教你如何判别电源变压器参数

教你如何判别电源变压器参数
教你如何判别电源变压器参数

怎样判别电源变压器参数

电源变压器标称功率、电压、电流等参数的标记,日久会脱落或消失。有的市售变压器根本不标注任何参数。这给使用带来极大不便。下面介绍无标记电源变压器参数的判别方法。此方法对选购电源变压器也有参考价值。

一、识别电源变压器

1.从外形识别常用电源变压器的铁芯有E形和C形两种。E形铁芯变压器呈壳式结构(铁芯包裹线圈),采用D41、D42优质硅钢片作铁芯,应用广泛。C形铁芯变压器用冷轧硅钢带作铁芯,磁漏小,体积小,呈芯式结构(线圈包裹铁芯)。两者的外形见图1。2.从绕组引出端子数识别电源变压器常见的有两个绕组,即一个初级和一个次级绕组,因此有四个引出端。有的电源变压器为防止交流声及其他干扰,初、次级绕组间往往加一屏蔽层,其屏蔽层是接地端。因此,电源变压器接线端子至少是4个。

3.从硅钢片的叠片方式识别E形电源变压器的硅钢片是交*插入的,E片和I片间不留空气隙,整个铁芯严丝合缝,见图2。音频输入、输出变压器的E片和I片之间留有一定的空气隙,这是区别电源和音频变压器的最直观方法。至于C形变压器,一般都是电源变压器。

二、功率的估算

电源变压器传输功率的大小,取决于铁芯的材料和横截面积。所谓横截面积,不论是E形壳式结构,或是E形芯式结构(包括C形结构),均是指绕组所包裹的那段芯柱的横断面(矩形)面积,如图3的S面所示。在测得铁芯截面积S之后,即可按P=S2/1.5估算出变压器的功率P。式中S的单位是cm2。

例如:测得某电源变压器的铁芯截面积S=7cm2,估算其功率,得P=S2/1.5=72/1.5=33W 剔除各种误差外,实际标称功率是30W。

三、各绕组电压的测量

要使一个没有标记的电源变压器利用起来,找出初级的绕组,并区分次级绕组的输出电压是最基本的任务。现以一实例说明判断方法。

例:已知一电源变压器,共10个接线端子。试判断各绕组电压。

第一步:分清绕组的组数,画出电路图。

用万用表R×1挡测量,凡相通的端子即为一个绕组。现测得:两两相通的有3组,三个相

通的有1组,还有一个端子与其他任何端子都不通。照上述测量结果,画出电路图,并编号,如图4所示。

从测量可知,该变压器有4个绕组,其中标号⑤、⑥、⑦的是一带抽头的绕组,⑩号端子与任一绕组均不相通,是屏蔽层引出端子。

第二步:确定初级绕组。

对于降压式电源变压器,初级绕组的线径较细,匝数也比次级绕组多。因此,像图4这样的降压变压器,其电阻最大的是初级绕组。

第三步:确定所有次级绕组的电压。

在初级绕组上通过调压器接入交流电,缓缓升压直至220V。依次测量各绕组的空载电压,标注在各输出端。如果变压器在空载状态下较长时间不发热,说明变压器性能基本完好,也进一步验证了判定的初级绕组是正确的。

四、各次级绕组最大电流的确定

变压器次级绕组输出电流取决于该绕组漆包线的直径D。漆包线的直径可从引线端子处直接测得。测出直径后,依据公式I=2D2,可求出该绕组的最大输出电流。式中D的单位是mm。

例:测得某次级D=0.5mm,则其最大输出电流I=2D2=2×0.52=0.5A。

电源变压器铁芯规格表

电源变压器常用铁芯规格列表 常用国标部标全长a 全宽f 窗高e 窗宽c 舌宽d 边宽b EI28 28.0 25.0 17.0 6.0 8.0 4.0 EI30 30.0 25.0 15.0 5.0 10.0 5.0 EI35 35.0 29.5 19.5 7.7 9.6 5.0 GE10 36.0 31.0 18.0 6.5 10.0 6.5 EI38 38.0 32.0 19.2 6.4 12.8 6.4 EI41 41.0 33.0 21.0 8.0 13.0 6.0 EI42 42.0 35.0 21.0 7.0 14.0 7.0 GE12 44.0 38.0 22.0 8.0 12.0 8.0 EI48 EI48 48.0 40.0 24.0 8.0 16.0 8.0 GE14 50.0 43.0 25.0 9.0 14.0 9.0 EI54 54.0 45.0 27.0 9.0 18.0 9.0 GE16 56.0 48.0 28.0 10.0 16.0 10.0 EI57 57.0 47.5 28.5 9.5 19.0 9.5 EI60 60.0 50.0 30.0 10.0 20.0 10.0 EI66 EI66 66.0 55.0 33.0 11.0 22.0 11.0 GE19 67.0 57.5 33.5 12.0 19.0 12.0 EI75 75.0 62.5 37.5 12.5 25.0 12.5 EI76 76.2 63.5 38.1 12.7 25.4 12.7 GEB22 78.0 67.0 39.0 14.0 22.0 14.0

