匀强电场中的力学问题

匀强电场中的力学问题
匀强电场中的力学问题

匀强电场中的力学问题,是常见的力电综合问题,也是高考命题的热点,这类问题有以下几种类型。

一、静止问题

处在匀强电场中的速度为零的带电物体所受的外力的合力为零时,带电物体处于静止状态。求解这类问题的基本方法是力的平衡条件。

例1如图1-a所示,有三根长度皆为L=1.00m的不可伸长的绝缘轻线,其中两根绳的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.0010-2kg的带电小球A和B,它们的电量分别为-q和+q,且q=1.0010-7C.A、B球之间用第三根线连接起来。空间存在E=1.00106N/C的匀强电场,场强方向水平向右,平衡时A、B两球的位置如图示.现将O、B之间的线烧断,由于有空气阻力,A、B两球最后会达到新的平衡为位置。问:最后两球的机械能与电势能的总和与烧断前相比减少了多少?(不计两小球间相互作用的静电力)

分析与求解:设烧断OB线后,两球最终静止后的位置如图1-b所示,此时线OA、OB与竖直方向的夹

角分别为,A球受力如图1-c所示,由力的平衡条件有:

,B球受力如图1-d所示,由力的平衡条件有:

解以上四式得:,,由此可知,最终静止后两球的位置如图1-e所示。

与烧断OB线之前相比:A球的重力势能减少了,B球的重力势能减少了

,A球的电势能增加了,B球的电势能减少了。

两球的机械能与电势能总和减少了W=W

B -W

A

+E

A

+E

B

,代入已知数据解以上几式得W=6.810-2J。

本题解答中,求解最终静止后两球的位置时,若选两球整体为研究对象,则这个整体只受重力和OA线的拉力作用,由此便可很方便的知道,即OA线处在竖直位置。

二、匀速直线运动问题

处在静电场中的速度不为零的带电体,所受外力的合力为零时,带电体做匀速直线运动。这两类问题的基本方法是力的平衡条件。

例2如图2所示,在水平地面上有一倾角为θ的绝缘斜面,斜面所处空间有水平向右的匀强电场,电场强度为E。有质量为m,带电量为+q的小球沿斜面匀速滑下。求小球和斜面间的滑动摩擦因数。

分析与求解:小球下滑时受力如图2右所示,对小球运用力的平衡条件,在水平方向有:

,竖直方向上有:。解此两式得:

三、匀变速直线运动问题

若带电粒子只受电场力的作用,粒子在电场中被由静止释放或顺着、逆着电场方向进入电场,粒子做匀变速直线运动;若粒子除电场力外还受有其它恒力,粒子被由静止释放后,沿合力的方向匀变速直线运动;若粒子的初速度不为零,合力方向与初速度方向相同或相反,粒子沿原运动方向匀变速直线运动。这类问题可运用牛顿运动定律、动量定理、动能定理或运用能量观点求解。

例3如图3所示,平行板电容器的板长为,板间距为L,板B与水平方向的夹角为α,两板间所加电压为U。有一带负电液滴,带电量为q,以速度v o沿水平方向自A板边沿进入板间后仍沿水平方向运动,恰好从B板边沿水平飞出.求液滴的质量及飞出时的速度。

分析与求解:液滴在板间受重力、电场力作用,由于沿水平方向运动,这两个力的合力方向必沿水平

方向.所以,在竖直方向上应有:,而,由此两式可得:。

液滴在板间运动过程中,对液滴运用动能定理有:,代入解此式得:

四、非匀变速直线运动问题

带电粒子在电场中所受各力的合力方向恒定不变,大小变化,粒子具有与合力同向或反向的初速度或粒子由静止释放,粒子做非匀变速直线运动。这类问题求解时,根据题中所求量,可灵活选用牛顿定律、力的平衡条件或能量观点。

例4如图4所示,一根长L = 1.5m的光滑绝缘细直杆MN,竖直固定在场强为E ==1.0×105N/C、与水平方向成θ=300角的倾斜向上的匀强电场中。杆的下端M固定一个带电小球A,电荷量Q=+4.5×10-6C;另一带电小球B 穿在杆上可自由滑动,电荷量q=+1.0×10-6C,质量m=1.0×10一2kg。现将小球B 从杆的上端N静止释放,小球B开始运动。(静电力常量k=9.0×10 9N·m2/C2,取g =l0m / s2)

(1)小球B开始运动时的加速度为多大?

(2)小球B的速度最大时,距M端的高度h1为多大?

(3)小球B从N端运动到距M端的高度h2=0.6lm时,速度为v=1.0m/s,求此过程中小球B的电势能改变了多少?

