 求抛物线2

14

y x bx c =

++与直线32y kx =+的解析式;

(2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点. ①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;

②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.B

解析:(1)8

3

;(2)3或433)565x ≤<【解析】 【分析】

(1)设BP=a ,则PC=8-a ,由△MBP ~△DCP 知

MB BP

DC CP

=,代入计算可得; (2)分别求出⊙P 与边CD 相切时和⊙P 与边AD 相切时BP 的长即可得; (3)①当PM=5时,⊙P 经过点M ,点C ;②当⊙P 经过点M 、点D 时,由PC 2+DC 2=BM 2+PB 2,可求得BP=7,继而知227465PM =+=.据此可得答案.

【详解】

(1)设BP=a ,则PC=8-a ,

∵AB=8,M是AB中点,∴AM=BM=4,

∵△MBP~△DCP,

∴MB BP

DC CP

=,即

4

88

a

a

=

-

解得

8

3

a=,

故答案为:8

3

(2)如图1,当⊙P与边CD相切时,

设PC=PM=x,

在Rt△PBM中,∵PM2=BM2+PB2,

∴x2=42+(8-x)2,

∴x=5,

∴PC=5,BP=BC-PC=8-5=3.

如图2,当⊙P与边AD相切时,

设切点为K,连接PK,

则PK⊥AD,四边形PKDC是矩形.

∴PM=PK=CD=2BM,

∴BM=4,PM=8,

在Rt△PBM中,22

8443

PB-=

综上所述,BP的长为3或43

(3)如图1,当PM=5时,⊙P经过点M,点C;

如图3,当⊙P 经过点M 、点D 时,

∵PC 2+DC 2=BM 2+PB 2, ∴42+BP 2=(8-BP )2+82, ∴BP=7, ∴227465PM

=+=

综上,565x ≤< 【点睛】

本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.

2.B

解析:(1)213

y x x 222

=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】

()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;

()2由题意设点M 的坐标为2

13x,x x 222??+- ??

?

,则点1

K x,x 22

??-- ??

?

,BMC

1

S

MK OB 2

=

??,即可求解; ()3由题意和如图所示可知,1tan QHN 2

∠=,在Rt

QNH 中,QH m 6=+,

2

2

2

QN OQ (2)m m 4==-+=+2QN m 4

sin QHN QH

m 65∠+=

==+,进行分析计算即可求解. 【详解】

解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:4223

16420a b a b +-=??--=?

,解得:

1 2 3

2

a

b

?

=

??

?

?=

??

则抛物线的解析式为:2

13

y x x2

22

=+-;

()2过点M作y轴的平行线,交直线BC于点K,

将点B、C的坐标代入一次函数表达式:y k'x b'

=+得:

04''

'2

k b

b

=-+

?

?

=-

?

,解得:

1

'

2

'2

k

b

?

=-

?

?

?=-

?

则直线BC的表达式为:

1

y x2

2

=--,

设点M的坐标为2

13

x,x x2

22

??

+-

?

??

,则点

1

K x,x2

2

??

--

?

??

22

BMC

1113

S MK OB2x2x x2x4x

2222

??

=??=----+=--

?

??

a10

=-<,BMC

S

∴有最大值,

b

x2

2a

=-=-时,

BMC

S最大值为4,

点M的坐标为()

2,3

--;

()3如图所示,存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,切点为N,过点M作直线平行于y轴,交直线AC于点H,

点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1

tan OCA OC 2

∠=

=, QH //y 轴, QHN OCA ∠∠∴=, 1

tan QHN 2∠∴=

,则sin QHN 5

∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:0

2m n n +=??=-?

则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,

在Rt QNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=

+

2QN m 4

sin QHN QH m 65

∠+===

+, 解得:m 4=或1-,

即点Q 的坐标为()2,4-或()2,1--. 【点睛】

本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.

3.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或4

17k 或

4

17k

时,可使得C D M N 、、、为顶点的四边形是平行四边形.

【解析】 【分析】 (1)从2

1

7202

2

x mx

m

的判别式出发,判别式总大于等于3,而证得;

(2)根据抛物线的对称轴32b x

a

来求m 的值;然后利用配方法把抛物线解析式转

化为顶点式,由此可以写出点C 的坐标;

(3

)根据平行四边形的性质得到:2

15

|1(3)|42

2

MN k k k

CD . 需要分类讨论:①当四边形CDMN 是平行四边形,2

1

51(3)42

2

MN k k k

,通过

解该方程可以求得k 的值;

②当四边形CDNM 是平行四边形,2153(1)42

2

NM k k

k ,通过解该方程可以求

得k 的值. 【详解】 解:(1)

2

2

17()4(2)(2)32

2

m m m

, ∵不论m 为何实数,总有2(2)0m -≥,

2

(2)3

0m ,

∴无论m 为何实数,关于x 的一元二次方程217202

2

x mx

m

总有两个不相等的实数

根,

∴无论m 为何实数,抛物线217

22

2

y x mx

m

与x 轴总有两个不同的交点. (2)