EI84 84.0 70.0 42.0 14.0 28.0 14.0 EI86 85.8 71.5 42.9 14.3 28.6 14.3 GEB26 94.0 81.0 47.0 17.0 26.0 17.0 EI96 EI96 96.0 80.0 48.0 16.0 32.0 16.0 EI105 105.0 87.5 52.5 17.5 35.0 17.5 GEB30 106.0 91.0 53.0 19.0 30.0 19.0 常用国标部标全长a 全宽f 窗高e 窗宽c 舌宽d 边宽b EI108 108.0 90.0 54.0 18.0 36.0 18.0 EI114 114.0 95.0 57.0 19.0 38.0 19.0 EI120 120.0 100.0 60.0 20.0 40.0 20.0 GEB35 123.0 105.5 61.5 22.0 35.0 22.0 GEB44 132.0 110.0 66.0 22.0 44.0 22.0 EI133 133.2 111.0 66.6 22.2 44.4 22.2 GEB40 144.0 124.0 72.0 26.0 40.0 26.0 EI150 150.0 125.0 75.0 25.0 50.0 25.0 EI152 152.4 127.0 76.2 25.4 50.8 25.4 GEB50 154.0 127.0 77.0 27.0 50.0 25.0 GEB54 162.0 135.0 81.0 27.0 54.0 27.0 GEB56 168.0 140.0 84.0 28.0 56.0 28.0 GEB57 171.0 142.8 85.8 28.5 57.0 28.5 GEB60 180.0 150.0 90.0 30.0 60.0 30.0

测量变压器变比、极性和联结组别

测量变压器变比、极性和联接组别 变压器变比指空载运行时一次绕组和二次绕组的线电压之比。一、二次侧接线相同,变比等于匝数比,11221212124.44 4.44E fN E fN U U E E N N =Φ=Φ≈=(如下图); 一次侧为三角形接线,二次侧为星形接线的三相变压器电压比为12K N ;一次侧为 星形接线,二次侧为星形接线的三相变压器电压比2K N =。 A X 试验目的:测变比、联接组别和设计值是否相符(验证项目),是否和厂家铭牌相符(变比,一档最大,二档次之,三档最小);检查分接开关接线是否良好,确定分接开关指示位置与实际位置相符;判断单相变压器两个(几个)绕组感应电动势相位是否正确;综合判断变压器是否可以并列运行。 交接时,大修后,诊断试验需要测量变压器变比、极性和联接组别。诊断试验中,可以和直流电阻相互验证。 测试方法:①双电压表法②变比电桥法③变比测试仪 1. 双电压表法(如上右图),同时读取一次、二次绕组两端电压,12K N N =。缺点:电压不稳定,读数不准确;波动时两表要同时读数,误差大。当单相电源施加在A 、B 绕组之上(下图),一次侧、二次侧电压表读数分别为1U 、2U ,则一次绕组的相电压1 /2U ,一1/ 2,二次绕组线电压为2U ,所以变比12/2K U 。 A B C 2. 变比电桥法 通过调节1R ,使a ,b 两点电位相同,则变比1212212()1K U U R R R R R ==+=+,电阻r 用于测量误差。 3. 变比测试仪

变比误差:(K K )100%N N K K ?=-?,公式中N K 为额定变比,不同分接头下,额定变比不同,比如额定变比100005%/400±,分接头二档时额定变比为25,分接头一档时,额定变比为26.5,分接头三档时,额定变比为23.5。 在额定档时,变比误差要求在0.5%±以内,其他档位变比误差要求在1%±以内;对于电压等级在35kV 以下,电压比小于3的变压器,额定档时变比误差要求在1%±以内,其他档位时,变比误差应在变压器阻抗电压值(%)的1/10(与书上22页内容有不同)以内,但不得超过1%±。有载调压采用电动调压,保证准确性。 联接组别: Aa AX U U <时,绕组联接为减极性;Aa AX U U >时,绕组联接为加极性,如下图所示。所有单相变压器均为减极性。判断是减极性还是加极性的方法有双电压表法和直流法。双电压表法是用电压表测量Aa U 和AX U ,比较两者大小。直流法中,合上开关(右下图),mA 表正向转动为减极性,mA 表反向转动为加极性。 X (x ) A a X (x ) A a 减极性加极性 实际测量时,通过测量低压侧线电压滞后高压侧线电压的角度,来判断变压器的联接组别,如下左图所示。 A B C c o A B C a b c 右上图为Yd11接线图和向量图,同名端可以用“*”标记,也可以用“箭头”标记。 试验设备及接线: 试验中采用的设备为BBC6638,设备正面面板和反面面板以及接线如下图所示。共四根接线,ABC 高压侧接线(一根,三个接头,三个钳夹),abc 低压侧接线(一根,三个接头,三个钳夹),接地线一根,电源线一根。设备配套的两根接线没区别,反面面板却分高压和低压。ABC 三相高压侧接线分别接至“A ”、“B ”、“C ”三点,颜色“黄绿红”对应,钳夹接于变压器高压端三相。abc 三相低压侧接线分别接至“a ”、“b ”、“c ”三点,钳夹接于变压器低压端端三相。

