简述以样本均值估计总体均值的理由

简述以样本均值估计总体均值的理由
简述以样本均值估计总体均值的理由

简述以样本均值估计总体均值的理由

概率论与数理统计中样本均值为什么是总体均值最好的估计量

哈佛孙一峰

哈佛孙一峰

首先什么是最优估计量,以下是定义:

An estimator W of a parameter, say τ(θ), is called the best unbiased estimator, or uniform minimum variance unbiased estimator

换成中文来说就是一个估计量如果它无偏并且方差最小那么他就是最优的。样本均值是总体均值的无偏估计用大数定理就自然而然知道了(当然这里就要假设期望有界了)。那怎么知道他是方差最小的呢?我们需要用到Cramer-Rao Inequality.

简而言之就是任何一个估计量的方差是有下界的。这个部分的证明并不复杂。用Cauchy-Schwarz Inequality可以很轻松的证明出来。

因为要涉及的概念实在太多了,所以略过很多复杂的证明,最后直接跳到结论就是在指数分布族里,样本均值是分布均值的无偏估计且方差就是估计量方差下界。

更具体的可以搜索Lehmann Scheffe theorem。虽然这部分我觉得本科生的概率论并不会接触到。

(sample),是指从总体中抽出的一部分个体。样本中所包含个体数目称样本容量或含量,用符号N或n表示。

总体(population)是指客观存在的,并在同一性质的基础上结合起来的许多个别单位的整体,即具有某一特性的一类事物的全体,又叫母体或全域。简单地说,总体也就是我们所研究的性质相同个体的总和。

样本是受审查客体的反映形象或其自身的一部分。按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。又称子样。例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。从总体中抽取样本的过程叫抽样。最常用的抽样方式是简单随机抽样,按这种方式抽

样,总体中每个个体都有同等的机会被抽入样本,这样得到的样本称简单随机样本。样本的平均值称样本均值,样本偏离样本均值的平方的平均值称为样本方差,在数理统计中,常常用样本均值来估计总体均值,用样本方差来估计总体方差。

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

1在两样本均数比较的t检验中

一、选择题 1.在两样本均数比较的t 检验中,无效假设是( )。 A.两样本均数不等 B.两样本均数相等 C.两总体均数不等 D.两总体均数相等 E.样本均数等于总体均数 2.两样本均数比较的t 检验,差别有统计意义时,P 越小,说明( )。 A.两样本均数差别越大 B.两总体均数差别越大 C.越有理由认为两总体均数不同 D.越有理由认为两样本均数不同 E.越有理由认为两总体均数相同 3.正态性检验,按α=0.10水准,认为总体服从正态分布,此时若推断有错,其错误的概率( )。 A.大于0.10 B.小于0.10 C.等于0.10 D.等于β,而β未知 E.等于1–β,而β未知 4.以下检验方法除 外,其余均属非参数方法。 A. t 检验 B. H 检验 C. M 检验 D. 2χ检验 E. 符号秩和检验 5.两小样本定量资料比较的假设检验,首先应考虑 。 A. 用t 检验 B. 用秩和检验 C. t 检验与秩和检验均可 D. 资料符合t 检验还是秩和检验的条件 E. 2χ检验 6.在作两样本均数比较时,已知1n 、2n 均小于30,总体方差不齐且呈极度偏峰的资料宜用 。 A. 't 检验 B. t 检验 C. u 检验 D. 秩和检验 E. 't 检验与秩和检验均可 7.三组比较的秩和检验,样本例数均为5,确定P 值应查 。 A. 2χ界值表 B. H 界值表 C. T 界值表 D. M 界值表 E. 以上均不可 二、简答题 1.成组t 检验的应用条件是什么?如何判断? 2.成组t 检验的应用条件不满足时,如何比较两样本? 3. 秩和检验有哪些优缺点? 4.两组或多组有序分类资料的比较,为什么宜用秩和检验而不用2χ检验?

