蛋白的纯化

蛋白的纯化
蛋白的纯化

第二部分:蛋白的纯化

如何区分蛋白表达在上清还是包涵体?

破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。

根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。

对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。

沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。

取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。

无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。

包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。

电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。

包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体;

建议:

还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

包涵体的纯化(一)

对于表达在包涵体内的蛋白,可以通过降低诱导温度(可以试试4度诱导过夜)和IPTG的量,降低蛋白的表达速度,从而减少包涵体形成的速度,增加正确折叠蛋白的量等来使目的蛋白不表达在包涵体内达到可溶性表达。但一般用pET28作为表达质粒且蛋白表达量较大时易形成包涵体。

包涵体:包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。

包涵体的组成与特性:

一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、外膜蛋白ompC、ompF 和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,难溶于水,只溶于变性剂如尿素、盐酸胍等。

包涵体的形成:

主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。

1、表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。

2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。

3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。

4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。因此有人采用共表达分子伴侣的方法以增加可溶蛋白的比例。

包涵体表达的有利因素:

1、可溶性蛋白在细胞内容易受到蛋白酶的攻击,包涵体表达可以避免蛋白酶对外源蛋白的降解。

2、降低了胞内外源蛋白的浓度,有利于表达量的提高。

3、包涵体中杂蛋白含量较低,且只需要简单的低速离心就可以与可溶性蛋白分离,有利于分离纯化。

4、对机械搅拌和超声破碎不敏感,易于破壁,并与细胞膜碎片分离。

菌体破碎一般采用:

a 超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂。此法的缺点是在处理过程会产生大量的热,应采取相应降温措施(超声时置于冰上),超声功率、超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮(5-10分钟)。

b反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

c化学处理法: 细菌细胞壁较厚,可采用溶菌酶处理.

必要时可将三种方法结合起来使用以使菌体充分破碎

在这我们以100 ml菌液为例:(此纯化方法可于室温中进行)

诱导表达

1 挑取含有重组质粒的菌落,接种于5 ml加有相应抗生素的LB培养基中,37℃振荡培养过夜。

2 以1%的接种量转接到100 ml加有相应抗生素的LB培养基中,37℃振荡培养至OD600=0.6-1.0,先取出300 μl诱导前的菌液,作为对照。再向锥形瓶中加入IPTG至终浓度为1mmol/L,37℃继续培养3-4 h。

3 取300μl经诱导后的菌液于EP管中,连同诱导前的菌液一起12,000 rpm离心1min后,将上清置于一个新的Eppendorf管中,细胞沉淀用等同于上清体积的ddH2O悬浮,分别制样。(以80μl样品为例,需加20μl 4×loading buffer,8μl 1M的DTT,52μl上清或沉淀悬浮液)

Ni2+亲和柱的制备

1 颠倒混匀固化的Ni2+树脂,取1ml装入层析柱。树脂自然沉降。

2 用3倍柱体积无菌水冲洗树脂。

3 用6倍柱体积1X Binding Buffer(包含6 M 尿素)洗柱,放置待用(4℃)。

包涵体纯化(参照Novagen的纯化protocol)

1 以10,000 × g 离心10 min收菌后去上清。重悬菌体于40 ml 1X Binding Buffer 。

2 超声破碎细胞至菌液应该变清亮。

3 以5,000 × g 离心15 min收集包涵体和细胞碎片。

4 去上清后重悬于20 ml 1X Binding Buffer。

5 超声破碎至悬液应该变清亮。

(在第五步之前可加溶菌酶处理或反复冻融几次以促使菌体破碎。)

6. 以5,000 × g 离心15 min后将沉淀重悬于5 ml 1X Binding Buffer(包含6 M 尿素)并加蛋白酶抑制剂PMSF至终浓度为1mmol/L 。

7 放置冰上1 h 以完全溶解蛋白后以16,000 × g离心30 min去除不溶物质。并将上清在用Ni2+亲和柱纯化之前用0.45-μm 的滤膜过滤。

纯化带组氨酸的重组蛋白

1 将过滤后的样品上柱,使流速降低以使样品与Ni2+树脂充分结合。

2 再用十倍体积的1X Binding Buffer(包含6 M 尿素)过柱。

3 用1X Wash Buffer(包含6 M 尿素)洗柱。至流过液A280<0.01且基本保持水平。(大约1~2h)