变压器变比测试仪通用技术规范

变压器变比测试仪通用技术规范

本规范对应的专用技术规范目录

变压器变比测试仪采购标准技术规范使用说明 1. 本采购标准技术规范分为标准技术规范通用部分、标准技术规范专用部分以及本规范使用说明。 2. 采购标准技术规范通用部分原则上不需要设备招标人(项目单位)填写,更不允许随意更改。如对其条款内容确实需要改动,项目单位应填写《项目单位通用部分条款变更表》并加盖该网、省公司招投标管理中心公章及辅助说明文件随招标计划一起提交至招标文件审查会。经标书审查同意后,对通用部分的修改形成《项目单位通用部分条款变更表》,放入专用部分,随招标文件同时发出并视为有效。 3. 采购标准技术规范专用部分分为标准技术参数、项目单位需求部分和投标人响应部分。《标准技术参数表》中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动。项目单位对“标准参数值”栏的差异部分,应填写“项目单位技术差异表”,“投标人保证值”栏应由投标人认真逐项填写。项目单位需求部分由项目单位填写,包括招标设备的工程概况和招标设备的使用条件。对扩建工程,可以提出与原工程相适应的一次、二次及土建的接口要求。投标人响应部分由投标人填写“投标人技术参数偏差表”,提供销售业绩、主要部件材料和其他要求提供的资料。 4. 投标人填写“技术参数和性能要求响应表”时,如与招标人要求有差异时,除填写“技术偏差表”外,必要时应提供相应试验报告。 5. 有关污秽、温度、海拔等需要修正的情况由项目单位提出并在专用部分的项目单位技术差异表明确表示。 6.采购标准技术规范的页面、标题等均为统一格式,不得随意更改。

目录 1总则 (1) 1.1 一般规定 (1) 1.2 投标人应提供的资格文件 (1) 1.3 工作范围和进度要求 (1) 1.4 技术资料 (1) 1.5 标准和规范 (1) 1.6 必须提交的技术数据和信息 (2) 2 性能要求 (2) 3 主要技术参数 (2) 4 外观和结构要求 (3) 5 验收及技术培训 (3) 6 技术服务 (3) 附录A 供货业绩 (4) 附录B 仪器配置表 (4)

开关电源中的电子变压器有何作用

开关电源中的电子变压器有何作用 电子变压器,具有将市电的交变电压转变为直流后再通过半导体开关器件以及电子元件和高频变压器绕组构成一种高频交流电压输出的电子装置,也是在电子学理论中所讲述的一种交直交逆变电路。无论是直流电源还是交流电源,都要使用由软磁磁芯制成的电子变压器(软磁电磁元件)。 1、起改变输出频率作用的倍频或分频变压器; 2、起储能作用的储能电感器,起帮助半导体开关换向作用的换向电感器; 3、起变换电压、电流或脉冲检测信号的电压互感器、电流互感器、脉冲互感器、直流互感器、零磁通互感器、弱电互感器、零序电流互感器、霍尔电流电压检测器; 4、起电压和功率变换作用的电源变压器,功率变压器,整流变压器,逆变变压器,开关变压器,脉冲功率变压器; 5、起交流和直流滤波作用的滤波电感器; 6、起调节电感作用的可控电感器和饱和电感器;

7、起传递脉冲、驱动和触发信号作用的脉冲变压器,驱动变压器,触发变压器; 8、起吸收浪涌电流作用的吸收电感器,起减缓电流变化速率的缓冲电感器; 9、起原边和副边绝缘隔离作用的隔离变压器,起屏蔽作用的屏蔽变压器; 10、起开关作用的磁性开关电感器和变压器; 11、起传递宽带、声频、中周功率和信号作用的宽带变压器,声频变压器,中周变压器; 12、起稳定输出电压或电流作用的稳压变压器(包括恒压变压器)或稳流变压器,起调节输出电压作用的调压变压器; 13、起单相变三相或三相变单相作用的相数变换变压器,起改变输出相位作用的相位变换变压器(移相器); 14、起抑制电磁干扰作用的电磁干扰滤波电感器,起抑制噪声作用的噪声滤波电感器; 15、起改变输出阻抗与负载阻抗相匹配作用的匹配变压器。

变压器绝缘电阻测试方法(操作方案)

