浅谈测速发电机及自整角机的应用

浅谈测速发电机及自整角机的应用
浅谈测速发电机及自整角机的应用

浅谈测速发电机及自整角机的应用

姓名

机电工程学院农电班学号

摘要:测速发电机是一种检测机械转速的电磁装置。它能把机械转速变成电压信号,其输出电压与输入电压的转速成正比关系。在转速调节自动控制系统中作转速反馈元件、计算元件或阻尼元件。自整角机是测量机械转角的控制电机。与旋转变压器不同的是,非数字化自整角机必须至少两台才能正常工作。当两台自整角机的定子绕组,即整步绕组按一定方式连接在一起时,只要两台自整角机的转角存在差值,就会相应的输出。本文主要就测速发电机与自整角机的分类及应用方面做了阐述。

关键词: 测速发电机自整角机应用

0引言

在转速反馈系统中, 测速发电机是一个关键的装置, 它的输出电压的幅值正比于转速, 极性反映电机的转向。测速精度、线性度、波型的纹波系数以及测量的小滞后性是它的主要性能指标。现有测速发电机的性能指标一般能满足大多数调速系统的需要。但是,它往往存在一个相当致命的缺陷,长期使用时可靠性不高。很多公司调速系统有三分之一的故障源于测速发电机的失效。其原因不外乎机械安装的同心度变坏、碳刷和换向器的磨损、永磁磁强的减弱等。[5. 1~2]

自整角机是一种感应式机电元件,被广泛地应用于随动系统中,作为角度传输、变换和指示的装置。在控制系统中经常两台或者多台联合使用,使机械上互不相连的两根或多根轴能够自动地保持相同的转角变化,或者同步旋转。

1 测速发电机与自整角机的分类

1.1测速发电机的分类

测速发电机是输出电动势与转速成比例的微特电机。其绕组和磁路经精确设计,输出电动势和转速成线性关系,改变旋转方向时输出电动势的极性即相应改变。测速发电机,其实质上是一种将转速变换为电信号的机电磁元件。从工作原理上讲,它属于“发电机”的范畴。测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。

测速发电机有直流和交流之分,而直流测速发电机又有他励和永磁之分,其结构和工作原理与小功率直流发电机相同,通常输出功率较小。作为计算元件时要求其输出电压的线性误差和温度误差低于一个上限。而交流测速发电机又有同步和异步之分,同步测速发电机包括:永磁式、感应式和脉冲式;异步测速发电机应用最广泛的是杯型转子异步测速发电机。

为了提高测速发电机的精确度和可靠性,目前,直流测速发电机出现了无刷结构的霍尔效应直流测速发电机。因为这种霍尔效应无刷直流测速发电机是一种无齿槽、无绕组的电机,所以它不会产生由于齿槽而存在的“齿槽谐波电势”,这种电机结构简单,便于小型化。

由于测速发电机在被测机构与测速发电机同轴联接时,只要检测出输出电动势,就能获得被测机构的转速,故又称速度传感器。为保证电机性能可靠,测速发电机的输出电动势具有斜率高、特性成线性、无信号区小或剩余电压小、正转和反转时输出电压不对称度小、对温度敏感低等特点。此外,直流测速发电机要求在一定转速下输出电压交流分量小,无线电干扰小;交流测速发电机要求在工作转速变化范围内输出电压相位变化小。

1.2自整角机的分类

自整角机是利用自整步特性将转角变为交流电压或由转角变为转角的感应式微型电机。在伺服系统中被用作测量角度的位移传感器。自整角机还可用以实现角度信号的远距离传输、变换、接收和指示。两台或多台电机通过电路的联系,使机械上互不相连的两根或多根转轴自动地保持相同的转角变化,或同步旋转。电机的这种性能称为自整步特性。在伺服系统中,产生信号一方所用的自整角机称为发送机,接收信号一方所用自整角机称为接收机。自整角机按用途分为力矩式和控制式(变压器式)两种。

力矩式自整角机用于同步指示系统,大多数采用两极凸极式结构,只在频率较高、尺寸较大时才采用隐极式结构。这类自整角机本身不能放大力矩,要带动接收机轴上的机械负载,必须有自整角发送机一方驱动装置供给转矩。控制式自整角机用作测角元件,其发送机结构与力矩式自整角机相似。为了提高输入阻抗,所用激磁绕组匝数较多。控制式自整角接收机多采用隐极式结构,并在转子上装设高精度的正弦绕组。由于生产工艺方面的原因,自整角机有零位和角度等方面的误差。

2测速发电机及自整角机的应用

2.1测速发电机的应用

测速发电机广泛用于各种速度或位置控制系统中,如速度伺服、位置伺服和计算解答。还可以在自动控制系统中作为检测速度的元件,以调节电动机转速或通过反馈来提高系统稳定性和精度;在解算装置中可作为微分、积分元件,也可作为加速或延迟信号用或用来测量各种运动机械在摆动或转动以及直线运动时的速度。

2.1.1测速发电机在速度伺服控制系统中的应用

测速元件是速度闭环控制系统中的关键。为了扩大调速范围,改善平稳性要求测速元件低速输出稳定,文波小,线性度好。对于模拟量测速元件,通常采用直流测速发电机,他已被广泛应用与速度伺服系统中。尽管它存在由于气隙和温度变化以及电

刷的磨损而引起的输出斜率改变等问题,但还是具有在宽广的范围内提供速度信号的能力等优点。因此,直流测速发电机仍是速度伺服控制系统中的主要反馈元件。

速度闭环控制系统中的测速发电力要求输出斜率大,线性误差小,剩余电压低。

2.1.2测速发电机在位置伺服控制系统中的应用

位置伺服控制系统又称随动控制系统。模拟式随动系统中测速发电机也是转速反馈元件,但其作用不同于上述速度控制系统,转速反馈是用于位置的微分反馈的校正,相当于起到速度阻尼的作用。作校正元件用时,应着重考虑其比电动势要大,对线性误差不宜提出过分的要求。

位置伺服系统用测速发电机要求输出斜率小,线性误差小,生育电压可稍大。

2.1.3测速发电机在积分运算控制系统中的应用

测速发电机作计算元件用时,应着重考虑其线性误差要小,电压稳定性要好。对积分用测速发电机要求误差低、温度影响小。计算解答控制系统是采用高精度测速发电机的模拟系统。在计算解答系统中,要求测速发电机误差小、剩余电压等方面能达到较高的要求。为了满足上述的精度要求,交流异步测速发电机往往有温度补偿及剩余电压补偿电路。

2.2自整角机的应用

自整角机广泛应用于冶金、航海等位置和方位同步指示系统和火炮、雷达等伺服系统中。随着科学的发展,自整角机也在水文缆道中实现了传输记录水深和起点距数据的功能。

2.2.1自整角机在水文缆道中的应用

在水文测流缆道运行过程中,怎样准确地传输记录水深和起点距数据,是非常重

要的。因为在水文测流缆道运行过程中,如果水深和起点距数据传输记录不准确,水文缆道测流将无法进行。我们根据自整角机的性能和工作原理,采用自整角机可以很好地解决这个问题,而且效果非常好。[6.1]