4 用1X Elute Buffer(包含6 M 尿素)结合的蛋白,并开始收集样品(1ml/管),直至A280又恢复至基准线。收集的蛋白SDS-PAGE检测蛋白纯度。

纯化蛋白的透析和冻干

1 透析袋预处理:用10mmol/L NaHCO3,1mmolEDTA煮沸透析袋30min;再用ddH2O煮

10min。

2 将蛋白溶液移入透析袋。

3 将其放入10倍体积以上的含3 M 尿素的去离子水中,用磁力搅拌器搅拌,于4℃透析。透析液中的尿素浓度以3 M—1.5 M—0.75M—0M 递减。

4 透析完成后将蛋白质溶液离心取上清,每500μl分到一个1.5mlEP管中,于真空冻干机(MAXI Dry Lyo)中冻干。冻干的蛋白溶于PBS,SDS-PAGE检测蛋白纯度和降解程度。

5 用完的透析袋用去离子水洗净并煮沸10min,于20%乙醇中保存。

Ni2+亲和柱的后处理和重生

1 纯化完毕后,Ni2+柱用去离子水过柱1~2h,再用20%乙醇过柱1~2h。

2 为保证亲和柱的活性,可进行再生

先用下列试剂依次冲洗层析柱:2倍体积的6mol/L盐酸胍,0.2mol/L乙酸;5倍体积水;2倍体积2%SDS;1倍体积25%、50%、75%乙醇;5倍体积乙醇;1倍体积75%、50%、25%乙醇;1倍体积水;5倍体积100mmol/L EDTA;1倍体积水。再用小于2倍体积的0.1mol/L NiSO4溶液再生,用水洗,最后用平衡缓冲液平衡。

8X Binding Buffer (8X = 4 M NaCl, 160 mM Tris-HCl, 40 mM imidazole, pH 7.9)

8X Wash Buffer (8X = 4 M NaCl, 160 mM imidazole, 160 mM Tris-HCl, pH 7.9)

4X Elute Buffer (4X = 4 M imidazole, 1 M NaCl, 80 mM Tris-HCl, pH 7.9)

加入尿素的溶液需现配现用。此外1X Wash Buffer中的咪唑浓度为20~60 mM,在实验中可依不同情况加以调节。

包涵体复性问题注意:

在有的复性过程中有蛋白沉淀析出,有建议表示:甘氨酸、缬氨酸、天冬氨酸、谷氨酸、精氨酸有助溶作用(透析液中加入了1%的甘氨酸和5%的甘油,有一定的助溶效果)。低分子化合物脲、盐酸胍、烷基脲、以及碳酸酰胺类等,在非变性浓度下是很有效的促进剂,都可阻止蛋白聚集;Tris对蛋白质复性有促进作用;EDTA可以防止蛋白降解对于包涵体复性,一般在尿素浓度4M左右时复性过程开始,到2M 左右时结束。此外复性过程蛋白浓度不宜过大,一般为0.1-0.2mg/m。

复性原则

1 低浓度(可稀释后再进行透析)

2 平缓梯度(尿素浓度和pH:最适pH值范围为8.0-9.0之间)

3 低温(温度适宜选择4℃)

包涵体纯化(二)

----(2010-7-31更新)

当蛋白大量表达在包涵体且不易用NI2+柱纯化下来的时候,可以用以下的方法进行包涵体的洗涤纯化。

诱导的大肠杆菌,5000g 离心5min,收集菌体;使用超声裂解法结合反复冻融法的方法进行细菌裂解。

超声裂解法

超声破碎缺点是发热,剪切力强烈。纯化活性蛋白的时候最好少用。

(1). 要设定好超声时间和间隙时间,一般每次超声时间不超过5秒,间隙时间最好大于超声时间,这些都有利于保护蛋白的活性。我的实验超声时间5秒、间隙时间10秒、工作次数60次(5min)。具体的超声条件,可以自行摸索!