油浸自冷式变压器绝缘电阻的测量 1、兆欧表的选用及检查? 答:兆欧表的选择和检查:主要考虑兆欧表的额定电压和测量范围是否与被测的电器设备绝缘等级相适应。 (1)选用2500V的兆欧表; (2)对兆欧表进行外观检查:外观应良好,外壳完整,玻璃无破损,摇把灵活,指针无卡阻,接线端子应齐全完好,表线应是单根软绝缘铜线且完好无损、其长度不应超过5米; (3)对兆欧表进行开路试验:分开两条线分开(L和E)处于绝缘状态,摇动兆欧表的手柄达120r/min表针指向无限大(∞)为好; (4)对兆欧表进行短路试验:摇动兆欧表手柄到120r/min,将两只表笔瞬间搭接一下,表针指向“0”(零),说明兆欧表正常; (5)测试线绝缘应良好,禁止使用双股麻花线或平行线。 2、对变压器绝缘电阻的要求是: 答:绝缘电阻的名称: 高对低及地:(一次绕组对二次绕组和外壳)高压绕组对低压绕组及外壳的绝缘电阻; 低对高及地:(二次绕组对一次绕组和外壳)低压绕组对高压绕组及外壳的绝缘电阻; 绝缘电阻合格值的标准是: (1)这次测得的绝缘电阻值与上次测得的数值换算到同一温度下相比较,这次数值比上次数值不得降低30%; (2)吸收比R60/R15(遥测中60秒与15秒时绝缘电阻的比值),在10~30℃时应为1.3被及以上: (3)一次侧电压为10kV的变压器,其绝缘电阻的最低合格值与温度有关。

变压器绝缘电阻计算口诀:利用口诀计算出各温度下的绝缘电阻“升十减半,减十翻倍,良好乘以一点五” 吸收比:R 20 = R t X 10t-20/40温度每升高10O C ,R t X 2/3倍。温度每降低10O C , R t X 1.5倍。 (4)新安装的和大修后的变压器,其绝缘电阻合格值应符合上述规定。运行中的变压器则不低于10兆欧。 3、试述对一台运行中的变压器进行绝缘测量的全过程(按操作顺序回答。安全措施应足够)。 (1)接线方法:将变压器停电、验电并放电后按以下要求进行。 摇测一次绕组对二次绕组及地(壳)的绝缘电阻的接线方法:将一次绕组三相引出端lU、lV、1W用裸铜线短接,以备接兆欧表“L”端;将二次绕组引出端N、2U、2V、2W及地(地壳)用裸铜线短接后,接在兆欧表“E”端;必要时,为减少表面泄漏影响测量值可用裸铜线在一次侧瓷套管的瓷裙上缠绕几匝之后,再用绝缘导线接在兆欧表“G”端; 摇测二次绕组对一次绕组及地(壳)的绝缘电阻的接线方法:将二次绕组引出端 2U,2V、2W、N用裸铜线短接。以备接兆欧表“L”端;将一次绕组三相引出端1U、1V、1W及地(壳)用裸铜线短接后,接在兆欧表“E”端;必要时,为减少表面泄漏影响测量值可用裸铜线在二次侧瓷套管的瓷裙上缠绕几匝之后,再用绝缘导线接在兆欧表“G”端。 (2)准备工作 组织准备:

开关电源变压器设计

开关电源变压器设计 1. 前言 2. 变压器设计原则 3. 系统输入规格 4. 变压器设计步骤 4.1选择开关管和输出整流二极管 4.2计算变压器匝比 4.3确定最低输入电压和最大占空比 4.4反激变换器的工作过程分析 4.5计算初级临界电流均值和峰值 4.6计算变压器初级电感量 4.7选择变压器磁芯 4.8计算变压器初级匝数、次级匝数和气隙长度 4.9满载时峰值电流 4.10 最大工作磁芯密度Bmax 4.11 计算变压器初级电流、副边电流的有效值 4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 4.13 计算绕组的铜损 4.14 变压器绕线结构及工艺 5. 实例设计—12WFlyback变压器设计 1. 前言 ◆反激变换器优点: 电路结构简单 成本低廉 容易得到多路输出 应用广泛,比较适合100W以下的小功率电源 ◆设计难点 变压器的工作模式随着输入电压及负载的变化而变化 低输入电压,满载条件下变压器工作在连续电流模式( CCM ) 高输入电压,轻载条件下变压器工作在非连续电流模式( DCM ) 2. 变压器设计原则 ◆温升 安规对变压器温升有严格的规定。Class A的绝对温度不超过90°C; Class B不能超过110°C。因此,温升在规定范围内,是我们设计变压器必须遵循的准则。 ◆成本

开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。 3. 系统输入规格 输入电压:Vacmin~ Vacmax 输入频率:f L 输出电压:V o 输出电流:I o 工作频率:f S 输出功率:P o 预估效率:η 最大温升:40℃ 4.0变压器设计步骤 4.1选择开关管和输出整流二极管 开关管MOSFET:耐压值为V mos 输出二极管:肖特基二极管 最大反向电压V D 正向导通压降为V F 4.2计算变压器匝比 考虑开关器件电压应力的余量(Typ.=20%) 开关ON:0.8·V D > V in max / N+V o 开关OFF :0.8·V MOS > N·(V o+V F) + V in max 匝比:N min < N < N max 4.3确定最低输入电压和最大占空比