记录水深的方法:在电动绞车的升降卷筒轴上,同轴联接一台自整角机作为发送机。另一台自整角机安装在水文测流缆道操作台上作为接收机。同时和接收自整角机同轴联接一个5位数转数表。然后采用6A胶质导线,把两台自整角机接好。这时当电动绞车上下运行时,测流铅鱼接触水面产生水面信号,转数表复0,当测流铅鱼继续下降产生河底信号时,转数表上的读数便是测得这个测流垂线的水深值。

记录起点距的方法:在电动绞车循环轮轴上同轴联接一台自整角机作为发送机。同样把另一台自整角机安装在水文测流缆道操作台上作为接收机。同样在接收自整角机轴上联接一个5位数转数表。然后同样采用6A胶质线,把两台自整角机接好。这时当电动绞车水平运行时,在测流起点距0点时转数表复0。然后不管往返测流铅鱼水平运行到什么位置,转数表上的读数就是相应的起点距数据。从而便可以确定测流垂线的起点距位置。

应用自整角机的性能和工作原理、在水文测流缆道运行过程中,传输记录水深和起点距数据,能够很好地满足水文测流过程中水深和起点距数据直接连续递增或递减的要求。也就是在传输记录水深和起点距数据时能直接连续可逆。其测量精度完全符合水文测验规范技术要求,解决了生产实际问题,具有推广应用价值。[6.5~7]

3结束语

一般地,在一个完整的自动控制系统中,信号电机、功率电动机和控制电动机都会有自己的用武之地。通常控制电动机是很“精确”的电动机,在控制系统中充当“核心执行装置”;而功率电动机是比较“强壮”的大功率电动机,常用来拖动现场的机器设备;信号电机则在控制系统中担任“通讯员”的角色,本质上就是“电机传感器”。

实际上,随着电机制造技术的不断发展和相互融合,各种旋转电机的性能都逐渐“交叉化”和“特殊化”。对各种旋转电机进行极其详细地分类是不可能的,因为许多新型旋转电机都是许多电机工作原理和许多电机制造技术高度统一的有机体。因此,对于非电机专业的一般电气工程技术人员来讲,能够从整体结构上把握各种旋转电机的特性和用途就可以了。

参考文献

[1 ] 赵承荻.电机与应用[M].北京:高等教育出版社,2003.11.

[2 ] 王炳实.机床电气控制[M].北京:机械工业出版社,2004.

[3 ] 王建明.电机与机床电气控制[M].北京:北京理工大学出版社,

2008.6.

[4] 杨秀玲.钱良.李大新.杨晓洲. 刮板输送机用防爆变频电机设计

[5]郭慎树 .测速发电机反馈装置的技改[M].吉林:桦甸市经济局,2010.10.

[6] 陈文兴.曹艳.高玉军.自整角机在水文缆道中的应用[J].吉林水利,2001.2.(2)

[7] 李东.直流测速发电机在恒速控制系统中的应用

浅谈测速发电机及自整角机的应用

浅谈测速发电机及自整角机的应用 姓名 机电工程学院农电班学号 摘要:测速发电机是一种检测机械转速的电磁装置。它能把机械转速变成电压信号,其输出电压与输入电压的转速成正比关系。在转速调节自动控制系统中作转速反馈元件、计算元件或阻尼元件。自整角机是测量机械转角的控制电机。与旋转变压器不同的是,非数字化自整角机必须至少两台才能正常工作。当两台自整角机的定子绕组,即整步绕组按一定方式连接在一起时,只要两台自整角机的转角存在差值,就会相应的输出。本文主要就测速发电机与自整角机的分类及应用方面做了阐述。 关键词: 测速发电机自整角机应用 0引言 在转速反馈系统中, 测速发电机是一个关键的装置, 它的输出电压的幅值正比于转速, 极性反映电机的转向。测速精度、线性度、波型的纹波系数以及测量的小滞后性是它的主要性能指标。现有测速发电机的性能指标一般能满足大多数调速系统的需要。但是,它往往存在一个相当致命的缺陷,长期使用时可靠性不高。很多公司调速系统有三分之一的故障源于测速发电机的失效。其原因不外乎机械安装的同心度变坏、碳刷和换向器的磨损、永磁磁强的减弱等。[5. 1~2] 自整角机是一种感应式机电元件,被广泛地应用于随动系统中,作为角度传输、变换和指示的装置。在控制系统中经常两台或者多台联合使用,使机械上互不相连的两根或多根轴能够自动地保持相同的转角变化,或者同步旋转。 1 测速发电机与自整角机的分类 1.1测速发电机的分类 测速发电机是输出电动势与转速成比例的微特电机。其绕组和磁路经精确设计,输出电动势和转速成线性关系,改变旋转方向时输出电动势的极性即相应改变。测速发电机,其实质上是一种将转速变换为电信号的机电磁元件。从工作原理上讲,它属于“发电机”的范畴。测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。 测速发电机有直流和交流之分,而直流测速发电机又有他励和永磁之分,其结构和工作原理与小功率直流发电机相同,通常输出功率较小。作为计算元件时要求其输出电压的线性误差和温度误差低于一个上限。而交流测速发电机又有同步和异步之分,同步测速发电机包括:永磁式、感应式和脉冲式;异步测速发电机应用最广泛的是杯型转子异步测速发电机。 为了提高测速发电机的精确度和可靠性,目前,直流测速发电机出现了无刷结构的霍尔效应直流测速发电机。因为这种霍尔效应无刷直流测速发电机是一种无齿槽、无绕组的电机,所以它不会产生由于齿槽而存在的“齿槽谐波电势”,这种电机结构简单,便于小型化。 由于测速发电机在被测机构与测速发电机同轴联接时,只要检测出输出电动势,就能获得被测机构的转速,故又称速度传感器。为保证电机性能可靠,测速发电机的输出电动势具有斜率高、特性成线性、无信号区小或剩余电压小、正转和反转时输出电压不对称度小、对温度敏感低等特点。此外,直流测速发电机要求在一定转速下输出电压交流分量小,无线电干扰小;交流测速发电机要求在工作转速变化范围内输出电压相位变化小。 1.2自整角机的分类