(2) . 一般超声用的溶液为binding buffer 10mL/g菌体湿重,超声时的溶液最好放在玻璃烧杯中有利于散热!增大溶液体积,也有利于充分超声裂解。

菌液超声到液体发淡淡的白灰色即可。也可以用显微镜检测完整菌量,再决定是否再继续超声。

反复冻融法

1、将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

2、至少3次以上冻溶。

3、用液氮冻融三四次就可以了,细胞冻住后,取出放37度水浴,溶解后震荡,再冻

细菌裂解完后(最好细菌破碎比较彻底),5000g 离心15min使包涵体沉淀,去上清后进行洗涤,以除去包涵体沉淀中的杂质蛋白,洗涤时用搅拌器在4℃进行,洗涤buffer是以下三种:每步洗涤后5000g 离心15min沉淀包涵体。

Inc-A:10mL/L Triton-100;1mM EDTA;10g/L DOC; 50mM Tris-Cl pH 8.5;100mM NaCl Inc-B: 50mM Tris-Cl pH 8.5;100mM NaCl; 2MUrea; 5mM 巯基乙醇;1mM EDTA

Inc-C: 50mM Tris-Cl pH 8.5

其中A,C可多次洗涤,次数和时间影响不是很大(我一般2-3次共30min,但是B的洗涤时间一般可根据纯化效果决定,时间越长蛋白被尿素溶解,得到的蛋白量越少,但纯度有一定上升,个人一般洗涤1h)

最后得到的包涵体用6-8M尿素溶解后跑胶观察纯度。后可使用梯度透析将尿素去除(参考蛋白纯化POTOCOL),使用蔗糖或PEG透析浓缩(将蛋白样品装进合适的透析袋中,埋在蔗糖或者PEG中),也可以直接免疫兔子。

所有操作于4℃进行。并在每次离心后适量加入蛋白酶抑制剂。

蛋白质的纯化方法

蛋白质纯化的方法 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

AKTA蛋白纯化系统操作

AKTA蛋白纯化系统操作 AKTA蛋白纯化系统是当前蛋白纯化工作经常用到的一组设备,自动化程度很高。AKTA系统依据不同的配置,可以分为AKTA EXPLORER、AKTA PILOT、AKTA PURIFIER等多种型号的设备。以下以AKTA EXPLORER为例简单介绍AKTA蛋白纯化系统的一般操作。 1、认识AKTA。 AKTA explorer 是为方法开拓及研究应用而设计的全自动液相色谱系统。该色谱系统的分离装置有三个主要组件,在底部平台的左侧整齐堆起(Fig 1)。它们是: FIG 1、AKTA EXPLORER主机 ? Pump-900 为双通道高效梯度泵系列。在AKTAexplorer 100,流速范围0.01-100 ml/min,压力高达10 Mpa(泵名为P-901)。在AKTA explore10,流速范围0.001-10 ml/min,压力高达25 Mpa(泵名为P-903)。 ? Monitor UV-900,同时监控190-700 nm 范围内高达3 个波长的多波长紫外-可见(UV-Vis)监测器。(针对部分AKTA PURIFIER机型,尚有UPC-900监测器可供选择,光源为汞灯光源,一次可以监控一个波长,安装滤光片后,可以在选择的波长范围内进行切换。)? Monitor pH/C-900,在线电导和pH 监测的组合监测器。 Fig 2、AKTA EXPLORER硬件模式图

AKTA EXPLORER系统的主要组成部件可以用模式图表示(Fig 2)。组成部件,如混合器、柱及不同的阀安装在右边部分。打开装阀的门可全部看到。柱被挂在装阀的门的外侧。 分离装置由UNICORN 软件控制。软件安装于一独立的电脑主机之中,在电脑与色谱系统之间的通信由数据采集装置CU950进行控制。 2、一般操作 2.1 开机 按位于底部平台前左侧的ON/OFF 按钮,打开色谱系统,然后打开电脑电源。待仪器自检完毕(CU950上面的3个指示灯完全点亮并不闪烁)。双击桌面上UNICORN图标,进入操作界面。UNICORN的操作界面分为四个窗口(Fig 3) Fig 3、Unicorn的操作界面 2.2准备工作溶液和样品 所有的工作溶液和样品必须经过0.45μm的滤膜过滤,样品也可高速离心后取上清备用。当缓冲液中含有有机溶剂(如乙腈、甲醇),需在使用前用低频超声脱气10min。 2.3清洗及管道准备 首先将A泵的进液管道(A1)放入缓冲液或平衡液中,将B泵的进液管道(B1)放入高盐溶液中,在system control窗口点击工具栏内的manual,选择pump→pump wash explorer,选中A1,B1管道为ON,execute。泵清洗将自动结束。(Fig 4) Fig 4、AKTA Explorer的泵清洗操作 2.4安装层析柱