分析与求解:(1)开始运动时,小球受力如图4下所示,其合力必沿沿竖直方向,在竖直方向上对小球运用牛顿定律有:,代入已知数据解此得小球B开始运动时的加速度为:

(2)小球B开始运动后,小球A对它的库仑力逐渐增大,它所受的合力逐渐减小,运动中向下的加速度逐渐减小,当向下的合力为零时,加速度为零,此后,合力方向向上,且逐渐增大,小球做加速度逐渐增

大的减速运动。因此,合力为零时,小球B速度最大,由力的平衡条件有:,代入已知数据解此式得:。

(3)小球从开始运动到速度为的过程中,设A球对B求的库仑力做功为W1,匀强电场对小球B做的功为W2,对小球运用动能定理有:,而此过程中小球B的电势能增量为:,代入已知数据解此两式得小球B的电势能增量为:。

五、匀变速曲线运动问题

粒子在电场中所受各力的合力恒定,但方向与粒子的初速度方向不在一条直线上,粒子做匀变速曲线运动。常见问题是合力方向与初速度方向垂直,粒子做类平抛运动。这类问题求解时,根据所求量的特点,可灵活选用牛顿定律、动量定理、动能定理、能量观点。

例5如图5所示,边长为L的正方形区域abcd内存在着匀强电场电量为q、动能为E k的带电粒子从a点沿ab方向进入电场,不计重力。

(1)若粒子从c点离开电场,求电场强度的大小和粒子离开电场时的动能?

(2)若粒子离开电场时动能为E k/,则电场强度为多大?

分析与求解:(1)设粒子的入射速度为,粒子离开电场时的动能为E k/,电厂的电场强度为E.则粒子由入射到从c点离开电场过程中,由牛顿第二定律有:,由运动学公式知,bc方向上有:

,ab方向上有:,考虑到和,解以上五式得:

;。

(2)粒子离开电场有三种情况,一是从c点离开,此时必有。二是从bc边离开,此时

必有。三是从cd边离开,此时必有.其中第一种情况(1)中已解答,现就后两种情况解答如下:

若,设出射点到b点的距离为h,则粒子在电场中运动过程中有:,,

,,,解此五式得:。

若,则粒子在电场中运动过程中有:,解之得:。

六、圆周运动问题

在匀强电场中的带电粒子,由于受圆环、绳子、硬杆等的约束,若具有沿环切线方向或垂直于绳、杆末端的速度,粒子可以作圆周运动。这类问题求解时运用动能定理或运用能量观点比较方便。

例6如图6所示,一半径为R的光滑绝缘圆环竖直固定在水平桌面上,桌面所在空间有水平向右的匀强电场,电场强度为E.在此圆环上套着一个质量为m、带电量为+q的小圆环。现让小圆环由静止从环A 处开始下滑。求小环在环上滑过四分之一圆周过B处时对环的压力是多大?

分析与求解:设小环过B时环对它的压力为N,速度为v.则这一过程中,对小环运用动能定理有:

,小环过B处时,在BO方向上对其运用牛顿定律有:,解此两式得:

,由牛顿第三定律知,此时它对环的压力大小为,方向沿OB向外。

匀强电场中的力学问题

匀强电场中的力学问题,是常见的力电综合问题,也是高考命题的热点,这类问题有以下几种类型。 一、静止问题 处在匀强电场中的速度为零的带电物体所受的外力的合力为零时,带电物体处于静止状态。求解这类问题的基本方法是力的平衡条件。 例1如图1-a所示,有三根长度皆为L=1.00m的不可伸长的绝缘轻线,其中两根绳的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.0010-2kg的带电小球A和B,它们的电量分别为-q和+q,且q=1.0010-7C.A、B球之间用第三根线连接起来。空间存在E=1.00106N/C的匀强电场,场强方向水平向右,平衡时A、B两球的位置如图示.现将O、B之间的线烧断,由于有空气阻力,A、B两球最后会达到新的平衡为位置。问:最后两球的机械能与电势能的总和与烧断前相比减少了多少?(不计两小球间相互作用的静电力) 分析与求解:设烧断OB线后,两球最终静止后的位置如图1-b所示,此时线OA、OB与竖直方向的夹 角分别为,A球受力如图1-c所示,由力的平衡条件有:

,B球受力如图1-d所示,由力的平衡条件有: 解以上四式得:,,由此可知,最终静止后两球的位置如图1-e所示。 与烧断OB线之前相比:A球的重力势能减少了,B球的重力势能减少了 ,A球的电势能增加了,B球的电势能减少了。 两球的机械能与电势能总和减少了W=W B -W A +E A +E B ,代入已知数据解以上几式得W=6.810-2J。 本题解答中,求解最终静止后两球的位置时,若选两球整体为研究对象,则这个整体只受重力和OA线的拉力作用,由此便可很方便的知道,即OA线处在竖直位置。