直流、交流测速发电机的工作原理

直流、交流测速发电机的工作原理 来源:机械专家网发布时间:2010-03-20 机械专家网 一、直流测速发电机: 1、直流测速发电机的工作原理:在空载时,直流测速发电机的输出电压就是电枢感应电动势。显然输出电压与转速成正比。 2. 误差分析 直流测速发电机的输出电压与转速要严格保持正比关系在实际中是难以做到的,其实际的输出特性为图中实线,造成这种非线性误差的原因主要有以下三个方面: (1)电枢反应 直流测速发电机负载时电枢电流会产生电枢反应,电枢反应的去磁作用使气隙磁通Φ0减小,使输出电压减小。从输出特性看,斜率将减小,而且电枢电流越大,电枢反应的去磁作用越显著,输出特性斜率减小越明显,输出特性直线变为曲线。 (2)温度的影响 如果直流测速发电机长期使用,其励磁绕组会发热,其绕组阻值随温度的升高而增大,励磁电流因此而减小,从而引起气隙磁通减小,输出电压减小,特性斜率减小。温度升得越高,斜率减小越明显,使特性向下弯曲。 可在励磁回路中串接一个阻值较大而温度系数较小的锰铜或康铜电阻,以减小由于温度的变化而引起的电阻变化,从而减小因温度而产生的线性误差。 (3)接触电阻 如果电枢电路总电阻包括电刷与换向器的接触电阻,那么输出电压受接触电阻压降影响总是随负载电流变化而变化,当输入的转速较低时,接触电阻较大,使此时本来就不大的输出电压变得更小,造成的线性误差很大;当电流较大的,接触电阻较小而且基本上趋于稳定的数值,线性误差相对而言小得多。 另外,直流测速发电机输出的是一个脉动电压,其交变分量对速度反馈控制系统、高精度的解算装置有较明显的影响。 二、交流测速发电机: 交流测速发电机分为同步测速发电机和异步测速发电机。在实际应用中异步测速发电机使用较广泛。 交流异步测速发电机工作原理 交流异步测速发电机与交流伺服电动机的结构相似,其转子结构有笼型的,也有杯型的,在自动控制系统中多用空心杯转子异步测速发电机。空心杯转子异步测速发电机定子上有两个在空间上互差90°电角度的绕组,一为励磁绕组,另一为输出绕组。 ·空心杯转子异步测速发电机原理: 当定子励磁绕组外接频率为 f的恒压交流电源 u,励磁绕组中有电流 i流过,在直轴(即轴)上产生以频率 f脉振的磁通。 在转子不动时,脉振磁通在空心杯转子中感应出变压器电势(空心杯转子可以看成有无数根导条的笼式转子,相当于变压器短路时的二次绕组,而励磁绕组相当于变压器的一次绕组),产生的磁场与励磁电源同频率的脉振磁场,在转子转动时,转子切割直轴磁通,在杯型转子中感应产生旋转电势,其大小正比于转子转速,并以励磁磁场的脉振频率交变,又因空心杯转子相当于短路绕组,故旋转电势在杯型转子中产生交流短路电流,若忽视杯型转子的漏抗的影响,那么此短路电流所产生的脉振磁通在空间位置上与输出绕组的轴线一致,因此转子脉振磁场与输出绕组相交链而产生感应电势。输出绕组感应产生的电势实际就是交流异步测速发电机输出的空载电压,其大小正比于转速,其频率为励磁电源的频率。

低压电器及其控制设计实验指导书

低压电器及其控制设计实验指导书

目录 D Z SZ-1型电机及电气技术实验装置受试电机铭牌数据一览表......... II D Z SZ-1型电机及自动控制实验装置简介 (1) 三相异步电动机点动和自锁控制线路设计及 三相异步电动机的正反转控制线路设计 (4)

D Z SZ-1型电机及电气技术实验装置受试电机铭牌数据一览表

DZSZ-1型电机及自动控制实验装置简介 《电力拖动自动控制系统》、《电机控制》是电器工程及自动化、自动化等专业重要的专业课。DZSZ-1型电机及自动控制实验装置采用组件挂箱式结构,可根据不同实验内容进行组合,结构紧凑、使用方便、功能齐全、综合性能好,可满足《电机控制》、《直流调速系统》、《交流调速系统》等课程的实验教学。 一.系统配置的组件 1.DZ01 电源控制屏 2.DZ02实验桌 3.DZ03电机导轨、测速发电机及转速表 4.DZ04直流电压、电流表 5.DD05测功支架、测功盘及弹簧秤 6.DJ11三相组式变压器 7.DJ13直流复励发电机 8.DJ14直流串励电动机 9.DJ15直流并励电动机 10.DJ16三相鼠笼式异步电动机 11.DJ17三相绕线式异步电动机 12.DJ17-1绕线式异步电机起动与调速电阻箱 13.DJ20单相电容运转异步电动机 14.DJ21单相电阻起动异步电动机 15.DJ23校正过的直流测功机 16.DJ24三相鼠笼式异步电动机 17.D31直流数字电压、毫安、安培表(三只) 18.D32交流电流表(三只) 19.D33交流电压表(三只) 20.D34-3单、三相智能功率及功率因数表 21.D41三相可调电阻器(90欧×2,1.3A) 22.D42三相可调电阻器(900欧×2,0.41A) 23.D43三相可调电抗器 24.D45-1测功专用电阻、电容器 25.D51波形测试及开关板

自整角机的工作原理

自整角机的工作原理 1 控制式自整角机的工作原理 控制式自整角机的工作原理可以由左图来说明。图中由结构、参数均相同的两台自整角机构成自整角机组。一台用来发送转角信号,它的励磁绕组接到单相交流电源上,称为自整角发送机,用ZKF表示。另一台用来接收转角信号并将转角信号转换成励磁绕组中的感应电动势输出,称之为自整角接收机,用ZKJ表示。两台自整角机定子中的整步绕组均接成星形,三对相序相同的相绕组分别接成回路。 图7-31 控制式自整角机工作原理图 在自整角发送机的励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将产生脉振磁场,其大小随时间按余弦规律变化。脉振磁场使自整角发送机整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。当整步绕组中的某一相绕组轴线与励磁绕组轴线重合时,该相绕组中的感应电动势为最大值,用EFm表示电动势的最大值。 设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θJ,接收机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θF ,如图上图所示。发送机整步绕组中各相绕组的感应电动势有效值为 可以证明:接收机励磁绕组的合成电动势,即输出电动势E0为 式中E0m ——最大输出电动势有效值

从上式看出,失调角=0 时,接收机的输出电动势为最大而不是零, 且与失调角有余弦关系的输出电动势不能反映发送机转子的偏转方向,故很不实用。实际的控制式自整角机是将接收机转子绕组轴线与发送机转子绕组轴线 垂直时的位置作为计算的起始位置。此时,输出电动势表示为 由于接收机转子不能转动,即是恒定的。控制式自整角机的输出电动势的大小反映了发送机转子的偏转角度,输出电动势的极性反映了发送机转子的偏转方向,从而实现了将转角转换成电信号。 2力矩式自整角机的工作原理 力矩式自整角机的工作原理可以由左图来说明。图中由结构、参数均相同的两台自整角机构成自整角机组,一台用来发送转角信号,称自整角发送机,用ZLF 表示;另一台用来接收转角信号,称为自整角接收机,用ZLJ表示。两台自整角机中的整步绕组均接成星形,三对相序相同的相绕组分别连接成回路。两台自整角机转子中的励磁绕组接在同一个单相交流电源上。 图7-35 力矩式自整角机接线图及磁动势图 在励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将生成脉振磁场,其大小随时间按余弦规律变化。脉振磁场使整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。当整步绕组中的某一相绕组轴线与其对应的励磁绕组轴线重合时,该相绕组中的感应电动势为最大,用Em表示电动势的最大值。 设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为 F ,