GE NOVAGEN 镍柱纯化系统流程

蛋白纯化系统操作流程 一、蛋白的诱导:蛋白原核表达 1、取菌种接种于含Amp LB固体培养基中(分区划线),37℃培养过夜; 2、挑取单克隆接种于5ml含Amp LB液体培养基中,37℃振摇过夜; 3、从过夜培养物中取2ml接种于100ml Amp LB液体培养基中,振摇2h(留样1ml); 4、加入一定终浓度IPTG,37℃诱导表达4h(留样1ml),离心,弃上清收集细菌。 存入4℃。 二、蛋白表达状态分析(可溶性or包涵体表达) 取少量(1ml)诱导菌体沉淀,加入不含变性剂(如盐酸胍,尿素等)PBS(150μl),超声裂解。分离上清和沉淀,分别SDS-PAGE电泳。 三、蛋白的纯化 纯化前准备 1.推荐在中性至弱碱性条件下(pH 7-8)结合重组蛋白。磷酸盐buffer是常用的缓冲液, Tric-Cl在一般情况下可用,但要注意它会降低结合强度。 2.避免在buffer中包含EDTA或柠檬酸盐等螯合剂 3.若重组蛋白以包涵体形式表达,在所有的buffer中添加6 M 盐酸胍或8 M 尿素 注: 1.包含尿素的样品可直接进行SDS-PAGE分析,若样品中包含盐酸胍,在SDS-PAGE前则 需先用含有尿素的buffer进行透析 2.除利用咪唑洗脱蛋白,其它方法,如低pH 值法等可被应用,详见说明书 Bingding buffer 中咪唑的浓度 在洗涤时所用的Bingding buffer 中咪唑浓度越大,重组蛋白纯度越高。但过高的咪唑浓度将导致蛋白的洗脱。合适的咪唑浓度需要优化。 Buffer 的准备

所用的水及化学物质须是高纯度的。Buffer 在使用前需经0.45 μm滤膜过滤 所用高纯度的咪唑需在280nm 处无吸光度或吸光度极低 推荐buffer Bingding buffer:20 mM 磷酸盐 0.5 M NaCl 20- 40 mM 咪唑pH 7.4 (咪唑浓度是蛋白依赖的,可变!)Elution buffer :20 mM 磷酸盐 0.5 M NaCl 500 mM 咪唑pH 7.4 (咪唑浓度是蛋白依赖的,可变!) 样品准备 样品需被充分溶解。过柱前经0.45 μm滤膜过滤。样品以pH 7.4 binding buffer 溶解。勿用强酸强碱调节pH 值,否则将可能导致沉淀。 重力纯化法Ni-NTA Column 准备 1. 温和地颠倒瓶中的Ni-NTA Agarose 数次。 2. 吸取2ml的树脂加入15ml离心管中,使树脂在重力(5–10 minutes)或低速离心(5 minute at 500 × g),轻柔的吸出上清。 3. 加入5ml的无菌蒸馏水,温和的颠倒柱子3min,离心5 minute at 500 × g,轻柔的吸出上清。 4. 用bingding buffer 重复第3步。 5. 在Ni 柱中加入等体积的bingding buffer,制成50%的slurry 样品与Ni 柱结合 1.每1ml 50%的slurry中加入4ml 的样品。1ml 50%的slurry 可结合20mg His-蛋白 2.将混合物室温,低速振荡孵育1h Buffer 洗涤及洗脱 1.离心5 minute at 500 × g,轻柔的吸出上清。上清保存放在4℃for SDS-PAGE