一、带电粒子在匀强磁场中匀速圆周运动基本问题

一、带电粒子在匀强磁场中匀速圆周运动基本问题 找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 二、带电粒子在磁场中轨道半径变化问题 导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。②磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。③电量变化导致半径变化。如吸收电荷等。总之,由 看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。 (06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件? 解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有 r =①r2=② 1 分析粒子运动的轨迹。如图所示,在xy平面内, 粒子先沿半径为r1的半圆C1运动至y轴上离O点距离 为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离 d=2(r2-r1)③ 此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1 的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减 小d。 设粒子经过n次回旋后与y轴交于O n点。若OO n即nd满 足nd=2r1④ 则粒子再经过半圆C n+1就能够经过原点,式中n=1,2,3,……

(含答案)电磁感应中的动力学问题

电磁感应中的动力学问题分析 一、基础知识 1、安培力的大小 由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2、安培力的方向判断 3、导体两种状态及处理方法 (1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4、解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 二、练习 1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金

属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v . (2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 解析 (1)对匀速下滑的导体棒进行受力分析如图所示. 导体棒所受安培力F 安=BIl ① 导体棒匀速下滑,所以F 安=Mg sin θ② 联立①②式,解得I =Mg sin θBl ③ 导体棒切割磁感线产生感应电动势E =Bl v ④ 由闭合电路欧姆定律得I =E R +R x ,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2 (2)由题意知,其等效电路图如图所示. 由图知,平行金属板两板间的电压等于R x 两端的电压. 设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥ 要使带电的微粒匀速通过,则mg =q U d ⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ 2、如图所示,两足够长平行金属导轨固定在水平面上,

带电粒子在圆形边界匀强磁场中的圆周运动例析

带电粒子在圆形边界匀强磁场中的圆周运动例析 (浙江永康二中 吕未寒 321300) 带电粒子以一定速度垂直射入匀强磁场中,洛伦兹力充当向心力,粒子将做匀速圆周运动。解决带电粒子在圆形匀强磁场中的偏转解题基本思路:(四项基本原则) ●画轨迹——根据初速度和受力方向画 ●定圆心——根据两条直径相交在圆心定 ●找关系——找力学关系、线度关系、角度关系 ●求变量——求半径或长度、周期或时间、其它物理量 解题时画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏转角度θ可由R r =2 tan θ求出,经历时间由qB m t θ=得出。注意:带电粒子运动具有对称性,射出线的反向 延长线必过磁场圆的圆心。 带电粒子在磁场中做匀速圆周运动的三个基本公式: ①洛伦兹力提供向心力 r m v qvB 2 = ②轨迹半径 ,qB m v r = ③周期 qB m T π2= (T 与r ,v 无关) 一、 临界值问题 例题1.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向外的匀强磁场,磁感应强度为B 。圆心O 放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行。 (1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 则初速度的大小是多少? (2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少? 解:(1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得 331r R = (2分) 由1 2 11R v m B qv =(2分)

得m Bqr v 331= (2分) (2)设粒子在磁场中的轨道半径为R 2, 则由几何关系 22 222)2(r R R r +=- (1分) 得r R 4 3 2= (1分) 由 2 22 2R v m B qv = (2分) 得m Bqr v 432= (1分) 例题2.甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场.该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点.测得G 、H 间的距离为 d ,粒子的重力可忽略不计. (1)设粒子的电荷量为q ,质量为m ,试证明该粒子的比荷为:22 8q U m B d =; (2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其它条件不变。要保证上述粒子从G 点垂直于MN 进 入偏转磁场后不能..打到MN 边界上(MN 足够长),求磁场区域的半径应满足的条件。 解:(1)粒子经过电场加速,进入偏转磁场时速度为v 有 221mv qU = ① (1分) 进入磁场后做圆周运动,轨道半径为r r v m qvB 2 = ② (2分) 打到H 点有 2d r = ③ (1分) 由①②③得 228d B U m q = (2)要保证所有粒子都不能打到MN 边界上,粒子在磁场中运动偏角小于90°,临界状态为90°,如图所示,磁场区半径 乙 N M G

匀强电场中的力学问题

匀强电场中的力学问题 匀强电场中的力学问题,是常见的力电综合问题,也是高考命题的热点,这类问题有以下几种类型。 一、静止问题 处在匀强电场中的速度为零的带电物体所受的外力的合力为零时,带电物体处于静止状态。求解这类问题的基本方法是力的平衡条件。 例1如图1-a所示,有三根长度皆为L=1.00m的不可伸长的绝缘轻线,其中两根绳的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.0010-2kg的带电小球A和B,它们的电量分别为-q和+q,且q=1.0010-7C.A、B球之间用第三根线连接起来。空间存在E=1.00106N/C的匀强电场,场强方向水平向右,平衡时A、B两球的位置如图示.现将O、B之间的线烧断,由于有空气阻力,A、B两球最后会达到新的平衡为位置。问:最后两球的机械能与电势能的总和与烧断前相比减少了多少?(不计两小 球间相互作用的静电力) 分析与求解:设烧断OB线后,两球最终静止后的位置如图1-b所示,此时线OA、OB与竖直方向的夹角分别为,A球受力如图1-c所示,由力的平衡条件有: ,B球受力如图1-d所示,由力的平衡条件有:

解以上四式得:,,由此可知,最终静止后两球的位置如图1-e所 示。 与烧断OB线之前相比:A球的重力势能减少了,B球的重力势能减少了,A球的电势能增加了 ,B球的电势能减少了。 两球的机械能与电势能总和减少了W=W B-W A+E A+E B,代入已知数据解以上几式得 W=6.810-2J。 本题解答中,求解最终静止后两球的位置时,若选两球整体为研究对象,则这个整体只受重力和OA线的拉力作用,由此便可很方便的知道,即OA线处在竖直 位置。 二、匀速直线运动问题 处在静电场中的速度不为零的带电体,所受外力的合力为零时,带电体做匀速直线运动。这两类问题的基本方法是力的平衡条件。 例2如图2所示,在水平地面上有一倾角为θ的绝缘斜面,斜面所处空间有水平向右的匀强电场,电场强度为E。有质量为m,带电量为+q的小球沿斜面匀速滑下。求 小球和斜面间的滑动摩擦因数。

等效法处理电场中的圆周运动

例1 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为m g 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若 小球刚好能做完整的圆周运动,求0v . 例2如图所示,半径R = 0.8m 的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动.圆心O 与A 点的连线与竖直成一角度θ,在A 点时小球对轨道的压力N = 120N ,此时小球的动能最大.若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).则: (1)小球的最小动能是多少? (2)小球受到重力和电场力的合力是多少? (3)现小球在动能最小的位置突然撤去轨道,并保持其他量都不变, 若小球在0.04s 后的动能与它在A 点时的动能相等,求小球的质量. 例3、如图12所示为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然 后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点。 已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的 质量为m ,电荷量为e ,不计电子受到的重力及它 们之间的相互作用力。 (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的侧移量; (3)若要使电子打在荧光屏上P 点的上方,可采 取哪些措施?

电容器与电场中的力学问题

专题九电容器与电场中的力学问题 电场中的带电粒子问题是高考命题频率最多的问题,题型有选择、填空和计算,其难度在中等以上。考题涉及的电场有匀强电场也有非匀强电场或交变电场,涉及的知识不全为电场知识,还有力学的有关知识。 带电粒子在电场中的运动问题大致可分为三类:其一为平衡问题;其二为直线运动问题;其三为偏转问题。解答方法首先是对带电粒子的受力分析,然后再分析运动过程或运动性质,最后确定运用的知识或采用的解题观点。(平衡问题运用的是物体的平衡条件;直线运动问题用到的是运动学公式、牛顿第二定律、能量关系;偏转问题用到的是运动的合成与分解,以及运动学中的平抛运动的规律。)本次专题就分析带电粒子在电场中的这三类问题。 电容器在高中阶段常被用来提供匀强电场,也是高考中的高频考点,关于电容器主要运用电容器的定义式,平行板电容器的决定式、匀强电场中场强与电压的关系及电容器的动态分析问题 一、电容器 1、(2012海南)9.将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d、U、E和Q表示.下列说法正确的是() A.保持U不变,将d变为原来的两倍,则E变为原来的一半 B.保持E不变,将d变为原来的一半,则U变为原来的两倍 C.保持d不变,将Q变为原来的两倍,则U变为原来的一半 D.保持d不变,将Q变为原来的一半,则E变为原来的一半 2、(2012江苏)2.一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C和两极板间的电势差U的变化情况是()A.C和U均增大B.C增大,U减小 C.C减小,U增大D.C和U均减小 3、(2011天津)5、(6分)板间距为d的平行板电容器所带电荷量为Q时,两极板间电势差为U1,板间场强为E1.现将电容器所带电荷量变为2Q,板间距变为d,其他条件不变,这 时两极板间电势差为U2,板间场强为E2,下列说法正确的是() A.U2=U1,E2=E1 B.U2=2U1,E2=4E1 C.U2=U1,E2=2E1 D.U2=2U1,E2=2E1 4、(2010北京)6、(6分)用控制变量法,可以研究影响平行板电容器电容的因素(如图).设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验 中,极板所带电荷量不变,若() A.保持S不变,增大d,则θ变大 B.保持S不变,增大d,则θ变小 C.保持d不变,减小S,则θ变小 D.保持d不变,减小S,则θ不变 二、电场中的平衡问题 5、(2010全国卷2)4、(6分)在雷雨云下沿竖直方向的电场强度约为104 V/m.已知一半径为1 mm的雨滴在此电场中不会下落,取重力加速度大小为10 m/s2,水的密度为103 kg/m3.这雨滴携带的电荷量的最小值约为() A.2×10-9 C B.4×10-9 C C.6×10-9 C D.8×10-9 C