电机设备THDSZ-1使用说明讲解

DDSZ-1型电机及电气技术实验装置 一、概述 “DDSZ-1型电机及电气技术实验装置”是由本企业设计的新颖综合性的实验装置,它针对目前我国高等院校“电机学”、“电机与拖动”、“微特电机”、“电机控制”、“继电接触控制”、“可编程控制器技术”及“工厂电气控制”等课程实验大纲的要求,能开设上述课程的相关实验。本实验装置特别适用于高等院校现有的电机、电气技术实验设备的更新改造,为中等专业学校、职业技术学院等新建或扩建实验室,迅速开设实验课提供了理想的实验设备,同时也为教师或研究生开发新的实验或进行科学研究提供了良好的硬件条件。 二、特点 1.综合性强本装置综合了目前国内各类院校电机及电气类课程的全部实验项目。 2.适应性强能满足各类学校相应课程的实验教学,实验的深度与广度可根据需要作灵活调整,普及与提高可根据教学的进程作有机地结合。装置采用组件式结构,更换便捷,如需要扩展功能或开发新实验,只需添加部件即可,永不淘汰。 3.整套性强从仪器仪表、专用电源、电机及其它实验部件到实验连接专用导线等均配套齐全,配套部件的性能、规格等均密切结合实验的需要进行配置。 4.直观性强各实验挂件采用分隔结构形式,组件面板示意、图线分明,各挂件任务明确,操作、维护方便。 5.科学性强装置占地面积少,节约实验用房,减少基建投资;配套的小电机均经特殊设计,可模拟中小型电机的特性和参数;小电机耗电少,节约能源;实验噪声小,整齐美观,改善实验环境;电气控制实验,内容丰富,设计合理,除了巩固与加深理论知识外,还为学生走向社会打下良好的基础;测量仪表采用指针式(带超量程告警等)、数模双显、数字式、智能化及人机对话等相结合,密切结合教学实验需要进行配置,使装置测量手段现代化;设有定时器兼报警记录仪,为学生实验技能的考核提供一个统一的标准。 6.开放性强控制屏供电隔离(浮地设计),并设有内、外电压型漏电保护装置和电流型漏电保护装置,确保操作者的安全;各电源输出均有监示及短路保护等功能,使用方便;各测量仪表均有保护功能,整套装置经过精心设计,加上可靠的元器件质量及精致的工艺,产品性能优良,所有这些均为开放性实验创造了条件,有利于提高学生分析和解决问题的能力。 三、技术性能 1.输入电源:三相四线~380V±10% 50Hz 2.工作环境:温度-10℃~+40℃相对湿度<85%(25℃) 海拔<4000m 3.装置容量:<1.5kVA 4.重量: 480kg 5.外形尺寸:187cm×73cm×160cm 四、实验项目 1.直流电机实验 (1)认识实验 (2)直流发电机 (3)直流并励电动机 (4)直流串励电动机 (5)并励电动机转动惯量测试 2.变压器实验 (1)单相变压器 (2)三相变压器(3)三相变压器的联接组和不对称短路 (4)三相三绕组变压器

DDSZ1实验指导书

Tianhuang Teaching Apparatuses 天煌教仪 电机系列实验 DDSZ-1型 电机及电气技术实验装置Motor And Electric Technique Experimental Equipment 实验指导书 天煌教仪 浙江天煌科技实业有限公司

DDSZ-1型电机及电气技术实验装置受试电机铭牌数据一览表

DDSZ-1型电机及电气技术实验装置交流及直流电源操作说明 实验中开启及关闭电源都在控制屏上操作。开启三相交流电源的步骤为: 1)开启电源前。要检查控制屏下面“直流电机电源”的“电枢电源”开关(右下角)及“励磁电源”开关(左下角)都须在“关”断的位置。控制屏左侧端面上安装的调压器旋钮必须在零位,即必须将它向逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“关”按钮指示灯亮,表示实验装置的进线接到电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“开”按钮,“开”按钮指示灯亮,表示三相交流调压电源输出插孔U、V、W及N上已接电。实验电路所需的不同大小的交流电压,都可适当旋转调压器旋钮用导线从这三相四线制插孔中取得。输出线电压为0-450V(可调)并可由控制屏上方的三只交流电压表指示。当电压表下面左边的“指示切换”开关拨向“三相电网电压”时,它指示三相电网进线的线电压;当“指示切换”开关拨向“三相调压电压”时,它指示三相四线制插孔U、V、W和N输出端的线电压。 4)实验中如果需要改接线路,必须按下“关”按钮以切断交流电源,保证实验操作安全。实验完毕,还需关断“电源总开关”,并将控制屏左侧端面上安装的调压器旋钮调回到零位。将“直流电机电源”的“电枢电源”开关及“励磁电源”开关拨回到“关”断位置。 开启直流电机电源的操作: 1)直流电源是由交流电源变换而来,开启“直流电机电源”,必须先完成开启交流电源,即开启“电源总开关”并按下“开”按钮。 2)在此之后,接通“励磁电源”开关,可获得约为220V、0.5A不可调的直流电压输出。接通“电枢电源”开关,可获得40~230V、3A可调节的直流电压输出。励磁电源电压及电枢电源电压都可由控制屏下方的1只直流电压表指示。当将该电压表下方的“指示切换”开关拨向“电枢电压”时,指示电枢电源电压,当将它拨向“励磁电压”时,指示励磁电源电压。但在电路上“励磁电源”与“电枢电源”,“直流电机电源”与“交流三相调压电源”都是经过三相多绕组变压器隔离的,可独立使用。 3)“电枢电源”是采用脉宽调制型开关式稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时的保护电路。所以本电源在开机时,从电枢电源开合闸到直流电压输出约有3~4秒钟的延时,这是正常的。 4)电枢电源设有过压和过流指示告警保护电路。当输出电压出现过压时,会自动切断输出,并告警指示。此时需要恢复电压,必须先将“电压调节”旋钮逆时针旋转调低电压到正常值(约240V以下),再按“过压复位”按钮,即能输出电压。当负载电流过大(即负载电阻过