用样本估计总体教案

2.2.1用样本的频率分布估计总体分布 一、教学目标分析 1.知识与技能目标 (1)通过实例体会分布的意义和作用。 (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。 (3)通过实例体会频率分布直方图的特征,能准确地做出总体估计。 2、过程与方法目标: 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。 3、情感态度与价值观目标: 通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。 二、教学的重点和难点 重点:会列频率分布表,画频率分布直方图。 难点:能通过样本的频率分布估计总体的分布。 三、教法与学法分析 1、教法:遵循观察、探究、发现、总结式的教学模式。重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。由于内容较繁琐,所以要借助多媒体辅助教学。 2、学法:根据本节知识的特点,由于学生已具备一定的基础知识,可采取研究性学习的学习方法。 四、教学过程 (一)情境引入 1.随机抽样有哪几种基本的抽样方法? 简单随机抽样、系统抽样、分层抽样. 2.随机抽样是收集数据的方法,如何通过样本数据所包含的信息,估计总体的基本特征,即 用样本估计总体,是我们需要进一步学习的内容. 3.高二某班有50名学生,在数学必修②结业考试后随机抽取10名,其考试成绩如下: 82,75,61,93,62,55,70,68,85,78. 如果要求我们根据上述抽样数据,估计该班对数学模块②的总体学习水平,就需要有相应的数学方法作为理论指导,本节课我们将学习用样本的频率分布估计总体分布. (二)新课讲解 知识探究(一):频率分布表 【问题】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t): 3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2

用样本的频率分布估计总体分布(一)(解析版)

用样本的频率分布估计总体分布(一) 班级:____________ 姓名:__________________ 一、选择题 1.下列说法中错误的是() ①用样本的频率分布估计总体频率分布的过程中,样本容量越大,估计越精确; ②一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n的值为240; ③频率分布直方图中,小长方形的高等于该小组的频率; ④将频率分布直方图中各小长方形上端的一个端点顺次连接起来,就可以得到频率分布折线图; ⑤每一个总体都有一条总体密度曲线,它反映了总体在各个范围内取值的百分比. A.①③B.②③④ C.②③④⑤D.①②③④⑤ 解析:选C.样本越多往往越接近于总体,所以①正确;②中n=40÷0.125=320;③中频率分布直方图中,小长方形的高等于该小组的频率÷组距;④中应将频率分布直方图中各小长方形上端的中点顺次连接 起来得到频率分布折线图;⑤中有一些总体不存在总体密度曲线,如“掷硬币”这样的离散型总体(结果是固定的,只有正面和反面两种可能,且可能性相等),故②③④⑤错误. 2.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)g的频率为() A.0.1 B.0.2 C.0.3 D.0.4 解析:选C.由题图可得,新生儿体重在[2 700,3 000)g的频率为0.001×300=0.3,故选C. 3.在样本的频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的1 4,已知样本容量 是80,则该组的频数为() A.20 B.16 C.30 D.35 解析:选B.设该组的频数为x,则其他组的频数之和为4x,由样本容量是80,得x+4x=80,解得x =16,即该组的频数为16,故选B. 4.某厂对一批产品进行抽样检测,如图是抽检产品净重(单位: 克)的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84, 86].若这批产品有120个,估计其中净重大于或等于78克且小于84 克的产品的个数是() A.12 B.18 C.25 D.90 解析:选D.净重大于或等于78克且小于84克的频率为(0.100+0.150+0.125)×2=0.75,所以在该范围内的产品个数为120×0.75=90. 5.对于向量a,b,c和实数 ,下列命题中正确的是()

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

用样本估计总体分布

用样本的频率分布估计总体分布(第1课时) 教学目标: 1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法. 2.通过表示样本数据的过程,学会列频率分布表,画频率分布直方图,理解数形结合的数学思想. 3.通过对样本分析和总体估计的过程,感受数学在实际生活中的作用,认识数学知识源于生活并指导生活的事实. 教学重点: 会列频率分布表,画频率分布直方图,了解样本频率分布与总体分布之间的关系 教学难点: 掌握频率分布直方图的正确画法,体会分布的意义与作用 教学方法:引导——探究教学法 教学过程: 一、创设情境,呈现问题 问题情境:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,武汉市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢? 二、操作讨论,构建新知 <知识探究1 改良频数分布表→频率分布表> 问题1:如果标准太低,会影响居民的日常生活;如果标准太高,则不利于节水.那么你认为,为了较合理地确定出这个标准,需要了解哪些相关信息,做哪些工作? 【学生活动1】探究讨论,得到结论: ①为了制定一个较为合理的标准a,需要知道每个家庭的用水量 ②如何获得家庭用水量的有关信息?对家庭进行调查,采用抽样调查的方式 ③抽样时,样本容量定为多少比较合适?武汉市1000万人口,抽样10000比较合适 课堂上为了处理数据的方便,我们理想化地抽取100个数据的样本,比如: 通过抽样调查,获得100户居民的月均用水量如下表(单位:t) 3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2 问题2:从表中随意记录下的数据中很难直接看出规律,因此需要对统计数据进行整理分析. 回顾你看到全班的期末考试成绩单后是怎样分析的?