His-Tag蛋白纯化步骤

变性条件下从大肠杆菌中纯化多聚组氨酸标签蛋白(主要以包涵体的形式表达)的样品制备 1、用1× PBS重悬细胞沉淀(约每毫升沉淀加5ml 1× PBS),并按上述方法进行超声破菌。 2、12000 rpm离心10 min收集包涵体。若有必要,用1 × PBS洗包涵体几次。 3、用Binding/Wash Buffer(约每毫升沉淀加5ml 1× PBS)溶解包涵体,并在室温下孵育30~60分钟。若使沉淀充分溶解,有必要进行机械或超声均质。 4、12000rpm离心30min,取上清至一干净管中。 His标签蛋白的重力纯化流程 1ml柱子的总体积为10ml,只需加入介质。如果样品体积大于柱子体积,可重复利用,注意不要超过树脂的结合能力。 1、平衡柱子的工作温度。应在室温或4℃下进行纯化。 2、取出底帽,倒出多余的液体,直立固定好柱子,让柱子顶部朝上。 3、用2倍树脂体积的Binding/Wash Buffer平衡柱子,以0.5~1 ml/min的流速过柱。 4、从柱子上部加入经Binding/Wash Buffer处理的大肠杆菌裂解物或蛋白提取物,收集流出液。若需要,让流出液重新过柱一次,以最大限度地提高结合力。 5、用两倍树脂体积的Binding/Wash Buffer洗涤树脂并收集流出液。重复该步骤,用一新的收集管收集流出液。直到流出液的吸光度在280 nm基线处。 6、用两倍树脂体积的Elution Buffer将His标签蛋白从树脂上洗脱下来。重复此步骤两次,并单独收集每次洗脱出来的液体。 7、用Modified Coomassie Bradford Assay Kit(No SK3041)。洗脱的蛋白可直接进行SDS-PAGE分析。 注意:洗脱获得的蛋白可用凝胶过滤(如No BSP090 gravity Desalting Column)或透析去除咪唑以便后续应用。SDS-PAGE分析前,含6M盐酸胍的样品必须用含8 M尿素的缓冲液透析。 就地清洗方案 如果背压增加或观察到树脂明显污染,通常进行完全性能恢复流程。由于所有的NI-IDA树脂的高螯合强度和低金属浸出率,就地清洗前不需要进行stripping。我们建议使用下面的方法,以清除污染物,如沉淀的蛋白、疏水结合蛋白和脂蛋白。 程序 1、用15倍树脂体积的0.5 M NaOH清洗柱子。考虑到需要30min的接触时间,因此需相应地调整流量(如用0.5 M NaOH溶液以0.5ml/min的流速洗1ml的NI-IDA柱,需要相当于15ml总体积的量)。 2、用10倍树脂体积的1 × PBS重新平衡后,树脂可马上使用。若要保存柱子,可加入20~30%乙醇或10~100mM氢氧化钠进行4℃保存。 通过洗脱(stripping)和离子重填装进行再生

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白纯化的基本思路

蛋白质的提取和纯化-- 选择分离材料及预处理蛋白质的提取和纯化-- 选择分离材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。 蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。 蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:( 1 )得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体 含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 细胞的破碎 1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3 体积,盖紧筒盖,将调速器先拨至最慢处, 开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。 2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。 3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料, 用大肠杆菌制备各种酶,常选用50-100 毫克菌体/毫升浓度,在1KG 至10KG 频率下处理10-15 分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。 4、反复冻融法:将细胞在-20 度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破 坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。 无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物 降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以

蛋白纯化系统Biologic-LP使用说明

蛋白纯化系统Biologic-LP使用说明 Biologic-LP是蛋白质层析纯化系统, 其原理是利用不同蛋白分子所具有的特性(如等电点、分子量及亲水或疏水性)与层析柱中的介质产生的吸附作用后,再用相应的洗脱液来对吸附在层析柱上的蛋白进行洗脱。根据目标蛋白及不同层析柱介质的特性,设计相应的洗脱程序可以使目标蛋白与其他杂蛋白先后从层析柱上洗脱下来。通过观察紫外光的吸收峰,可分别收集不同时段洗脱下来的蛋白液。蛋白混合物通过这样的程序可被分离至单个蛋白。通常分布在混合物中的目标蛋白需要通过组合而不是单一的层析路线来进行分离操作。常规的分离路线如通过疏水层析—离子交换—疏水层析的技术路线来有效分离目标蛋白。 本层析系统使用主要分为三个部分。首先在使用前确认分离的技术路线和使用的层析柱。其次根据层析柱使用的要求配制相关试剂和确定层析过程的参数。最后通过层析操作分离纯化目标蛋白,并清洗层析柱和管道以确保仪器能长期有效使用。 一设计蛋白的纯化路线及选择不同的层析柱及层析方法根据目标蛋白的特性及来源,设计纯化的路线并确定每一步操作所需要的层析柱及层析方法。根据不同层析方法的要求,准备蛋白样品及洗脱液及洗脱方式(如线形洗脱或梯度洗脱)。而后确认层析操作中的主要参数。