控制式自整角机

控制式自整角机 一、实验目的 1、通过实验测定控制式自整角机的主要技术参数 2、掌握控制式自整角机的工作原理和运行特性 二、预习要点 1、控制式自整角机的工作原理和运行特性 2、控制式自整角机的主要技术指标 三、实验项目 1、测自整角变压器输出电压与失调角的关系U2=f(θ) 2、测定比电压Uθ和零位电压U0 四、实验方法 1、测定控制式自整角变压器输出电压与失调角的关系U2=f(θ) (1)按图7-8接线。发送机加额定电压,旋转发送机刻度盘至0o位置并固紧。 (2)用手缓慢旋转自整角变压器的指针圆盘,接在L1′、L2′两端的数字电压表就有相应读数,找到输出电压为最小值的位置,即为起始零点。 (3)然后,用手缓慢旋转自整角变压器的指针圆盘,在指针每转过10 o时测量一次自整角变压器的输出电压U2。测取各点U2及θ值并记录于表7-16中。 2、测定比电压Uθ 比电压是指自整角变压器在失调角为1o时的输出电压,单位为v/deg。 在刚才测定控制式自整角变压器输出电压与失调角关系的实验时,用手缓慢旋转自整角变压器的指针圆盘,使指针转过起始零点5 o,在这位置记录自整角变压器的输出电压U2值,计算失调角为1 o时的输出电压。

图7-8 控制式自整角机实验接线图 3、测定零位电压U 0 1)按图7-9接线。调压器输出电压为最小位置,绕组T 2′、T 3′两端点短接。 2)合上交流电源,缓慢调节调压器使输出电压为49V ,并保持不变。 3)用手缓慢旋转指针圆盘,找出控制式自整角机输出电压为最小的位置,即为基准电气零位。指针转过180 o ,仍找出零位电压位置。 4)同样方法,改接绕组(使T 1′、T 3′短接,T 1′、T 2′短接),找出零位电压位置,测量六个位置的零位电压值并记录于表7-17中。 图7-9 测定控制式自整角机零位电压接线图 V L '2L ' 1

测速发电机的应用-直流测速发电机测速误差分析及减小误差的方法.

测速发电机的应用-直流测速发电机测速误差分析及减小误差的方法研究 论文毕业论文 直流测速发电机作为自动控制系统中的校正元件,就其物理本质来说,是一种测量转速的微型直流发电机;从能量转换的角度看,它把机械能转换为电能,输出直流电;从信号转换的角度看,它把转速信号转换成与转速成正比的直流电压信号输出,因而可以用来测量转速。 1 自动控制系统对直流测速发电机的要求 自动控制系统对其元件的要求,主要是精确度高、灵敏度高、可靠性好等。据此,直流测速发电机在电气性能方面应满足以下几项要求: (1)输出电压与转速的关系曲线(输出特性) a RL =∞ 应为线性Ua=K*n,如图1所示。 RL1 (2)输出特性的斜率要大; (3)温度变化对输出特性的影响要小; RL2 (4)输出电压的纹波要小; (5)正、反转两个方向的输出特性要一致。 RL1> RL2 可以看出,第(2)项要求是为了提高测速发 图1: 不同负载电阻时的 电机的灵敏度。因为输出特性斜率大,即△U/△n大, 理想输出输出特性 这样,测速机的输出对转速的变化很灵敏。负载时输出电压与转速的关系式为:Ua=CeΦ*n/(1+Ra/Rl) 如果式中Ф、Ra和Rl都能保持常数,则Ua与n之间仍呈线性关系,只不过随着负载电阻的减小,输出特性的斜率变小而已,如图1所示。第(1)、(3)、(4)、(5)项的要求是为了提高测速机的精度。因为只有输出电压与转速成线性关系,并且正、反转时特性一致,温度变化对特性的影响越小,输出电压越稳定,输出电压才越能精确地反映转速,才能有利于提高整个系统的精度。 2 直流测速发电机的误差及其减小的方法 实际上,测速发电机的输出特性不是严格地呈线性特性,实际特性与要求的线性特性间存在误差。 2.1 温度影响 直流测速发电机Ua=f(n)为线性关系的条件之一是励磁磁通Ф为常数。实际上,电机周围环境温度的变化以及电机本身发热(由电机各种损耗引起)都会引起电机绕组电阻的变化。当温度升高时,励磁绕组电阻增大,励磁电流减小,磁通也随之减小,输出电压就降低。反之,当温度下降时,输出电压就升

自整角机实验

力矩式自整角机实验 自整角机是一种对角位移或角速度的偏差有自整步能力的控制电机,他广泛用于显示装置和随动系统中,使机械上互不相连的两根或多根转轴能自动保持相同的转角变化或同步旋转,在系统中通常是两台或多台自整角机组合使用。产生信号的一方称发送机,接收信号的一方称为接收机。 使用说明 1、自整角机技术参数 发送机型号BD-404A-2 接收机型号BS-404A 激磁电压220V±5% 激磁电流0.2A 次级电压49V 频率50H Z 2、发送机的刻度盘及接收机的指针调准在特定位置的方法 旋松电机轴头螺母,拧紧电机后轴头,旋转刻度盘(或手拨指针圆盘)至某要求的刻度值位置,保持该电机转轴位置并旋紧轴头螺母。 3、接线柱的使用方法 本装置将自整角机的五个输出端分别与接线柱对应相连,激磁绕组用L1、L2(L1′、L2′)表示;次级绕组用T1、T2、T3、(T1′、T2′、T3′)表示。使用时根据实验接线图要求用手枪插头线分别和接线柱连接,即可完成实验要求。(注:电源线、连接导线出厂配套)。 4、发送机的刻度盘上边和接收机的指针两端均有20小格的刻度线,每一小格为3′,转角按游标尺方法读数。 5、接收机的指针圆盘直径为4cm,测量静态整步转矩=砝码重力×圆盘半径=砝码重力×2cm。 6、将固紧滚花螺钉拧松后,便可用手柄轻巧旋转发送机的刻度盘(不允许用力向外拉,以防轴头变形)。如需固定刻度盘在某刻度值位置不动,可用手旋紧滚花螺钉。 7、需吊砝码实验时,将串有砝码勾的另一线端固定在指针小圆盘的小孔上,将线绕过小圆盘上边凹槽,在砝码勾上吊砝码即可。 8、每套自整角机实验装置中的发送机、接收机均应配套,按同一编号配套。 9、自整角机变压器用力矩式自整角接收机代用。 10、需要测试激磁绕组的信号,在该部件的电源插座上插上激磁绕组测试线即可。

自整角机伺服系统的设计与仿真

四川师范大学本科毕业设计伺服系统的设计与仿真 学生姓名叶峻嘉 院系名称工学院 专业名称电子工程及其自动化 班级2008 级 2 班 学号2008180243 指导教师杨楠 完成时间2012年 5 月 15 日