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

用样本的频率分布估计总体分布2课时

2.2.1用样本的频率分布估计总体分布(2课时) 一、学习目标: 1.知识与技能 (1)通过实例体会分布的意义和作用. (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图. (3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计. 2.过程与方法 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法. 3.情感态度与价值观 通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系. 二、学习重点与难点 重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图. 难点:能通过样本的频率分布估计总体的分布. 三、课堂过程 【创设情境】 在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕ 甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50 乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33 请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定? 如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板出课题). 【探究新知】 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论) 为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况. 分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式. 下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况. 〈一〉频率分布的概念: 频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为: (1)计算一组数据中最大值与最小值的差,即求极差 (2)决定组距与组数 (3)将数据分组

均值不等式高考题

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(2 3+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)22 213x x y + = (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4x <,求函数14245y x x =-+-的最大值. 练习2.函数1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.3932 B. 39423952392

统计-完全随机设计资料的方差分析(多个样本均数间的两两比较)

单因素多个均数比较的方差分析(完全随机设计资料的方差分析) 方差分析的基本思想是: 将全部观察值的总变异按影响实验结果的诸因素分解为若干部分变异,构造出反映各部分变异作用的统计量,之后构造假设检验统计量F,实现对总体均数的判断。 方差分析的应用条件:各样本相互独立,且均来自总体方差具有齐性的正态分布。 完全随机设计是一种将研究对象随机地分配到处理因素各水平组的单因素设计方法。其研究目的是推断处理因素不同水平下的试验结果的差异有否统计学意义,即该处理因素是否对试验结果有本质影响。 下面以一个实例来说明完全随机设计方差分析的基本思想和假设检验步骤。 例: 为研究烫伤后不同时期切痂对肝脏ATP(u/L)含量的影响,将30只大鼠随机分3组,每组10只,分别接受不同的处理,试根据下表资料说明大鼠烫伤后不同时期切痂对其肝脏的ATP(u/L)含量是否有影响? 大鼠烫伤后不同时期切痂肝脏ATP含量(u/L) 烫伤对照组24h切痂组96h切痂组合计 7.76 11.14 10.85

7.71 11.60 8.58 8.43 11.42 7.19 8.47 13.85 9.36 10.30 13.53 9.59 6.67 14.16 8.81 11.73 6.94 8.22 5.78 13.01 9.95 6.61 14.18 11.26 6.97 1 7.72 8.68 合计(∑X)80.43 127.55 92.49 300.47(∑∑X ij) 例数(n)10 10 10 30(N) 均数(X)8.04 12.76 9.25 10.02 平方和(∑X2)676.32 1696.96 868.93 3242.21(∑∑X ij2) 1.建立检验假设,确定检验水准: H0:u1=u2=u3,3个总体均数全相等,即3组大鼠肝脏的ATP含量值无差别;H1:u1,u2,u3,3个总体均数不相等.即3组大鼠肝脏的ATP含量值有差别; a=0.05 2.计算检验统计量并列出方差分析表: ①.计算离均数差平方和SS:首先计算每一组的合计、均数、平方和,再计算综合计数(∑X ij2),由表得: ∑∑X ij=300.47 ∑X ij2=3242.21 N=30 总的离均数差平方和SS总=∑X ij2 - (∑X ij)2 n = 3242.21- 300.472 30 = 232.8026

均值不等式方法及例题

均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。下面是一些常用的变形方法。 一、配凑1. 凑系数 例1. 当时,求的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。 当且仅当,即x=2时取等号。所以当x=2时,的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 2. 凑项例2. 已知,求函数的最大值。 解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。 ∵∴ 当且仅当,即时等号成立。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 3. 分离例3. 求的值域。 解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。 当,即时(当且仅当x=1时取“=”号)。 当,即时(当且仅当x=-3时取“=”号)。 ∴的值域为。 评注:分式函数求最值,通常化成g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 二、整体代换例4. 已知,求的最小值。

解法1:不妨将乘以1,而1用a+2b代换。 当且仅当时取等号,由即时,的最小值为。解法2:将分子中的1用代换。 评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。三、换元例5. 求函数的最大值。解析:变量代换,令,则 当t=0时,y=0当时,当且仅当,即时取等号故。评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。 四、取平方例6. 求函数的最大值。 解析:注意到的和为定值。 又,所以当且仅当,即时取等号。故。 评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。 总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。 1. 若,求的最大值。 2. 求函数的最小值。 3. 求函数的最小值。 4. 已知,且,求的最小值。 参考答案:1. 2. 5 3. 8 4.