二层析系统的操作 以下是对所有层析操作中共同的步骤进行的描述。特别注意的是不同的分离方式如离子交换和疏水层析它们的原理和参数设置完全不同。这里仅就相同的操作进行描述,具体的参数设置见使用说明书并咨询负责本仪器的老师,切不可擅自操作,以免破坏仪器。 1、确定目标蛋白层析柱的选择,不同的分离方式选择不同的层析柱。 2、样品制备。根据层析柱介质对蛋白样品的要求,制备样品和洗脱 液。所有用于层析的溶液及样品均要通过0.45μm膜过滤,以免堵塞层析柱。 3、打开层析仪电源,按照显示屏的提示,分别设置好A液、B液、 流速、时间等相关参数,并将接样管插入接样仪。 4、打开电脑及Biologic-LP Data View软件,观察层析过程是否正常 或是否需要调整,做好接样前的准备。 三、层析系统的维护 操作结束后,按仪器使用说明,清洗层析柱及管道,将层析柱保存好,备用。特别注意不同的层析柱要求的清洗方式不同,对管道的清洗也不同,层析柱的保存方式也不同。清洗和保存时一定要按照使用说明书的要求进行操作,不能出现错误以免对层析系统造成破坏。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白纯化系统技术指标

技术标部分 仪器名称:蛋白纯化系统 数量:1套原装进口设备 用途:适用于实验室从分析、小规模制备,到中试规模的工艺摸索和制备,可通过凝胶过滤、离子交换、亲和层析、羟基磷灰石、疏水层析等层析谱技术,进行蛋白质、肽类、多糖、核酸等生物大分子和中草药与天然产物活性成分的分离、纯化和制备。 技术指标: 1.原装进口产品 2. 系统泵 *全自动柱塞泵,双泵四泵头,每个泵头都有独立除气阀 *单泵流速:0.001-10 ml/min 最大流速:20 ml/min 流速准确度:±2%,流速精度:RSD<0.5% 梯度精度: ±<0.8%,流速范围:0. 25-10 ml/min 具备恒压调速功能 3. 紫外检测器 *检测范围:0 - 3AU *线性:±2% 光源和流动池分开设计,避免光源过热对样品的影响 4. 电导检测 *检测范围:0.01 mS/cm-999 mS/cm 电导精确度:±0.01 mS/cm,实时自动检测 5. 温度检测 *温度范围:0 - 99 C 温度准确度:±1.5°C 6. 阀门 自动进样阀:1个,自动切换上样、进样和冲洗三个状态 出口阀组件:1个 自动柱位选择阀:1个,无需改变管路连接即可实现旁路及正反向洗脱功能 7. 组分收集器 收集方式:可根据体积、峰或时间自动收集 收集数目:≥100个 收集范围:0.1ml-50ml 具有滴感应器,防滴漏功能

流路:PEEK惰性材料(以保持蛋白活性)耐受有机溶剂 8. 软件 流路实时在现,实时监控和控制 内置层析柱和凝胶信息 具有自动积分、一键积分功能,操作简单,可打印结果报告 9. 配件 上样环:500um,1ml,5ml各一个 预装柱,包含His标签亲和介质等 PH计 10. 配套电脑参数 4核处理器、内存8 GB,独立显卡4G显存、硬盘1 TB,可刻录光驱,24寸的高清显示器 11. 技术支持 技术人员和甲方人员一起设计教学实验,并定期参与相关实验课程