伺服系统的设计与仿真 姓名:叶峻嘉指导教师:杨楠 内容摘要:伺服广义上是指用来控制被控对象的某种状态或某个过程,使其输出量能自动地、连续地、精确地复现或跟踪输入量的变化规律。其控制行为的主要特征表现为输出“服从”输入,输出“跟随”输入(为此伺服系统也叫做随动系统)。本设计选择以自整角机为检测元件的伺服系统为具体研究对象。系统包括以下几个环节:自整角机、相敏整流器、可逆功率放大器、执行机构及减速器。基于上述模型,本文通过具体实例分析了系统的稳定性、动态性能,并对系统的误差进行了简单分析,指出各种误差来源并写出具体表达式和数学关系,并针对性地提出了有效校正方案并采用串联校正装置进行仿真分析,结果表明校正后的系统总体工作稳定可靠,指标满足设计要求。 关键词:MATLAB 自整角机伺服系统动态性能仿真分析

Design and simulation of the servo system Abstract:Servo broadly refers to the variation used to control the controlled object in a state or a process, so that output can automatically,continuously and accurately reproduce or track the variation of the input.The main features of the control behavior for the output "obey" input and output follow theinput (this servo system is also called servo systems).This design choice selsyn for the detection of components for the specific object of study to servo system. The system consists of the following links: synchro, the phase-sensitive rectifier, reversible power amplifier, implementing agencies and reducer. Based on the above model, through concrete examples and analysis ofsystem stability,dynamic performance, and system errors, a simple analysis, pointing outthe various sources of error and write specific expression and mathematical relationships, and puts forward effective correction programs and using the regulatorto simulate and analyze the results show that the overall system stable and reliableindicators to meet the design requirements. Keywords: MATLAB Synchro Servo System Dynamic Correction SimulationAnalysis

力矩式自整角机

实验报告 课程名称:控制电机 实验项目:力矩式自整角机 实验地点:电机馆一层电机实验室专业班级: 学号: 学生姓名: 指导教师:王淑红 2013年04 月25 日

一、 实验目的和要求 1、 了解力矩式自整角机精度和特性的测定方法。 2、 掌控力矩式自整角机系统的工作原理和应用知识。 二、 实验内容 1、 测定力矩式自整角机静态整步转矩与失调角的关系 ) (θf T =2、 测定力矩式自整角机的静态误差jt θ? 3、 测定力矩式自整角机的比整步转矩θT 三、 主要仪器设备 四、 操作方法与实验步骤 1、 测定力矩式自整角机静态整步转矩与失调角的关系)(θf T = (1) 确保断电情况下,按图1-3接线。 (2) 将发送机和接收机的励磁绕组加额定激磁电压220V ,待稳定 后,发送机和接收机均调整到0o 位置。固紧发送机刻度盘在该位置。 (3) 在接收机的指针圆盘上吊砝码,记录砝码重量以及接收机转轴

偏转角度。在偏转角从零至90o 之间取7~9组数据并记录于表1-4中。 2、 测定力矩式自整角机的静态误差jt ?? (1) 接线图仍按图1-3. (2) 发送机和接收机的励磁绕组加额定电压220V ,发送机的刻度盘 不固紧,并将发送机和接收机均调整到0o 位置。 (3) 缓慢旋转发送机刻盘,每转过20o ,读取接收机实际转过的角度 并记录于表1-20中。 3、 测定力矩式自整角机的比整步转矩θT (1) 比整步转矩是指在力矩式自整角机系统中,在协调位置附近, 单位失调角所产生的整步转矩称为力矩式自整角机的比整步转矩。 (2) 测定接收机的比整步转矩时,可按图1-3接线,T2’、T3’用导 线短接,在励磁绕组L1-L2两端上施加电压,在指针圆盘加砝码,使指针偏转5o 左右,测得比整步转矩。 (3) 实验在正、反两个方向各测一次,两次测两的平均值应符合标 准规定。将数据记录于表1-6中。

测速发电机

3-1何为测速发电机? 答:测速发电机是一种检测机械转速的电磁装置。它能把机械转速变换成电压信号输出,其输出电压与输入的转速成正比关系。 3-2.何为直流测速发电机的输出特性?在什么条件下是线性特性?产生误差的原因有哪些? 答:输出电压与转速之间的关系称为直流测速发电机的输出特性;当不考虑电枢反应,且认为Φ、a R 及L R 都不变时,输出电压 a U 与转速成线性关系,即直流测速发电机的输出特性是线性特性。产生误差的原因:电枢反应的影响、电刷接触电阻的影响、电刷位置的影响、温度的影响、文波影响。 3-3为什么直流测速发电机在使用时转速不宜超过规定的最高转速?而负载电阻不能小于规定值? 答:因为电枢反应和延迟换向的去磁效应使线性误差随着转速的增高或负载电阻的减少而增大。因此,在使用时必须注意发电机的转速不能超过规定的最高转速,负载电阻不能小于规定的最小电阻值。 3-4.若直流测速发电机的电刷没有放在几何中性线的位置上,试问此时电机正、反转时的输出特性是否—样?为什么? 答:当直流测速发电机带负载运行时,若电刷没有严格地位于几何中性线上,会造成测速发电机正反转时输出电压不对称,即在相同的转速下,测速发电机正反向旋转时,输出电压不完全相等。 因为,当电机正转时,电刷顺转子旋转方向偏离几何中性线,电枢直轴磁动势起去磁作用,使气隙磁通减小,电枢绕组的感应电动势减少,输出电压也随之减少;当电机反转时,电刷逆转子旋转方向偏离几何中性线,电枢直轴磁动势起增磁作用,使气隙磁通增加,电枢绕组的感应电动势增大,输出电压也随之增大;所以此时电机正、反转时的输出特性是不一样的。 3-5.为什么异步测速发电机的转子都用非磁性空心杯结构,而不用鼠笼式结构? 答:根据结构特点笼形转子异步测速发电机输出斜率大,但线性度差,相位误差大,剩余电压高。而空心杯形转子异步测速发电机的精度较高,转子转动惯量也小,性能稳定好。因此,异步测速发电机的转子都用非磁性空心杯结构,而不用鼠笼式结构。 3-6.异步测速发电机转子不转时,为什么没有电压输出?转动时为什么输出电压与转速成正比? 答:因为,转子不转时,励磁电流产生的脉动磁通d Φ 在 变压器电动势和电流,由于输出绕组与励磁绕组在空间相差900电角度,d Φ 不 能在输出绕组中感应电动势,因此,输出绕组没有电压输出;转子转动时,由于转子绕组切割直轴磁场d Φ ,产生感应电动势(切割电动势)?r E ,此电动势产生同频率的转子电流,忽略电抗的影响,可以认为感应电动势(切割)和转子电流同相位,转子电流产生频率为f1的交轴脉动磁通?Φq 与输出绕组的轴线方向