《用样本的频率分布估计总体分布》教学设计高品质版

《用样本的频率分布估计总体分布》教学设计 一、设计思路 本课设计是根据高中数学课程标准的要求来制定的,学习本节课的主要内容是学习画样本的频率分布直方图和用样本的频率分布直方图估计总体分布这一统计思想方法,通过本节的学习,应使学生感受分布的意义与作用,初步体会统计知识在解决实际问题中的作用,初步感受统计思维的特点 二、教材分析与学情分析 1、教材分析 本小节是高中数学人教A版的必修三第二章的内容,其主要介绍表示样本分布的方法,包括频率分布表、频率分布直方图、频率分布折线图和茎叶图,并介绍了频率折线图与总体密度之间的关系。由于作统计图、表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生自己动手作图。同时让学生理解:对于一个总体的分布,我们往往从总体抽取一个样本,用样本的频率分布估计总体分布。学生在初中已经学过把样本数据表示成频数分布表和频数分布图的形式,能从图表上直观的看出数据的分布情况,为学习本节内容在基础知识上有了铺垫。 2、学情分析 这节内容要求高一年级的学生掌握,而学生已有一定的统计学基础知识及分析问题和解决问题的能力,对常见的数学思想已有初步的认识和应用。通过对样本分析和总体估计的过程,使学生感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。当然在教学中也要考虑到个别学生由于基础差在学习上可能比较吃力,所以讲新课前可以让学生到现实生活中对某些生活现象进行数据统计分析,让学生对统计学产生一定的兴趣,并且体会统计学在实际生活中的作用及基本操作。在教学中,应该让学生利用上一节对特定实际问题所收集的样本,模仿居民生活用水定额管理问题的解决思路,给出相应实际问题的解答。通过此过程初步培养学生运用统计思想表述,思考和解决现实世界中的问题的能力。 三、教学方法和手段: 1、引导启发式:数学学科源于实际用于实际,而统计学的基础知识初中已讲过,且统计学是用来解决实际问题,所以本堂课教学主要还是着重于设计问题引导启发学生。 2、讨论探究式:新课标改革的目的之一在于变学生机械接受灌输的学习状态为主动探究式学习。我打算以学习任务驱动,以问题探究与动手操作为方式,以问题解决为主线,通过各种展示方式创设情景,让学生分小组讨论且引导学生通过对问题的交流讨论和实验探究,学会画图和表并理解分布的作用和意义,了解学习统计知识的基本研究方法。同时小组之间的共同探讨可以激发学生的学习兴趣,活跃课堂气氛,拓展学生的思维广度和深度。 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。 四、教学流程 1、课前准备:复习初中讲过的统计相关内容,预习高中课本65页至70页内容并完成学案基 本内容。 2、导入新课:老师提出问题:“我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?”(让学生展开讨论)

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1125()()4a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ++ 3. 设,,(0,),a b c ∈+∞求证:222b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:2221x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥

7. (2010辽宁)已知,,a b c 均为正实数,证明: 2222111()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。 变式:求函数291(0)122y x x x = +<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若2241x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R+,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R,那么a 2+b 2 ≥ (当且仅当a=b时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则 可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。 二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y

高中数学-用样本的频率分布估计总体分布(2课时)教案

2.2.1用样本的频率分布估计总体分布(2课时)教案 一、学习目标: 1.知识与技能 (1)通过实例体会分布的意义和作用. (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图. (3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计. 2.过程与方法 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法. 3.情感态度与价值观 通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系. 二、学习重点与难点 重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图. 难点:能通过样本的频率分布估计总体的分布. 三、课堂过程 【创设情境】 在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕ 甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50 乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33 请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定? 如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板出课题). 【探究新知】 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论) 为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况. 分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式. 下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况. 〈一〉频率分布的概念: 频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为: (1)计算一组数据中最大值与最小值的差,即求极差 (2)决定组距与组数 (3)将数据分组 (4)列频率分布表

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R ,那么a 2+b 2≥ (当且仅当a=b 时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。

二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y 1212211 )1(=-+≥-+++ +=a a a x a x a 当1 )1(+= +x a x a 即x=0时等号成立,1min =∴y 2、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用已知条件进行代换,变形之后再利用均值不等式进行求最值。 例:已知19 1,0,0=+>>b a b a 且 ,求b a +的最小值。 解法一:169210991=+≥+++=+b a a b b a 思路二:由19 1=+b a 变形可得,9,1,9)9)(1(>>∴=-- b a b a 然后将b a +变形。 解法二:16109210)9)(1(210)9()1(=+=+--≥+-+-=+b a b a b a 可以验证:两种解法的等号成立的条件均为12,4==b a 。 此类题型可扩展为: 设321a a a 、、均为正数,且m a a a =++321,求3 21111a a a S ++= 的最小值。 )111)((13 21321a a a a a a m S ++++= )]()()(3[1 3 22331132112a a a a a a a a a a a a m ++++++= m m 9 )2223(1=+++≥ ,等号成立的条件是321a a a ==。

相关文档
最新文档