变压器各种规格尺寸

EE/EI型 磁芯外形:EE型、EI型 特点及应用范围:具有适用范围广,工作频率高,工作电压范围宽,输出功率大等.广泛应用于开关电源、 计算机、电子镇流器及家用电器等。 以下仅为例示尺寸,我公司可根据客户要求进行定制。 尺寸(mm) TYPE 序号针数 A B C±0.5D±0.5 E±0.5F EE-8.3 6 8 8 6 4 2.5 8.3 V EE-10 811.510.2 8 4 2.5 10.2 V EE-131012 12.5 8.5 4 2.5 13 V EE-16-1 614.813.3 9 4 3 16 V EE-16-21015.413 10.5 4 3.2 17.1 V EEL-161028.516 12.3 4 4.3 21.9 V EE-19-1 817.616 10 4 5 19 V EE-19-21017.216.213 4 3.9 20 V EEL-191031.516 10.5 4 4 21.1 V EEL-19-11015.630 24.1 4 3.5 21 H EE-25-1 620 18.212.5 4 6.3 25.2 V EE-25-2 821.717.512.6 4 5 25.2 V EE-25-31022.225 15.4 4 5 26.1 H EEL-25 835.317.512.5 4 5 25.2 V EE-301021 29.225.2 4 5 30 H EE-401427.630.525.8 4 5 40 H EE-42/15-11233.844 35.5 4 5 42 H EE-42/15-21641.348 37.7 4 5 42 H EE-42/15-31848.732 27.5 4 5 45.1 V EE-42/20-11245 39.832.5 4 5 42 V EE-42/20-21644.250 37.8 4 5 42.2 H EE-42/20-31844.137 27.3 4 5 45.3 V EE-552050 50 45.5 4 5 55 H

变比测试仪操作方法

https://www.360docs.net/doc/0810330402.html,/252 变比测试仪注意事项 注意事项 该变比是针对电力系统的三相变压器、特别是Z型绕组变压器、整流变压器和铁路电气系统的斯科特、逆斯科特、平衡变压器设计的。 仪器输入单相电源,由内部功率模块产生三相电源或二相电源,输出到变压器的高压侧,然后高压低压同时采样,最后计算出组别、变比、误差、相位差。 仪器采用大屏幕液晶显示,全中文菜单及汉字打印输出。 仪器内置使用说明书,可随时查阅。 仪器可以通过USB口直接由上位机进行控制,完成设置测量上传数据保存打印等操作。 仪器操作十分方便,是电力系统、变压器生产厂家和铁路电气系统理想的变压器变比组别极性测试仪。 二、安全措施 2.1、使用本仪器前一定要认真阅读本手册。 2.2、仪器的操作者应具备一般电气设备或仪器的使用常识。 2.3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 2.4、仪表应避免剧烈振动。 2.5、对仪器的维修、护理和调整应由专业人员进行。 2.6、测试线夹的黄、绿、红分别对应变压器的A、B、C不要接错。 2.7、高、低压电缆不要接反。 2.8、测单相变压器时只使用黄色和绿色线夹,不要用错,不用的测试夹要悬空。 2.9、测试试验变压器时,不可从低压加电,测仪表线圈的电压比,以免发生危险。

https://www.360docs.net/doc/0810330402.html,/252 2.10、变压器外壳和仪器的的接地端要良好接地。但三相变器的中性点不要接地。单相试验变压器的高压尾不要接地。 7.1有载分接开关19档的变压器,9、10、11分接是同一个值,仪器输入分接类型时应输入17,此时12分接以后,仪器显示分接位置比实际位置小2。分接开关在低压侧的变压器,显示分接位置和实际分接位置倒置。 7.2电压等级低的变压器,当输入电压值有效位数不够用时,可将高低压电压同时乘10或100等常数后输入。 7.3当出现错误提示后,应关闭电源,查找原因。 7.4连线要保持接触良好。仪器应良好接地! 7.5仪器工作时,如果出现液晶屏显示紊乱,旋转鼠标无响应,或者测量值与实际值相差很远,请按复位键,或者关掉电源,再重新操作。 7.6显示器没有字符显示,或颜色很淡,请调节亮度电位器至合适位置。 亮度电位器是多圈电位器,有10圈! 7.7仪器的工作场所应远离强电场、强磁场、高频设备。供电电源干扰越小越好,宜选用照明线。如果电源干扰还是较大,可以由交流净化电源给仪器供电。交流净化电源的容量大于200VA即可。 7.8仪器应存放在干燥通风处,如果长期不用或环境潮湿,使用前应加长预热时间,去除潮气。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