化工仪表及自动化实验

化工仪表及自动化实验 化工仪表及自动化实验 主编: 何京敏 中国矿业大学化工学院 过程装备与控制工程实验室 二零一零年十一月

目录 实验一化工仪表认识实验 (3) 实验二DCS认识实验 (5) 实验三、单容水箱液位PID整定实验 (9) 附录:实验二“天塔之光”参考程序 (12)

实验一化工仪表认识实验 实验项目性质:演示性 实验计划学时:2 一、实验原理 化工仪表通称为工业自动化仪表或过程检测控制仪表,用于化工过程控制。是对化工过程工艺参数实现检测和控制的自动化技术工具,能够准确而及时地检测出各种工艺参数的变化,并控制其中的主要参数,保持在给定的数值或规律,从而有效地进行生产操作和实现生产过程自动化。 化工仪表按功能可分为检测仪表、在线分析仪表和控制仪表。①检测仪表,或称化工测量仪表。用以检测、记录和显示化工过程参数的变化,实现对生产过程的监视和向控制系统提供信息。如温度、压力、流量和液位等。②在线分析仪表,主要用以检测、记录和显示化工过程特性参数(如浓度、酸度、密度等)和组分的变化,是监视和控制生产过程的直接信息。③控制仪表(又称控制器或调节仪表),用以按一定精度将化工过程参数保持在规定范围之内,或使参数按一定规律变化,从而实现对生产过程的控制。 化工仪表从过去单参数检测发展到综合控制系统装置,从模拟式仪表发展到数字式、计算机式的智能化仪表。仪表基础元器件正在向高精度、高灵敏度、高稳定性、大功率、低噪音、耐高温、耐腐蚀、长寿命、小型化、微型化方向发展。仪表的结构向模件化、灵巧化等方向发展;正在加强红外、激光、光导纤维、微波、热辐射、晶体超声、振弦、核磁共振、流体动力等多种新技术、新材料和新工艺向检测及传感器领域的渗透。以应用微型计算机技术为核心,以现代控制理论和信息论为指导,与各种新兴技术如半导体、光导纤维、激光、生化、超导及新材料等相结合,将使化工仪表进入多学科发展的新阶段。 一、实验目的 1.初步了解《化工仪表及自动化》课程所研究的各种常用的结构、类型、特点及应用。 2.了解常用传感器的结构特点及应用。 3.了解常用智能仪表的结构特点及应用。 4.了解常用电动调节阀的结构特点及应用。 5.增强对化工仪表的结构及化工过程控制的感性认识。 二、实验设备 AE2000A高级过程控制实验装置、常用传感器及仪表。 三、实验方法 学生们通过对实验指导书的学习及“实验装置”中的各种仪表的展示,实验教学人员的介绍,答疑及同学的观察去认识化工常用仪表的基本结构和原理,使理论与实际对应起来,从而增强同学对化工仪表的感性认识。并通过展示的传感器与变送、控制仪表和和执行机构等,使学生们清楚知道化工过程控制的基本组成要素—化工仪表。

液压舵机操作实验

实验三液压舵机的操作实验 一、实验内容 1、液压舵机遥控系统操舵试验与调整。 2. 电子式随动操舵系统操舵实验。 二、实验要求 通过实验,熟悉典型液压航机及遥控系统的组成和工作原理,掌握操舵方法。 三、实验设备 YD100 -1.6 / 28型液压舵机1套 D D1型电子随动操舵仪1台 (一)YD100 - 1.6 / 28型液压舵机 该舵机由广西梧州华南船舶机械厂制造。现装于辅机实验室内。 其主要技术数据如下: 型号:Y D100- 1.6/ 2 8 公称力矩: 1.6 t m(15.6 KN.M) 转舵时间:28 sec 最大转角正负35度 工作压力:100 kg/cm2 (9.81MPa) 安全阀调整压力:110kg/cm2 (10.8MPa) 电动机型号:JO2H-12-4(Y80L2一4) 电动机功率:0.8 kW 电动机转速: 1500 r.p.m. 电动机电压。380 V 油泵型号;10 SCYI4一1 油泵排量;10 m L/r 最大工作压力:320 kg/cm2(31.4MPa) 电磁阀型号: 34 E 1M-B10H-T

电磁阀流量:40L/min 电磁阀最大工作压力:210 kg/cm2(20.59 MPa) 溢流阀型号:Y E-B10 C 电磁阀流量:40 L/min 溢流阀最大工作压力:140 kg/cm2(13.73MPa) 注:转舵时间系指单机而言,双机组工作时,转舵速度可提高一倍。 1.转舵机构 舵机的转舵机构是采用柱塞式油缸,柱塞的往复运动通过拨叉机构转换为舵柄的转动。所以,舵机的输出力矩与工作油压的关系为(见图3—1)。 πd2R△P M= Z η 4 cos2a 式中:Z——油缸对数(Z=1) d——柱塞直径(d=10cm) R——舵杆中线到油缸中心线的垂直距离(R=18cm) △P——油缸压差(△P=P1—P2) η——推舵装置机械效率(η≈0.8) a——舵的转角 舵机力矩特性M=f(a)如图3—2所示。舵机公称力矩系指舵机转动舵杆的最大力矩,即舵的转角为35°时舵机的输出力矩。. 该舵机的转舵机构主要由油缸、柱塞、舵柄、边舵柄、拉杆等组成,如图3—3所示。 2.轴向柱塞式油泵 该舵机的油泵为手动变量轴向柱塞泵,其工作原理如图3-4所示。它由湖南邵阳液压件厂生产。 泵的传动轴(19)通过花键与缸体(16)连接,且带动缸体(16)旋转,使

化工仪表与自动化实验

化工仪表及自动化实验 主编: 何京敏 中国矿业大学化工学院 过程装备与控制工程实验室 二零一零年十一月

目录 实验一化工仪表认识实验 (3) 实验二 DCS认识实验 (5) 实验三、单容水箱液位PID整定实验 (9) 附录:实验二“天塔之光”参考程序 (12)