蛋白质纯化方法

含组氨酸标签的蛋白的诱导表达及纯化 一.用IPTG诱导启动子在大肠杆菌中表达克隆化基因 所需特殊试剂:1M IPTG 1.将目的基因与IPTG诱导表达载体连接,构成重组质粒并转化相应的 表达用的大肠杆菌。将转化体铺于含相应抗生素的LB平板,37℃培养 过夜。通过酶切序列分析等筛选带有插入片段的转化体。 2.分别挑取对照菌和重组菌1个菌落,接种于1ml含有相应抗生素的LB 培养液中,37℃通气培养过夜。 3.取100微升过夜培养物接种于5ml含有相应抗生素的LB培养液中(各 10份),适当的温度(20-37℃)震荡培养4小时,至对数中期(A550 =0.1-1.0)。 4.对照菌和重组菌各取1ml未经诱导的培养物于离心管中,剩余培养物 中加入IPTG至终浓度分别为0.5,1.0,1.5,2.5,3.0,3.5,4.0,4.5, 5.0mM相同的温度继续通气培养。 5.在诱导的1,2,3,4,5个小时取1ml样品于Ep管中。 细菌的生长速率严重影响外源蛋白的表达,因此必须对接种菌量,诱 导前细菌生长时间和诱导后细菌密度进行控制。生长过度或过速会加 重细菌合成系统的负担,导致包涵体的形成。生长温度可能是影响大 肠杆菌高度表达目的蛋白的最重要因素。低温培养能在一定程度上抑 制包涵体的形成。IPTG的浓度对表达水平的影响也非常大。所以通过 试验确定最佳的培养条件是很必要的。 6.将所有样本室温最高速度离心1分钟,弃上清,沉淀重悬于100微升 1×SDS蛋白上样缓冲液中,100℃加热5分钟,室温最高速度离心1 分钟,取15微升样品上样于SDS聚丙烯酰胺凝胶,用SDS-PAGE 观察表达产物条带,从而确定优化的培养条件。 二.大量表达靶蛋白 1.取保存的重组大肠杆菌菌液150微升接种于30毫升含相应抗生素的 LB培养液中,在100毫升锥形瓶中,300rpm,37℃通气过夜培养。

蛋白纯化AKTA操作说明#(优选.)

AKTA pure操作说明 分子筛层析操作步骤: 1. 开机: 打开AKTA pure开关,看指示灯,泵同步(泵内有注入液体的声音)。 2. 打开系统: 打开电脑:双击Unicorn 7.0打开系统,进入log on 界面,用户名默认为Default,输入密码:default,点ok键,出现提示对话框,继续点确定,进入系统。 注意:进入系统时会弹出三个界面:System Control界面,Evaluation界面和Administration界面。其中system Control界面为主操作窗口,所有的设置选项都是在该界面下完成:Manual---Execute Manual instructions---......;Evaluation界面为结果数据查看及处理窗口;Administration界面为Unicorn 7.0系统设置界面。 3. 洗泵: 把A1泵头从20%乙醇中取出,用去离子水冲洗,放入分子筛缓冲液中,在System Control界面下,点击manual---Execute Manual instructions---Pumps---Pump A wash---点开inlet,选择A1---Excuse。 4. 设置系统参数: 设柱压:Alams---alam systerm pressure---high alam---设置柱压---Execute; 设流速:Pumps---System flow ---设置system flow(1mL/min)---Execute。 注意:流速和柱压设置参照“GE蛋白纯化柱表”,不要超出最高限制。 5. 装柱子(先上后下): 接柱子的上面:拧下连接进样阀和检测器之间的线,等进样阀出口有液体流出时,拧开柱上面线头的螺帽,将它连到进样阀出口; 接柱子的下面:去掉柱下端连接的注射器,连上接头,连上一段线,待液体滴出滴出液体滴到检测器上的连接口的洞里,滴满,将接头连到检测器的连接口里。 6.平衡柱子: 分子筛buffer平衡柱子,一般要两个小时左右,盐离子浓度达到5.5%左右。 7.设置系统及收集参数: 命名:先end---Manual instructions,点击browse,弹出select result name&location 界面,点开文件夹“defaultHome”,找到文件夹“labdata”,点开,选择自己名字 首字母缩写文件夹(已创建),在界面下方“name”指令框进行命名。 注意:命名时要标明日期,柱子型号,样品名称。 设流速:Pumps---System flow---设流速(1 mL/min)---Execute; 设柱压:Alams--- alam systerm pressure---high alam---设置柱压---点击Execute; 洗A泵:Pumps---Pump A wash---点开inlet,选择A1---Excuse; 紫外调零:Monitors---Auto zero UV---Execute;

相关文档
最新文档