带电粒子在电场中的力学问题

带电粒子在电场中的运动问题(习题课) 电场中的带电粒子问题是高考命题频率最多的问题,题型有选择、填空和计算,其难度在中等以上。考题涉及的电场有匀强电场也有非匀强电场或交变电场,涉及的知识不全为电场知识,还有力学的有关知识。 带电粒子在电场中的运动问题大致可分为三类:其一为平衡问题;其二为直线运动问题;其三为偏转问题。解答方法首先是对带电粒子的受力分析,然后再分析运动过程或运动性质,最后确定运用的知识或采用的解题观点。(平衡问题运用的是物体的平衡条件;直线运动问题用到的是运动学公式、牛顿第二定律、动量关系及能量关系;偏转问题用到的是运动的合成与分解,以及运动学中的平抛运动的规律。)下文就分析带电粒子在电场中的这三类问题。 典型案例一、带电粒子的平衡问题 ⑴带电粒子的平衡问题。用到的知识是mg F ,qE F ==。 ⑵平行板电容器间的电场, d U E =,电容器始终与电源相连时,U 不变;在与电 源断开后再改变电容器的其它量时,Q 不变。要掌握电容表达式kd S C πε4=。 例1.(1995年上海高考)如图所示,两板间距为d 的平行板电容器与电源连接,电键x 闭合。电容器两板间有一质量为m ,带电量为q 的微粒静止不动。下 列各叙述中正确的是: A.微粒带的是正电 B.电源电动势大小为 q mgd C.断开电键k ,微粒将向下做加速运动 D.保持电键k 闭合,把电容器两板距离增大,微粒将向下做加速运动 1.如图所示,一带负电的小球悬挂在两极板相距d 的平行板电容器内, 接通开关K 后,悬线与竖直方向的偏角为 : A.若K 闭合,减小d ,则 增大 B.若K 闭合,减小d ,则 减小 C.若K 断开,增大d ,则 减小 D.若K 断开,增大d ,则 增大 2.如图所示,在两平行金属板间的匀强电场中的A 点处有一个带电微 粒保持静止状态,已知两金属板间电势差为U ,两板间距离为d , 则该带电微粒的电量与质量之比为______。 3.如图所示,平行板电容器充电后不切断电源,板间原有一个带电 尘粒在场中保持静止,现下板保持不动,上板平行向左移动(移 动距离不超过半个板长),这过程中,AB 导线中有电流流过, 电流方向是______,尘粒将______。 4.用细线悬挂质量为m 的带点小球,放在水平向右的匀强电场中,静止时悬线和竖直方向的夹角为θ,如下图所示,当悬线突然被剪断时,小球在电场中的运动情况是:

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

专题讲座三:带电粒子在匀强电场中的偏转问题

带电粒子在匀强电场中的加速和偏转问题 一:.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。 证明:由qU 0=12m v 20及tan φ=qUl md v 20 得tan φ=Ul 2U 0 d (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l 2。 二:.带电粒子在匀强电场中偏转的功能关系 当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =U d y ,指初、末位置间的电势差。 三:带电粒子在电场中运动问题的两种求解思路 1.运动学与动力学观点 (1)运动学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况: ①带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动; ②带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动)。 (2)当带电粒子在电场中做匀变速曲线运动时,一般要采取类似平抛运动的解决方法。 2.功能观点:首先对带电体受力分析,再分析运动形式,然后根据具体情况选用公式计算。 (1)若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动能的增量。 (2)若选用能量守恒定律,则要分清带电体在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的。 四:典题分析: 1 如图1所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y ,要使偏转位移增大,下列

电场中的圆周运动.

《电场中的圆周运动》 一、带电粒子在电场中的偏转(重点知识回顾) 设带电粒子质量为m,带电荷量为q,以速度v0垂直于电场线方向射入匀强偏转电场,偏转电压为U,两极板间距为d,若粒子飞离偏转电场时的偏距为y,偏转角为θ,求:速度的偏转角的tan θ,侧位移y,电荷飞出电场时的动能E K (1)方法一:用运动的分解 tan θ= y=E K= (2)方法二:动能定理求E K 二、怎样求带电粒子在电场中的圆周运动? 练习:1、如图所示,一条长为l的细线,上端固定,下端拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡. (1)小球带何种电荷?求出小球所带电量. (2)如果使细线的偏角由α增大到?,然后将小球由静止开始释放,则?应为多大,才能使细线到达竖直位置时小球的速度刚好为零? 2、如图,半径为R的光滑圆环,竖直置于场强为E的水平方向的匀强电场中,今有质量为m,带电量为+q的空心小球穿在环上,求当小球由顶点A从静止开始下滑到与圆心O等高的位置B时,小球对环的压力?.N=2mg+3qE 方向水平向右