抛物线的对称轴为直线3x =,

3

122

m ,即3m =,

此时,抛物线的解析式为22

1513(3)22

2

2

y x x

x ,

∴顶点C 坐标为(3,2)-;

(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,

∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线

的下方),如图所示,

由已知2

15(3,2),(,1),(3)2

2

D M k k N k k k

,, (3,2)C ,

4CD ∴=,

2

1

51(3)42

2

MN

k k k

CD

①当四边形CDMN 是平行四边形,

2

1

51(3)42

2

MN

k k k

整理得,28150k k -+=,

解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,

2153(1)

42

2

NM

k k

k ,

整理得2810k k , 解得,12

4

174

17k k ,,

综上,5k =或4

17k

或4

17k

时,可使得C D M N 、、、为顶点的四边形是平行

四边形. 【点睛】

本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.

4.A

解析:(1)12;(2)5s 或373s ;(3)163s 或685

s 或7

2s 【解析】 【分析】

(1)AD 与BC 之间的距离即AB 的长,如下图,过点D 作BC 的垂线,交BC 于点E ,在RtDEC 中可求得DE 的长,即AB 的长,即AD 与BC 间的距离; (2)四边形QDCP 为平行四边形,只需QD=CP 即可;

(3)存在3大类情况,情况一:QP=PD ,情况二:PD=QD ,情况三:QP=QD ,而每大类中,点P 存在2种情况,一种为点P 还未到达点C ,另一种为点P 从点C 处返回. 【详解】

(1)如下图,过点D 作BC 的垂线,交BC 于点E

∵∠B=90°,AD ∥BC ∴AB ⊥BC ,AB ⊥AD

∴AB 的长即为AD 与BC 之间的距离

∵AD=16,BC=21, ∴EC=5 ∵DC=13

∴在Rt DEC 中,DE=12

同理,DE 的长也是AD 与BC 之间的距离 ∴AD 与BC 之间的距离为12 (2)∵AD ∥BC

∴只需QD=PC ,则四边形QDCP 是平行四边形 QD=16-t ,PC=21-2t 或PC=2t -21 ∴16-t=21-2t 或16-t=2t -21 解得:t=5s 或t=

373

s (3)情况一:QP=PD

图形如下,过点P 作AD 的垂线,交AD 于点F

∵PQ=PD ,PF ⊥QD , ∴QF=FD

∵AF ∥BP ,AB ∥FP ,∠B=90° ∴四边形ABPF 是矩形, ∴AF=BP

由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2

t BP=2t 或BP=21-(2t -21)=42-2t ∵AF=BP ∴8+

2t =2t 或8+2

t

=42-2t 解得:t=

16

3或t=685

情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F

同理QD=16-t ,PF=AB=12 BP=2t 或21-(2t -21)=42-2t

则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26

∴在Rt PFD 中,()22212162PD t =+-或()2

2212226PD t =+- ∵PD=QD , ∴2

2

PD QD =

∴()()2

2

216t 12162t =+--或()()2

2

216t 12226t =+-- 解得:2个方程都无解

情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F

同理:QD=16-t ,FP=12 BP=2t 或BP=42-2t

QF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t

在Rt QFP 中,222

12PQ t =+或()2

2212423PQ t =+-

∵PQ=QD , ∴2

2

PQ QD =

∴()2

2216t 12t =+-或()()2

2

216t 12423t =+-- 第一个方程解得:t=7

2

,第二个方程解得:无解 综上得:t=163或685

或72 【点睛】

本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度.

5.E

解析:(1)3EF EC =,见解析;(2)27

7

BK a =

;(3)①AGH 是等边三角形,见解析;②1

(62)4

【解析】 【分析】

(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ???,然后得到AEF ?为等边

三角形,由解直角三角形得到3AE EC =,即可得到答案;

(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到

AB BK

FB BA

=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ?,然后得到AG AH =,然后得到

60BAH GAB GAH ?∠+∠=∠=,即可得到答案;

②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案. 【详解】 解:(1)3EF EC =

理由:∵四边形ABCD 是菱形,60ABC ∠=?,

,60,//AB AD BC ABC ADC AD BC ?∴==∠=∠=, 120BAD ?∴∠=,

∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,

90AEB AFD ?∴∠=∠=

Rt AEB Rt AFD ∴???,

,30AE AF BAE DAF ∴=∠=∠=?, 60EAF ∴∠=?,

AEF ∴?为等边三角形, EF AE ∴=.

连接AC ,1

602

BAC BAD ?∴∠=

∠= 30EAC ?∴∠=

在Rt AEC ?中,tan EC

EAC AE

∠=

3AE EC ∴=, 3EF EC ∴=

(2)如图:

相关主题
相关文档
最新文档