变压器尺寸规格

精心整理 SC(B)9、SC(B)10型树脂绝缘干式电力变压器 产品概述的内容: 我公司生产的SC系列树脂绝缘干式电力变压器是引进ABB-Micafil公司90年代FRVT制造技术和欧洲最新带填料真空薄绝缘 浇注和低压线圈箔绕技术,并在原有设备德国GEORG公司剪切线,斯托伯格绕线机等先进的生产设备的基础上再次引进德国HUBERS新一代浇注设备;意大利新型箔式绕线机制造而成的新一代低损耗、低噪声干式变压器。经考核产品性能达到并超过了 IEC726、GB6450、GB/T10228-1997标准。在国际上处于先进水平。 产品具有损耗低、体积小、重量轻、噪声低、防潮、耐污、抗裂、抗冲击、阻燃、过载能力强和局放小(局部放电量小于10PC)等优点。 本产品结构合理,使用与监护简单方便。配备BWK系列干式变压器用温度自动检测控制系统后,可实现故障、超温的声光报 警及超温自动跳闸和自动起停风机等功能。为变压器安全可靠运行提供了有力保证。 本产品可广泛用于输变电系统、宾馆、饭店、高层建筑、商业中心、体育场馆、石化工厂、地铁、车站、机场、海上钻台等场 所。特别适合于负荷中心和具有特殊防火要求的场所。 SCB9变压器SCB10变压器 产品特点 SC系列树脂浇注干式变压器采用先进的技术和国际一流的先进设备,体质的材料、科学的配方、严格的工艺和高标准检测, 使产品具有以下特点: a、高、低压线圈均采用铜导体,SCB系列低压采用整张铜箔绕制。玻璃纤维增强,高真空状态下干燥和浇注环氧树脂。固化 后形成坚固的整体,机械强度高,抗短路性能强。局部放电量小,可靠性高,使用寿命长。 b、阻燃、防爆、不污染环境。采用进口的环氧树脂加玻璃纤维复合绝缘材料,且环氧树脂中含有一定比例的石英粉,导热系 数和阻燃性能比树脂玻璃纤维材料有很大提高,且高温下不会产生有害的气体。 c、线圈不吸潮,铁芯夹件有特殊的防蚀涂层,可在高温度和其它恶劣环境下运行。间断运行无需去潮处理。 d、抗短路、雷电冲击水平高。 e、线圈内外侧树脂层薄,散热性能好。冷却方式一般采用空气自冷,对于任何防护等级的变压器,均可配置风冷系统,以提 高短时过载能力,以确保安全运行。 f、低损耗、低噪声,节能效果好,运行经济,免维护。 g、体积小,重量轻,占地空间少,安装费用低。 h、因无火灾、爆炸之忧,可分散安装在负荷中心,充分靠近用电站,从而降低线路造价和节省昂贵的低压费用。 型号含义

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

变压器,电缆等试验方案

第四节电力变压器调试方案及工艺 一、试验项目 1、测量绕组连同套管的直流电阻; 2、检查所有分接头的变压比; 3、检查变压器的三相结线组别和单相变压器引出线的极性; 4、测量绕组连同套管的绝缘电阻、吸收比或极化指数; 5、绕组连同套管的交流耐压试验; 6、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻; 7、额定电压下的冲击合闸试验; 8、检查相位; 二、测量绕组连同套管的直流电阻 1、测量应在各分接头的所有位置上进行,1600KVA及以下各相测得的相互差值应小于平均值的4%;线间测得相互差值应小于平均值得2%;变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%。 2、测量变压器绕组直流电阻的目的:检查绕组接头的焊接质量和绕组有无匝间短路;电压分接开关的各个位置接触是否良好及分接开关实际位置与指示器位置是否相符;引出线有无断裂;多股导线并绕的绕组是否有断股等情况。变压器绕组的直流电阻是变压器在交接试验中不可少的试验项目。对于带负载调压的电力变压器,需用电动操作来改变分接开关的位置。

3、验方法:变压器绕组直流电阻的测量,使用变压器直流电阻测试仪5503。该变压器直流电阻测试仪是新一代便携式变压器直流电阻测试仪。仪器操作简单(仅需轻触二个按键)测试全过程由软件完成,测试数值稳定准确,不受人为因素影响,仪器显示采用背光的点阵图形液晶显示器,满足不同的测试环境,具有完善的反电势保护功能和现场抗干扰能力,完全适用于从配电变压器到大型电力变压器的直阻快速测试。 4、注意事项 由于影响测量结果的因素很多,如测量表计,引线、温度、接触情况和稳定时间等。因此,应注意以下事项: A测量仪表的准确度应不低于0.5级; B连接导线应有足够的截面,且接触必须良好; C测量高压变压器绕组的直流电阻时,其他非被测的各电压等级的绕组应短路接地,防止直流电源投入或断开时产生高压,危及安全。 D测量时由于变压器绕组电感较大,电流稳定所需的时间较长,为了测量准确,必须等待稳定后再读数。 三、检查所有分接头的变压比 1、检查所有分接头的变压比,与制造厂铭牌数据相比应无明显差别,且应符合变压比的规律。变压器的变压比是指变压器空载运行时,原边电压与副边电压的比值。 2、测量变压比的目的: A检查变压器绕组匝数比的正确性;