3、如图所示,质量为m,带电量为q(q>0)的小球,用一长为L 的绝缘细线系于一足够大的匀强电场中的O 点,电场方向竖直向下,电场强度为E ,为使带电小球能在竖直面内绕O 点作完整的圆周运动,求:(1)在最低点时施给小球水平初速度v 0至少是多少?(2)小球在运动中细线受到的最大拉力是多少?(3)小球从B 点运动到A 点的过程中电势能和机械能的改变量。 4、如图所示,在竖直向下的匀强电场中有一绝缘的光滑轨道,一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道下滑,已知小球的质量为m 、电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α(小球的重力大于其所受的电场力) (1)求小球沿斜轨道下滑的加速度的大小; (2)若使小球通过圆轨道顶端的B 点,A 点距水平地面的高度h 至少应为多大? (3)若小球从斜轨道h =5R 处由静止释放,假设其能够通过B 点,求在此过程中小球机械能的改变量。 5、如图所示,BCDG 是光滑绝缘的34 圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带 正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为34 mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g. (1)若滑块从水平轨道上距离B 点x =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大? (2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小.

带电粒子在三种典型电场中的运动问题解析

一、带电粒子在点电荷电场中的运动 【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是 A 将质子从a 点由静止释放,质子向b 点做匀 加速运动 B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b /2 C 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υ D 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆/2 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得 υ=由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有2 2Qq k m r r υ=成立, 可得υ,据此判断C 错D 对。答案:BD 2、根据带电粒子在电场的运动判断点电荷的电性 【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。已知在a 、b 两点粒子所受电场力分别为F a 、F b ,则下列判断正确的是 A 若Q 为正电荷,则q 带正电,F a >F b B 若Q 为正电荷,则q 带正电,F a <F b C 若Q 为负电荷,则q 带负电,F a >F b D 若Q 为负电荷,则q 带正电,F a <F b 〖解析〗:由于粒子从a 到b 电场力做正功,可知电场力指向外侧,Q 、q 带同种电荷;电场线密集的地方场强大,由F=qE 得,a 点的电场力大,故A C 正确。答案:AC 3、根据带电粒子在点电荷电场中的运动轨迹,判断带电粒子的性质 【例3】 如图3所示,实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点,若带电粒子只受电场力作用,根据此图判断正确的是 A 带电粒子所带电荷的符号 B 带电粒子在a 、b 两点的受力方向 C 带电粒子在a 、b 两点的速度何处最大 D 带电粒子在a 、b 两点的电势能何处最大 〖解析〗:由于不清楚电场线方向,只知道粒子受力情况是不能判断粒子所带电性的,故A 错;根据粒子所做曲线运动条件可知,在a 、b 两点粒子所受电场力方向都在电场线上且大致向左,根据电场力做功情况可判断粒子动能和电势能变化情况。 答案:BCD 4、根据带电粒子运动情况,判断电势、电势差的大小关系 【例4】 如图4所示,为一点电荷产生的电场中的三条电场线,已知电子从无穷远处运动至A 点电场力做功8eV ,(无穷远处电势能为零),则下列说法正确的是 A φA <0 B φA >φB C φA =8V D U AB >8V 〖解析〗:根据W ∞A = E P∞-E PA =8eV 得E PA =-8eV ;再由E PA =q φ=-8eV 得φA =8V>0,可见这是正电荷电场,电场线方向从A 指向B ,根据沿着电场线方向电势逐渐降低,可知φA >φB ,A 点相对于无穷远处即零电势点的电势是8V 所以A 、B 两点

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题 (1)等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。常见的等效法有“分解”“合成”“等效类比”“等效替换”“等效变换”“等效简化”等。 带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型。对于这类问题,若采用常规方法求解,过程复杂,运算量大。若采用“等效法”求解,则过程比较简捷。 (2)解题思路: ①求出重力与电场力的合力,将这个合力视为一个“等效重力”。 ②将a=F合 m 视为“等效重力加速度”。 ③将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解。 [典例]在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问: (1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B点的初速度多大? 对应练习: 1.如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切。整个装置处于场强为E、方向水平向右的匀强电场中。现有一个质量为m的小球, 带正电荷量为q=3mg 3E ,要使小球能安全通过圆轨道,在O点的初速度应为多大?