. . . . 实验一化工仪表认识实验 实验项目性质:演示性 实验计划学时:2 一、实验原理 化工仪表通称为工业自动化仪表或过程检测控制仪表,用于化工过程控制。是对化工过程工艺参数实现检测和控制的自动化技术工具,能够准确而及时地检测出各种工艺参数的变化,并控制其中的主要参数,保持在给定的数值或规律,从而有效地进行生产操作和实现生产过程自动化。 化工仪表按功能可分为检测仪表、在线分析仪表和控制仪表。①检测仪表,或称化工测量仪表。用以检测、记录和显示化工过程参数的变化,实现对生产过程的监视和向控制系统提供信息。如温度、压力、流量和液位等。②在线分析仪表,主要用以检测、记录和显示化工过程特性参数(如浓度、酸度、密度等)和组分的变化,是监视和控制生产过程的直接信息。③控制仪表(又称控制器或调节仪表),用以按一定精度将化工过程参数保持在规定围之,或使参数按一定规律变化,从而实现对生产过程的控制。 化工仪表从过去单参数检测发展到综合控制系统装置,从模拟式仪表发展到数字式、计算机式的智能化仪表。仪表基础元器件正在向高精度、高灵敏度、高稳定性、大功率、低噪音、耐高温、耐腐蚀、长寿命、小型化、微型化方向发展。仪表的结构向模件化、灵巧化等方向发展;正在加强红外、激光、光导纤维、微波、热辐射、晶体超声、振弦、核磁共振、流体动力等多种新技术、新材料和新工艺向检测及传感器领域的渗透。以应用微型计算机技术为核心,以现代控制理论和信息论为指导,与各种新兴技术如半导体、光导纤维、激光、生化、超导及新材料等相结合,将使化工仪表进入多学科发展的新阶段。 一、实验目的 1.初步了解《化工仪表及自动化》课程所研究的各种常用的结构、类型、特点及应用。 2.了解常用传感器的结构特点及应用。 3.了解常用智能仪表的结构特点及应用。 4.了解常用电动调节阀的结构特点及应用。 5.增强对化工仪表的结构及化工过程控制的感性认识。 二、实验设备 AE2000A高级过程控制实验装置、常用传感器及仪表。 三、实验方法 学生们通过对实验指导书的学习及“实验装置”中的各种仪表的展示,实验教学人员的介绍,答疑及同学的观察去认识化工常用仪表的基本结构和原理,使理论与实际对应起来,从而增强同学对化工仪表的感性认识。并通过展示的传感器与变送、控制仪表和和执行机构等,使学生们清楚知道化工过程控制的基本组成要素—化工仪表。

直流测速发电机应用案例

直流测速发电机应用案例 有关直流测速发电机特点、应用、控制的研究 摘要: 直流测速发电机是一种测速元件,它把转速信号转换成直流电压信号输出。直流测速发电机广泛地应用于自动控制、测量技术和计算机技术等装置中。直流测速发电机可分为电磁式和永磁式两种。电磁式励磁绕组接成他励,永磁式采用矫顽力高的磁钢制成磁极。由于永磁式不需另加励磁电源,也不因励磁绕组温度变化而影响输出电压,故应用较广。 关键词: 直流测速发电机特点应用控制研究 0引言: 直流测速发电机是一种微型直流发电机,实质是一种转速测量传感器,将机械速度转变为电压信号,在自动控制系统和计算装置中作为检测元件、校正元件等。在恒速控制系统中,测量旋转装置的转速,向控制电路提供与转速成正比的信号电压作为反馈信号,以调节速度。工作原理如图。 当被测装置带动发电机电枢旋转,电枢产生电动势Ea,其大小为 Ea=KEφn 发电机的输出电压为: U=Ea-RaIa=KEφn-RaIa 又:Ia=U/RL 故:U=(KEφ/1+ (Ra/RL))n 可见,当励磁电压Uf保持恒定时,φ亦恒定,若Ra、RL不变,输出电压U的大小与转速n成正比(U=k n)。对于不同的负载电阻RL,测速发电机输出特性的斜率有所不同,如图2。由于电机电枢反应,使输出电压与转速有一定的线性误差。RL越小、n越大,误差越大。因此,应使RL和n的大小符合直流测速发电机的技术要求,以确保控制系统的精度。

2012年4月30日 直流测速发电机的输出特性 图为直流测速发电机在恒速控制系统中的应用图。其中,直流伺服电动机S M拖动机械负载,要求负载转矩变动时,系统转速不变。SM同轴连接直流测速发电机TG,将TG输出电压送入系统的输入端作为反馈电压Uf,且Uf与给定电压 恒速控制系统原理图 1直流测速发电机特点: 自动控制系统对其元件的要求,主要是精确度高、灵敏度高、可靠性好等。据此,直流测速发电机在电气性能方面具有以下几项特点: 3.1输出电压和转速的关系曲线(即为输出特性)应为线性; 3.2温度变化对输出特性的影响要小; 3.3输出特性的斜率要大; 3.4输出电压的纹波要小,即要求在一定的转速下输出电压要稳定,波动要小; 3.5正,反转两个方向的输出特性要一致,实际应用中一般都是不一致的,稍有差别; 3.6体积小、重量轻、结构简单、工作可靠、对无线电通信的干扰小、噪声小等特点。 不难理解,第3项是为了提高测速发电机的灵敏度。因为输出特性斜率大,即是速度变化相对的电压变化大,这样,测速成机的输出对转速的变化很灵敏。 第1、2、4、5项是为了提高测速发电机的精度。因为只有输出电压和转速成线性关系,并且正、反转时

电气控制综合实训解析

中国矿业大学机电动力与信息工程系 《电气控制综合实训》 名称:电气控制实训 专业名称:电气工程及其自动化 班级:电气工程及其自动化(1)班学号: 姓名: 指导教师: 设计时间:2014年10月12日—11月1日实训地点: 电气控制实训成绩评定表

指导教师签字:

目录 概述 (4) 一主回路设计 (4) 二测速回路设计 (6) 三安全回路设计 (7) 四控制回路 (10) 五辅助回路 (16)

TKD-A提升机电气控制线路设计 概述 TKD-A电气控制系统是为单绳缠绕式交流提升机配套设计。该系统在加速阶段、采用转子附加电阻调速,减速阶段采用动力制动等减速方式,可实现六阶段提升。转子回路切电阻采用电流附加时间原则。该系统主要包括主回路(定子回路、转子回路)、测速回路、安全回路、控制回路、辅助回路、可调闸回路等。 一主回路设计 (一)主回路工作原理 1、定子回路 提升电动机M的定子绕组经高压隔离开关QS1、高压油断路器QFG和高压换向器(正向接触器KMZ或反向接触器KMF)及线路接触器KML与高压6KV电源相连。接触器KML及KMZ或KMF控制电动机的通断和转向。高压油断路器设有失压脱扣器LSY及过流脱扣器LGL l、LGL2,,当电源电压过低或电动机过载时,QFG断开以保护电动机,同时串接在安全回路的常开触头断开,实现安全制动;与LSY串接了两个保护开关的闭锁触头:紧急情况下供司机控制的脚踏开关SJT的常开触头,高压换向室栏栅门闭锁开关SHL的常开触头。后者的作用是,在提升机正常工作时,为保障生产和人身安全,防止人员误入换向室。

当采用动力制动时,控制回路将断开KMF或KMZ及KML,却保证动力制动接触器KMD有电,提升机电动机定子改由可控硅变流装置送入直流电。QS2和QS3分别为6KV电源进线和备用线的高压隔离开关。 2、转子回路 转子回路外接8段电阻,在加速和动力制动过程中,由加速接触器KMl-KM8分段切除,来改变电动机的起动和制动特性,以满足提升机对速度的要求,并限制转子电流。

相关文档
最新文档