变压器的变比极性及接线组别试验

变压器的变比、极性及接线组别试验 一、试验目的 变压器的绕组间存在着极性、变比关系,当需要几个绕组互相连接时,必须知道极性才能正确地进行连接。而变压器变比、接线组别就是并列运行的重要条件之一,若参加并列运行的变压器变比、接线组别不一致,将出现不能允许的环流。因此,变压器在出厂试验时,检查变压器变比、极性、接线组别的目的在于检验绕组匝数、引线及分接引线的连接、分接开关位置及各出线端子标志的正确性。对于安装后的变压器,主要就是检查分接开关位置及各出线端子标志与变压器铭牌相比就是否正确,而当变压器发生故障后,检查变压器就是否存在匝间短路等。 二、试验仪器、设备的选择 根据对变压器变比、极性、接线组别试验的要求,测试仪器、仪表应能满足测量接线方式、测试电压、测试准确度等,因此需对测试仪器的主要参数进行选择。 (1)仪表的准确度不应低于0、5级。 (2)电压表的引线截面≮1、5mm2。 (3)对自动测试仪要求有高精度与高输入阻抗。这样仪器在错误工作状态下能显示错误信息,数据的稳定性与抗干扰性能良好,一次、二次信号同步采样。 三、危险点分析及控制措施 1、防止高处坠落 使用变压器专用爬梯上下,在变压器上作业应系好安全带。对220kV及以上变压器,需解开高压套管引线时,宜使用高处作业车,严禁徒手攀爬变压器高压套管。 2、防止高处落物伤人 高处作业应使用工具袋,上下传递物件应用绳索拴牢传递,严禁抛掷。 3、防止工作人员触电 在测试过程中,拉、合开关的瞬间,注意不要用手触及绕组的端头,以防触电。严格执行操作顺序,在测量时要先接通测量回路,然后接通电源回路。读完数后,要先断开电源回路,然后断开测量回路,以避免反向感应电动势伤及试验人员,损坏测试仪器。 四、试验前的准备工作 1、了解被试设备现场情况及试验条件 查勘现场,查阅相关技术资料,包括该设备出厂试验数据、历年试验数据及相关规程等,掌握该设备运行及缺陷情况。 2、试验仪器、设备准备 选择合适的被试变压器测试仪、测试线(夹)、温(湿)度计、接地线、放电棒、万用表、电源线(带剩余电流动作保护器)、电压表、极性表、电池、隔离开关、二次连接线、安全带、安全帽、电工常用工具、试验临时安全遮栏、标示牌等,并查阅试验仪器、设备及绝缘工器具的检定证书有效期、相关技术资料、相关规程等。 3、办理工作票并做好试验现场安全与技术措施 向其余试验人员交代工作内容、带电部位、现场安全措施、现场作业危险点,明确人员分工及试验程序。 五、现场试验步骤及要求 断开变压器有载分接开关、风冷电源,退出变压器本体保护等,将变压器各绕组接地放电,对大容量变压器应充分放电(5min以上),放电时应用绝缘工具进行,不得用手碰触放电导线。拆除或断开变压器对外的一切连线。 (一)使用QJ-35电桥测量变压器变比及误差 1、试验接线 用QJ-35电桥测量变压器变比及误差的接线,如图1所示。

变压器的基本知识及测量方法

变压器的基本知识及测量方法 一、简介:变压器是借助于电磁感应,在绕组之间交换交流电压或电流的一种电气设备。从电厂发出的电能,要经过很长的输电线路输送给远方的用户,为了减少输电线路上的电能损耗,必须采用高压或超高压输送。而目前一般发电厂发出的电压,由于受到绝缘水平的限制,电压不能太高,这就要经过变压器将电厂发出的电压进行升高送到电力网。这种变压器统称升压变压器。对各用户来说,各种电气设备所要求的电压又不太高,也要经过变压器,将电力系统的高电压变成符合用户各种电气设备要求的额定电压。作为这种用途的变压器统称降压变压器。电力变压器是电力系统中,用以改变电压的主要电气设备 二、变压器的分类 变压器有不同的使用条件、安装环境,有不同的电压等级和容量级别,有不同的结构形式和冷却方式,所以应按不同原则进行分类。 分类方式 名称 备注 按容量 中小型变压器 35KV及以下,容量630~6300KVA 大型变压器 110KV及以下,容量8000~63000KVA 特大型变压器 220KV及以上,容量3150及以上 按用途 电力变压器 升压、降压、配电、联络、专用变压器 仪用变压器 电压、电流互感器 电炉变压器 试验变压器 整流变压器 调压变压器 矿用变压器 其他变压器 按相数分为 三相 单相 按铁心结构

心式变压器 壳式变压器 按调压方式 无载调压 有载调压 按铁心型式 叠片式 卷铁心 按冷却方式 油浸自冷 油浸风冷 油浸水冷 干式空气自冷 干式空气风冷 干式浇注绝缘 按绕组数量 双绕组 三绕组 按绕组耦合方式 普通变 自耦变 三、结构 1.铁心 普通变压器硅钢片叠成,变压器的铁芯由硅钢带绕制而成。铁芯是完成电能---磁能---电能转换的主体。 2.绕组(俗称线圈)

变压器规格型号说明

干式变压器; 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压, 0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。 (2)相数,涵义分:单相(D);三相(S)。 (3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。 (4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。 (5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。 (7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。 (9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q); 防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY); 低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB); 油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。不对的地方请各位专家朋友指正。 变压器型号