2.(2012·合肥质检)如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A、B两点分别是圆轨道的最低点和最高点。该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过C点时速度最大,O、C连线与竖直方向的夹角 θ=60°,重力加速度为g。 (1)求小球所受到的电场力的大小; (2)求小球在A点速度v0多大时,小球经过B点时对圆轨道的压力最小? 3.如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。已知小球所受电场力是其重力的3/4,圆环半径为R,斜面倾角为θ=60°,s BC=2R。若使小球在圆环内能做完整的圆周运动,h至少为多少?(sin 37°=0.6,cos 37°=0.8,重力加速度为g)

匀强电场中力学问题

匀强电场中力学问题 Company number:【0089WT-8898YT-W8CCB-BUUT-

1.如图所示,一带电粒予射入一固定在O点的点电荷的电场 中,粒子运动轨迹如图中虚线abc所示,图中实线是同心圆弧,表示电场的等势面,不计重力,可以判断: A.此粒子一直受到静电排斥力作用 B.粒子在b点的电势能一定大于在a点的电势能 C.粒子在b点的速度一定大于在a点的速度 D.粒子在a点和c点的速度大小一定相等 2.某带电粒子仅在电场力作用下由A点运动到B点,电场 线和粒子在A点的初速度及运动轨迹如图所示,可以判 定: A.粒子在A点的加速度大于它在B点的加速度 B.粒子在A点的动能小于它在B点的动能 C.粒子在A点的电势能小于它在B点的电势能 点的电势低于B点的电势 3.一个点电荷,从静电场中的a点移到b点,其电势能的变化为 零,则: 、b两点的场强一定相相等 B.该点电荷一定沿等势线移动

C.作用于该点电荷的电场力与其移动方向总是垂直的 、b两点的电势一定相等 4.在静电场中: A.电场强度处处为零的区域内,电势也一定处处为零 B.电场强度处处相同的区城内,电势也一定处处相同 C.电场强度的方向总是跟等势面垂直的 D.沿着电场强度的方向,电势总是不断降低的 5.若带正电荷的小球只受到电场力作用,则它在任意一段时间 内: A.一定沿电场线由高电势处向低电势处运动 B.一定沿电场线由低电势处向高电势处运动 C.不一定沿电场线运动,但一定由高电势处向低电势处运动 D.不一定沿电场线运动,也不一定由高电势处向低电势处运动 6.一个带正电的质点,电量q=×10-9C,在静电场中由A点移到B 点.在这个过程中,除电场力外,其他力作的功为×10-5J,质点的动能增加了×10--5J,则a、b两点间的电势差U ab为: ×104V ×104V ×104V ×104V

电场中的圆周运动

电场中的圆周运动 制卷:田军 做题:魏志改 班级: 姓名: 1.如图所示,在竖直向下的匀强电场中有一绝缘的光滑轨道,一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道下滑,已知小球的质量为m 、电荷量为-q ,匀强电场的场强大小为E ,斜轨道 的倾角为α(小球的重力大于其所受的电场力) (1)求小球沿斜轨道下滑的加速度的大小; (2)若使小球通过圆轨道顶端的B 点,A 点距水平地面的高度h 至少应为多大? (3)若小球从斜轨道h =5R 处由静止释放,假设其能够通过B 点, 求在此过程中小球机械能的改变量。 2.如图所示,BCDG 是光滑绝缘的34 圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带正电的小滑块(可视 为质点)置于水平轨道上,滑块受到的电场力大小为34 mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g. (1)若滑块从水平轨道上距离B 点x =3R 的A 点由静止释放, 滑块到达与圆心O 等高的C 点时速度为多大? (2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小.

3.如图所示,在E=103V/m的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MN在N点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,P为QN圆弧的中点,一带负电q=10-4 C的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ= 0.15,位于N点右侧1.5 m的M处,g取10 m/s2,求: (1)要使小滑块恰能运动到圆轨道的最高点Q,则小滑块应以多大的初 速度v0向左运动? (2)这样运动的小滑块通过N点时对轨道的压力是多大? (3) 小滑块通过N点时对轨道的压力是多大? 4.在水平向右的电场强度为E的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬 挂于O点,当小球静止时细线与竖直方向夹角为θ.现给小球一个垂 直于悬线的初速度,使小球恰能在竖直平面内做圆周运动,试问: (1)小球带电量q为多少? (2)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多 大? (3)小球在B点的初速度多大?

电磁感应中的力学问题

电磁感应中的力学问题 ————导棒问题分类评析 电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。要将电磁学和力学的知识综合起来应用。 一、基础知识 1、.楞次定律、右手定则、左手定则的区别 (1) “因动而电”——用右手定则,“因电而动”——用左手定则。 (2)在应用楞次定律时,注意“阻碍’’含义可推广为三种表达方式:①阻碍原磁通量的变化;②阻碍导体的相对运动(来拒去留);③阻碍原电流的变化(自感现象)。 2、两种感应电动势:感生和动生电动势 3、安培力公式、楞次定律和法拉第电磁感应定律是解决此类问题的重要根据,在应用法拉第电磁感应定律时应注意:①区分?、??、 t ? ??的含义; ② 理解E=BLv 和 (B S S B E n E n E n t t t ????===???或)的应 用 。 一 般 (B S S B E n E n E n t t t ????===???或)用来求平均电动势和感生电动势,E=BLv 用来求瞬时电动势 和动生电动势; ③在匀强磁场中,B 、L 、v 相互垂直,导体平动切割磁感线时E=BLv ,绕固定转轴匀速转动时2 BL E=2 ω。 4、导棒类问题动态电路分析的一般思路:磁通量变化→感应电动势→感应电流→安培力→合外力→加速度→速度→感应电动势→……周而复始地循环,当a=0时,导体达到稳定状态,速度达到最大值.上述分析的过程与思路也可以简明表示如下: ????→↑↓←?????电磁感应 导体在磁场中导体运动感应电动势 阻碍 电路闭合安培力感应电流 5、处理导体切割磁感线运动有三种观点:(1)力的观点;(2)能量观点;(3)动量观点.这类问题的实质是不同形式能量的转化过程,从功与能的观点人手,弄清导体切割磁感线运动过程中的能量转化关系,往往是解决这类问题的关键,也是处理此类问题的捷径之一。 二、导棒在匀强磁场中常见的运动问题 1、单导棒模型常见的几种情况: (1)如下图所示.单杆ab 以一定的初速度v 0在光滑水平轨道上作加速度越来越小的减速运动,在安培力作用下最终静止,则回路中产生的焦 耳热Q=mv 2 /2。

带电粒子在电场中的运动的综合问题

带电粒子在电场中的运动的综 合问题 专题强化八带电粒子(带电体)在电场中运动的综合问题 【专题解读丨1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现. 2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析特别是曲线运动(平抛运动、圆周运动)的方法与技巧,熟练应用能量观点解题. 3.用到的知识:受力分析、运动分析、能量观点. 过好双基关 ----------------------------------------------- 回扣碁础知识训练基础尊目--------------------------------------------------

一、带电粒子在电场中运动 1.分析方法:先分析受力情况,再分析运—和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的力学规律如牛顿运动定 律、运动学公式、动能定理、能量守恒定律解题. 2.受力特点:在讨论带电粒子或其他带电体的静 止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略.一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用. 二、用能量观点处理带电体的运动 对于受变力作用的带电体的运动,必须借助于能量观点来处理.即使都是恒力作用的问题,用能量观点处理也常常显得简洁.具体方法常有两种: 1.用动能定理处理 思维顺序一般为: (1)弄清研究对

象,明确所研究的物—. (2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功. (3)弄清所研究过程的始、末状态(主要指动能). (4)根据W=4E k列出方程求解. 2.用包括电势能和内能在内的能量守恒定律处理 列式的方法常有两种: (1)利用初、末状态的能量相等(即E i= E2)列方程. (2)利用某些能量的减少等于另一些能量的增加 (即圧=圧’)列方程. 3.两个结论 (1)若带电粒子只在电场力作用下运动,其动能和 电势能之和保持不变. (2)若带电粒子只在重力和电场力作用下运动,其 机械能和电势能之和保持不变. 研透命题点 --------------------------------------------- 堀硏考到和鼻題分折密菠葩题点 -----------------------------------------------

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

静电场中的动力学问题

高中物理资料 静电场中的动力学问题 一、规律 1.运动规律:匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、斜抛运动、简谐运动、运动的合成与分解、螺旋线运动的规律; 2.动力学规律:牛顿运动定律、动量定理、动能定理、机械能守恒定律、功和能的关系、动量守恒定律、能量守恒定律。 (1)牛顿运动定律(牛顿第一定律、牛顿第二定律、牛顿第三定律) (2)动量定理(单体的动量定理、系统的动量定理) (3)动能定理(单体的动能定理、系统的动能定理) (4)机械能守恒定律(单体的机械能守恒定律、系统的机械能守恒定律) (5)功和能的关系(重力做功与重力势能变化的关系、弹力做功与弹性势能变化的关系、电场力做功与电势能变化的关系、合外力做功与动能变化的关系、除了重力和弹力之外的其他力做功与机械能变化的关系、安培力做功与电能变化的关系)(6)动量守恒定律 (7)能量守恒定律 二、思路 1.选择研究对象:物体或系统; 2.进行运动过程分析和受力分析; 3.根据运动特点和受力特点选择合适的运动规律和动力学规律列方程求解。

高中物理资料 模块一:动力学观点 思路: 1.选择研究对象:物体或系统; 2.进行运动过程分析和受力分析; 3.根据牛顿第二定律列动力学方程;根据运动特点列运动方程; 4.联立方程求解。 例题1:如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q>0)的小物块在与金属板A 相距L 处静止。若某一时刻在金属板A 、B 间加一电压32AB mgd U q μ=- ,小物块与金属板只发生了一次 碰撞,碰撞后电荷量变为2 q -,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的 动摩擦因素为μ,若不计小物块电荷量对电场的影 响和碰撞时间。则: (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置?

相关文档
最新文档