电力变压器的电压比、极性和组别试验

电力变压器的电压比、极性和组别试验 一、变压器极性组别和电压比试验的目的和意义 变压器线圈的一次侧和二次侧之间存在着极性关系,若有几个线圈或几个变压器进行组合,都需要知道其极性,才可以正确运用。对于两线圈的变压器来说,若在任意瞬间在其内感应的电势都具有同方向,则称它为同极性或减极性,否则为加极性。变压器联结组是变压器的重要参数之一,是变压器并联运行的重要条件,在很多情况下都需要进行测量。 在变压器空载运行的条件下,高压绕组的电压1U 和低压绕组的电压2U 之比称为变压器的变压比: 2 1 U U K (5-3) 电压比一般按线电压计算,它是变压器的一个重要的性能指标,测量变压器变压比的目的是: (1)保证绕组各个分接的电压比在技术允许的范围之内; (2)检查绕组匝数的正确性; (3)判定绕组各分接的引线和分接开关连接是否正确。 二、变压器极性组别和电压比试验方法 1、直流法确定变压器的极性 测量变压器绕组极性的方法有直流法和交流法,这里介绍简单适用的直流法:用一节干电池接在变压器的高压端子上,在变压器的二次侧接上一毫安表或微安表,实验时观察当电池开关合上时表针的摆动方向,即可确定极性。 ++V C C B B E A A μA E K + +x a A X 图5-8 用直流法测量极性 图5-9 用直流法确定接线组别 如图5-8所示,将干电池的正极接在变压器一次侧A 端子上,负极接到X 上,电流表的正端接在二次侧a 端子上,负极接到x 上,当合上电源的瞬间,若电流表的指针向零刻度的右方摆动,而拉开的瞬间指针向左方摆动,说明变压器是减极性的。 若同样按照上面接线,但当电源合上或拉开的瞬间,电流表的指针的摆动方向与上面相

EI矽钢片铁心规格

1.EI型铁心片有那些规格 国内有标准的有 a. XEI 型 SJ97-65(XE、XI、E) 这是一些小型变压器铁心。 b.KEI型 SJ98-65(含KEB、KIB、KE、KI) 这标准来源于原苏联无线电工业部标准HO666.002.是宽窗口铁心,铁心拄的宽度与铁心窗口宽度相等。 c.GEI型 SJ99-65(含GE、GI、GEC、GIC、GEB、GIB) 这标准来源于原苏联无线电工业部标准HO666.005.是无废料铁心,I片铁心是铁心窗口尺寸的两倍 d.YEI型 GB 11441-89 ( 含YEI、YE、YED、YEE、YEF) 这类铁心虽与国际标准IEC 740通用的,但国内使用这种铁心片的很少。 e. EI(含EIB)铁心片 EI铁心片国内外无标准号,但使用的范围很广泛的,在珠江三角洲、港、台、日本均使用这种规格的铁心片。没有统一的标准,却能生产出统一规格的铁心片,足见其生命力。 2. GEI型`铁心片有什么特点 这是无废料铁心(含GE、GI、GEC、GIC、GEB、GIB),I片铁心是铁心窗口尺寸的两倍,其尺寸是从原苏联无线电工业部标准HO666.005改编而来。是低成本铁心。 3. KEI型铁心片有什么特点 本系列(含KEB、KIB、KE、KI),标准来源于原苏联无线电工业部标准HO666.002,经改编而成,是宽窗口铁心,铁心拄的宽度与铁心窗口宽度相等。也可冲制成无废料铁心,手工冲时,送料要一正一反,或在模具上下大功夫。窗口面积较大,同样的变压器尺寸,功率较大,是低重量铁心,适用于移动设备,如车、船。 4. XEI型铁心片有什么特点 本系列(含YEI、YE、YED、YEE、YEF)适用于家用电器中的小功率低频变压器与阻流圈。这类铁心尺寸较小,铁心片中无固定孔。 5. YEI铁心片有什么特点 本系列( 含YEI、YE、YED、YEE、YEF)。可参照德国标准DIN 41302 part1 YEI 能进行无废料冲制的低成本铁心 YE X2 小尺寸正方形,用于安装在印刷电路板上的变压器 YED2 小尺寸铁心,用于采用精密合金,或矩磁材料的小电感器。 YE X3 宽窗口面积。用于移动设备的电源变压器与高压变压器, YEE4、YEF4 小尺寸正方形,用于安装在印刷电路板上的变压器。用于比YE X2 铁心片更小安装面积的场合。如贴面变压器。

变压器测试方法-网上测试方法

中周变压器的检测 A 将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。 B 检测绝缘性能 将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3 电源变压器的检测和经验 其容易出的毛病主要为内部短路。这时可通过万用表检查电源电压来判定其是否正常,若行输出变压器绝缘性能下降或有匝间局部短路现象时,将使得行扫描电流激增,开关电源输出电压下降。因此,可通过测量电源电压来判断行输出变压器是否短路。 A 通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 B 绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C 线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D 判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。 E 空载电流的检测。 (a) 直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。 (b) 间接测量法。在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。 F 空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 G 一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

相关文档
最新文档